首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Iranian seedless barberry is a very recalcitrant species in in vitro culture which does not show appropriate growth on standard culture media. Response surface methodology was employed to evaluate the effects of changing macronutrients concentrations on establishment and proliferation phases. KNO3 and NH4NO3 macronutrients at 0.3 to 1.5?×?MS medium levels and CaCl2, MgSO4 and KH2PO4 macronutrients in a range of 0.5 to 1.5?×?MS medium concentrations were tested in a response surface design with 30 treatments. Many significant interactions were found among the macronutrients. High concentrations of KNO3, NH4NO3 and CaCl2 improved the growth rate in the establishment phase. The growth rate in media containing high KNO3 and low CaCl2 was high. Reduced concentrations of CaCl2 and KNO3 decreased hyperhydricity. The greatest hyperhydricity was induced when both NH4NO3 and CaCl2 were used at 1.5?×?MS level. The number of hooked leaves decreased as KH2PO4 increased and MgSO4 reduced. In the proliferation phase, there were many significant interactions among the macronutrients. Increased concentration of NH4NO3 and reduced concentration of KH2PO4 improved the growth rate. Proliferation rate increased in media containing high concentration of KNO3 and low to moderate concentrations of NH4NO3. The greatest production of new tissues and organs was seen in media with high KNO3 and moderate to high CaCl2. High concentration of NH4NO3 and low concentration of KH2PO4 also increased production of new tissues and organs. No shoot apical meristem was seen when CaCl2 level was high and KNO3 level was low. Formation of shoot apical meristem required high KH2PO4 concentration and low CaCl2 concentration. Finally, low concentration of KNO3 and low to moderate concentrations of NH4NO3 increased phenol exudation.

  相似文献   

2.
Mature zygotic embryos of ginseng (Panax ginseng C. A. Meyer) were germinated on a Murashige and Skoog medium lacking growth regulators. However, when the zygotic embryos were cultured on MS medium containing increased levels of macrosalts (NH4NO3, KNO3, KH2PO4, MgSO4, or CaCl2) to result is a mild salt stress, growth of zygotic embryos was strongly suppressed and eventually browning occurred. Somatic embryos or embryogenic calli were formed directly from these abnormal stressed zygotic embryos. Cotyledons were the most competent tissue for somatic embryo production. The highest frequency of somatic embryo formation (56.3%) was observed on medium containing 61.8 mM of NH4NO3. The highest frequency of somatic embryo formation by five different macrosalt treatments occurred in the following order: NH4NO3> KNO3> KH2PO4> MgSO4> CaCl2. Somatic embryos were regenerated into plants with a shoot and root, and the plants survived on soil in the greenhouse. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Defining optimal mineral-salt concentrations for in vitro plant development is challenging, due to the many chemical interactions in growth media and genotype variability among plants. Statistical approaches that are easier to interpret are needed to make optimization processes practical. Response Surface Methodology (RSM) and the Chi-Squared Automatic Interaction Detection (CHAID) data mining algorithm were used to analyze the growth of shoots in a hazelnut tissue-culture medium optimization experiment. Driver and Kuniyuki Walnut medium (DKW) salts (NH4NO3, Ca(NO3)2·4H2O, CaCl2·2H2O, MgSO4·7H2O, KH2PO4 and K2SO4) were varied from 0.5× to 3× DKW concentrations with 42 combinations in a IV-optimal design. Shoot quality, shoot length, multiplication and callus formation were evaluated and analyzed using the two methods. Both analyses indicated that NH4NO3 was a predominant nutrient factor. RSM projected that low NH4NO3 and high KH2PO4 concentrations were significant for quality, shoot length, multiplication and callus formation in some of the hazelnut genotypes. CHAID analysis indicated that NH4NO3 at ≤1.701× DKW and KH2PO4 at >2.012× DKW were the most critical factors for shoot quality. NH4NO3 at ≤0.5× DKW and Ca(NO3)2 at ≤1.725× DKW were essential for good multiplication. RSM results were genotype dependent while CHAID included genotype as a factor in the analysis, allowing development of a common medium rather than several genotype specific media. Overall, CHAID results were more specific and easier to interpret than RSM graphs. The optimal growth medium for Corylus avellana L. cultivars should include: 0.5× NH4NO3, 3× KH2PO4, 1.5× Ca(NO3)2.  相似文献   

4.
Micropropagation of hazelnut (Corylus avellana L.) is typically difficult because of the wide variation in response among cultivars. This study was designed to determine the required mineral nutrient concentrations for micropropagation of C. avellana cultivars using a response surface design analysis. Driver and Kuniyuki Walnut (DKW) medium mineral nutrients were separated into five factors: NH4NO3, Ca(NO3)2, mesos (MgSO4 and KH2PO4), K2SO4, and minor nutrients (boron, copper, manganese, molybdenum, and zinc) ranging from 0.5× to 2× the standard DKW medium concentrations with 33 treatments for use in modeling. Overall quality and shoot length for all cultivars were influenced by ammonium and nitrate nitrogen, mesos and minors. Reduced Ca(NO3)2 improved multiplication while higher amounts increased shoot length for most cultivars. Uptake of nutrients varied among the cultivars. Calcium and magnesium concentrations were greater in the shoots that grew well compared to poorly-growing and control treatments. All five cultivars showed improved growth on some treatments and the models indicated that shoots grown on an optimized medium would be even better. This model indicates that NH4NO3, Ca(NO3)2, mesos, and minors all had significant effects on hazelnut growth and multiplication and should be optimized in future experiments.  相似文献   

5.
Mineral nutrition in the media used for growth of in vitro plants is often difficult to optimize due to complex chemical interactions of required nutrients. The response of plant tissue to standard growth media varies widely due to the genetic diversity of the plant species studied. This study was designed as the initial step in determining the optimal mineral nutrient requirements for micropropagation of shoot tips from a collection of genetically diverse pear germplasm. Five mineral nutrient factors were defined from Murashige and Skoog salts: NH4NO3, KNO3, mesos (CaCl2·2H20–KH2PO4–MgSO4), micronutrients (B, Cu, Co, I, Mn, Mo, and Zn), and Fe-EDTA. Each factor was varied over a range of concentrations. Treatment combinations were selected using response surface methods. Five pears in three species (Pyrus communis ‘Horner 51,’ ‘Old Home?×?Farmingdale 87,’ ‘Winter Nelis,’ Pyrus dimorphophylla, and Pyrus ussuriensis ‘Hang Pa Li’) were grown on each treatment combination, responses were measured, and each response was analyzed by analysis of variance. The analyses resulted in the identification of the following factors with the single largest effects on plant response: shoot quality (mesos), leaf spotting/necrosis (mesos), leaf size (mesos), leaf color (mesos, NH4NO3, and KNO3), shoot number (NH4NO3 and Fe), nodes (NH4NO3 and KNO3), and shoot length (mesos and Fe). Factors with the largest effects (mesos and Fe) were similar among the genotypes. This approach was very successful for defining the appropriate types and concentrations of mineral nutrients for micropropagation of diverse pear genotypes.  相似文献   

6.
The present work deals with optimization of adventitious shoot culture of Bacopa monnieri for the production of biomass and bacoside A and has investigated the effects of macro elements (NH4NO3, KNO3, CaCl2, MgSO4 and KH2PO4) and nitrogen source [NH4 +/NO3 ] of Murashige and Skoog (Physiol Plant 15:473–497, 1962) medium (MS) on accumulation of biomass and bacoside A content. Optimum number of adventitious shoots (99.33 shoots explant−1), fresh weight (1.841 g) and dry weight (0.150 g) were obtained in the medium with 2.0× strength of NH4NO3. The highest production of bacoside A content was also recorded in the medium of 2.0× NH4NO3, which produced 17.935 mg g−1 DW. The number of adventitious shoot biomass and bacoside A content were optimum when the NO3 concentration was higher than that of NH4 +. Maximum number of shoots (70.00 shoots explant−1), biomass (fresh weight 1.137 g and dry weight 0.080 g) and also bacoside A content (27.106 mg g−1 DW) were obtained at NH4 +/NO3 ratio of 14.38/37.60 mM. Overall, MS medium supplemented with 2.0× NH4NO3 is recommended for most efficient bacoside A production.  相似文献   

7.
A response surface methodology (RSM) experimental design was applied for improving micropropagation of a wild apricot, Prunus armeniaca Lam., from the mountains of Kazakhstan. In an initial study, woody plant medium (WPM) mineral nutrients [calcium nitrate, ammonium nitrate, mesos (calcium chloride, potassium phosphate and magnesium sulfate) potassium sulfate and minor nutrients] were tested in a response surface methodology (RSM) experiment. Shoot quality was the best when nitrogen and mesos (CaCl2, MgSO4, K2SO4, KH2PO4) compounds were altered. In this study an expanded mesos optimization experiment was run. Data taken included a subjective quality rating, shoot length, shoot number, leaf color and size, callus and physiological disorders. Data were analyzed by Classification and Regression Tree Analysis (CART), a data mining technique that provides specific cutoff values for data and easy to interpret data trees. The CART analysis indicated that the best quality would be with ≤2.4× WPM levels of KH2PO4 and ≤0.75× MgSO4. Shoot length was affected by K2SO4, but most shoots were of good size at any concentration. Shoot multiplication was affected by KH2PO4, but there were >5 shoots at any concentration. Leaf color was best with ≤2.41× KH2PO4 and ≤1.22× K2SO4. Based on the CART analysis, a recommendation for improved mesos compounds was developed. Each of the individual trees was analyzed and the cutoff points determined so that all the growth characteristics could be considered in the final concentrations chosen. Using the combined results from the CART analysis, the suggested medium would include WPM with CaCl2 2.7×, MgSO4 2.7×, K2SO4 0.8×, KH2PO4 0.75×.  相似文献   

8.
An efficient hairy root induction system for an important endangered medicinal plant, Dracocephalum kotschyi, was developed through Agrobacterium rhizogenes-mediated transformation by modifying the co-cultivation medium using five bacterial strains, A4, ATCC15834, LBA9402, MSU440, and A13 (MAFF-02-10266). A drastic increase in transformation frequency was observed when a Murashige and Skoog medium lacking NH4NO3 KH2PO4, KNO3 and CaCl2 was used, resulting in hairy root induction frequencies of 52.3 %, 69.6 %, 48.6 %, 89.0 %, and 80.0 % by A4, A13, LBA9402, MSU440, and ATCC15834 strains, respectively. For shoot induction, hairy roots and unorganized tumors induced by strain ATCC15834 were placed on an MS media supplemented with 0.1, 0.25, 0.5, and 1 mg/l BA plus 0.1 mg/l NAA. The high frequency of shoot regeneration and number of shoot were obtained in the medium containing 0.25 mg/l BA and 0.1 mg/l NAA. Root induction occurred from the base of regenerated shoots on the MS medium supplemented with 0.5 mg/l IBA after 10 days.  相似文献   

9.
Withania somnifera is an important medicinal plant that contains withanolides as bioactive compounds. We have investigated the effects of macroelements and nitrogen source in hairy roots of W. somnifera with the aim of optimizing the production of biomass and withanolide A content. The effects of the macroelements NH4NO3, KNO3, CaCl2, MgSO4 and KH2PO4 at concentrations of 0, 0.5, 1.0, 1.5 and 2.0× strengths and of nitrogen source [NH4 +/NO3 ? (0.00/18.80, 7.19/18.80, 14.38/18.80, 21.57/18.80, 28.75/18.80, 14.38/0.00, 14.38/9.40, 14.38/18.80, 14.38/28.20 and 14.38/37.60 mM)] in Murashige and Skoog medium were evaluated for biomass and withanolide A production. The highest accumulation of biomass (139.42 g l?1 FW and 13.11 g l?1 DW) was recorded in the medium with 2.0× concentration of KH2PO4, and the highest production of withanolide A was recorded with 2.0× KNO3 (15.27 mg g?1 DW). The NH4 +/NO3 ? ratio also influenced root growth and withanolide A production, with both parameters being larger when the NO3 ? concentration was higher than that of NH4 +. Maximum biomass growth (148.17 g l?1 FW and 14.79 g l?1 DW) was achieved at NH4 +/NO3 ? ratio of 14.38/37.60 mM, while withanolide A production was greatest (14.68 mg g?1 DW) when the NH4 +/NO3 ? ratio was 0.00/18.80 mM. The results are useful for the large scale cultivation of Withania hairy root culture for the production of withanolide A.  相似文献   

10.
The biosynthesis of bacterial cellulose by Acetobacter xylinum was optimized by numerically finding the maximum of an arbitrarily chosen second order polynomial model function of several variables (describing the dependence of the cellulose production on the concentrations of the medium components), using multivariable linear regression analysis. The chosen function appeared to describe the analyzed correlation sufficiently well. Consequently, three to six stages of optimization made the determination of the optimum medium compositions possible for 16 days of fermentation at 30°C in a medium based on fructose (wt%: fructose, 3.68; yeast extract, 5.02; (NH4)2NO3, 0.001; KH2PO4, 0.3; MgSO4 × 7 H2O, 0.05; resulting in a cellulose production equal to 0.505 wt.% – namely 5.6 times higher than before the optimization) and for 7 days fermentations at 30°C in a medium based on sucrose and ethanol (wt.%: sucrose, 5.0; ethanol, 1.36; yeast extract, 1.27; (NH4)2SO4, 0.5; KH2PO4, 0.3; MgSO4 × 7 H2O, 0.05; resulting in a cellulose production equal to 0.251 wt.% – namely 1.5 times higher than before the optimization).  相似文献   

11.
Many hazelnut (Corylus avellana L.) cultivars fail to thrive in vitro on standard growth medium and the reasons for poor growth are not well understood. Our initial study of five C. avellana cultivars showed that changes in the mineral nutrients of Driver and Kuniyuki walnut (DKW) medium, including doubling the minor nutrients, produced improved growth and shoot quality. The objectives of this study were to determine the effects of the individual minor mineral nutrients from DKW medium and if added nickel was required for optimal growth. Five factors were tested at 0.5 × to 4× DKW medium concentrations, [H3BO3, CuSO4·5H2O, MnSO4·H2O, Na2MoO4·2H2O and Zn(NO3)2·6H20], in a response surface design with 39 treatment combinations. Ni was not present in the DKW medium formulation so NiSO4·6H2O was varied from 0 to 6 µM. There were many significant interactions among the minor nutrients. Higher concentrations (4×) of B, Mo, and Zn increased overall shoot quality, length, and multiplication. Increased Mo improved some responses for each cultivar, and it interacted significantly with Cu and Zn. The addition of Ni greatly improved the shoot quality and length of ‘Sacajawea.’ Ni interactions were significant for the other cultivars as well, and altered the requirements for the other minor nutrients, but did not necessarily improve the overall shoot response. Improved growth and shoot quality for most cultivars required increased amounts of B, Mo, and Zn and less Mn and Cu. ‘Sacajawea’ required increased B, Cu, Zn, and Ni. All of the cultivars required minor nutrient formulations that differed greatly from DKW medium or other published minor nutrient formulations.  相似文献   

12.
Pear accessions and species show a broad response to tissue culture media due to the wide genetic diversity that exists in the available pear germplasm. An initial study of mineral nutrition using a systematic response surface approach with five Murashige and Skoog medium mineral stock solutions indicated that the mesos factor (CaCl2, MgSO4, and KH2PO4) affected most plant responses and genotypes, suggesting that additional studies were needed to further optimize these three mesos components for a wide range of genotypes. Short stature, leaf spots, edge necrosis, and red or yellow coloration were the main symptoms of poor nutrition in shoot cultures of 10 diverse pear genotypes from six species. A surface response experimental design was used to model the optimal factor and factor levels for responses that included overall quality, leaf character, shoot multiplication, and shoot height. The growth morphology, shoot length, and multiplication of these pear shoots could be manipulated by adjusting the mesos components. The highest quality for the majority of genotypes, including five P. communis cultivars, P. koehnei, P. dimorphophylla, and P. pyrifolia ‘Sion Szu Mi’, required higher concentrations (>1.2× to 2.5×) of all the components than are present in Murashige and Skoog medium. ‘Capital’ (P. calleryana) required high CaCl2 and MgSO4 with low KH2PO4; for ‘Hang Pa Li’ (P. ussuriensis), low CaCl2 and moderate to low MgSO4 and KH2PO4 produced high-quality shoots. Suitable combinations of the meso nutrients produced both optimum shoot number and shoot length in addition to general good plant quality.  相似文献   

13.
Withania somnifera is an important medicinal plant that contains withanolides and withaferins, both bioactive compounds. We have tested the effects of macroelements and nitrogen source in W. somnifera cell suspension cultures with the aim of optimizing the production of biomass and withanolide A. The effects of the macroelements NH4NO3, KNO3, CaCl2, MgSO4 and KH2PO4 at concentrations of 0.0, 0.5, 1.0, 1.5 and 2.0× strength and of the nitrogen source [NH4 +/NO3 (mM/mM) ratio of: 0.00/18.80, 7.19/18.80, 14.38/18.80, 21.57/18.80, 28.75/18.80, 14.38/0.00, 14.38/9.40, 14.38/18.80, 14.38/28.20, and 14.38/37.60 (mM)] in Murashige and Skoog medium were tested for biomass and withanolide A production. The highest accumulation of biomass [147.81 g l−1 fresh weight (FW) and 14.02 g l−1 (dry weight (DW)] was recorded in the medium containing a 0.5× concentration of NH4NO3, and the highest production of withanolide A content was recorded in the medium with 2.0× KNO3 (4.36 mg g−1 DW). The NH4 +/NO3 ratio also influenced cell growth and withanolide A production, with both parameters being larger when the NO3 concentration was higher than that of NH4 +. Maximum biomass growth (110.45 g l−1 FW and 9.29 g l−1 DW) was achieved at an NH4 +/NO3 ratio of 7.19/18.80, while withanolide A production was greatest (3.96 mg g−1 DW) when the NH4 +/NO3 ratio was 14.38/37.60 mM.  相似文献   

14.
Abnormal physiological responses of plant cultures such as shoot tip necrosis, callus, and hyperhydricity are some of the most difficult challenges in shoot micropropagation, and their causes are not well understood. Five Murashige and Skoog mineral salt factors, which influence the growth of pear shoot cultures, were tested in a five-dimensional surface response experimental design. Pyrus communis ‘Old Home × Farmingdale 87,’ ‘Horner 51,’ and ‘Winter Nelis’; Pyrus dimorphophylla; and Pyrus ussuriensis ‘Hang Pa Li’ shoot cultures were grown on 43 computer-designed treatments to represent the design space of all possible treatment combinations. Analysis of shoot response to these treatments identified the factors that both contributed to physiological disorders and remedied them. Undesirable callus formation was common for pear shoots cultured on standard medium and decreased on formulations with increased NH4NO3, Fe, and mesos (CaCl2, KH2PO4, and MgSO4) for most genotypes. Shoot tip necrosis varied with the genotype, but low mesos or low nitrogen concentrations contributed to the necrosis. Hyperhydricity was more prominent with low mesos or low NH4NO3. Hooked and upwardly curled new leaves were seen in most genotypes and resulted from use of low mesos in P. communis and low nitrogen for ‘Hang Pa Li’ and P. dimorphophylla. Fasciation and hypertrophy were seen infrequently and resulted from wide imbalances in several nutrients simultaneously. In general, standard concentrations of Murashige and Skoog iron and micros combined with high mesos and moderate nitrogen compounds produced normal shoots without physiological disorders.  相似文献   

15.
The effects of five different N-sources (KNO3 + NH4NO3 = control, KNO3, NH4NO3, NH4H2PO4, L-alanine) on growth, nutritional status, chlorophyll (Chl) content, and photosynthetic parameters of the apple rootstock MM 106 shoots cultured in vitro were investigated. In comparison to all the other treatments, control explants grown on a MS medium containing KNO3 + NH4NO3 had the highest fresh mass, Chl content, net photosynthetic rate, transpiration rate, and stomatal conductance.  相似文献   

16.
Mineral nutrition is directly involved in plant metabolism and greatly affects growth and development. An initial study modeling Murashige and Skoog (MS) medium mineral components revealed that the quality of red raspberry shoot cultures was significantly affected by CaCl2, MgSO4, and KH2PO4 (mesos components). This study investigated the effects of increased mesos components on shoot growth and metabolism. Rubus idaeus L. “Indian summer” shoots grown on standard MS medium (1.0× MS mesos components) were compared to shoots grown with 1.5× and 2.5× MS mesos components. After 9 wk, shoots were evaluated for shoot quality, multiplication, elongation, and metabolic changes. Metabolic changes were determined by liquid chromatography (LC) coupled with electrospray ionization (ESI) tandem mass spectrometry (MS/MS). Shoots grown on increased mesos components had improved quality, shoot length, and leaf color compared to shoots grown on MS medium. Metabolomic analysis indicated that shoots grown on high mesos component medium had reduced amounts of some free amino acids (glutamine, arginine, histidine, and proline) and some secondary metabolites (epicatechin, quercetin, and ellagic acid) compared to shoots on MS medium, which indicated reduced stress. Shoots grown on high mesos component also had increases in fructose 1-phosphate and glutathione associated with biosynthetic pathways, plant defense mechanisms, and redox homeostasis. Another factor involved in improved growth responses may be that increased glutamine was also found in high mesos component treatments, possibly influenced by ammonium accumulated from photorespiration. These metabolic changes provide initial insights into medium optimization and in vitro mineral nutrition, and the impact of nutrients on plant growth and development in micropropagated red raspberry shoots.  相似文献   

17.
Microbial fermentation of citrinin-free Monascus pigments is in favor in the development of food industry. This study investigated the influences of carbon source, nitrogen source, and mineral salts on the cell growth, monascin (MS), and citrinin (CT) production in Monascus M9. A culture medium composition was established for maximizing the production of citrinin-free MS in submerged culture, as follows: 50?g/L Japonica rice powder, 20?g/L NH4NO3, 3?g/L NaNO3, 1.5?g/L KH2PO4, 1?g/L MgSO4?·?7H2O, 0.2?g/L MnSO4. Under these conditions, no CT was detectable by high performance liquid chromatography. The yield of MS reached 14.11?mg/g, improving approximately 30% compared with before optimization.  相似文献   

18.
A highly efficient Agrobacterium-mediated transformation system for Lilium × formolongi was established by modifying the medium used for inoculation and co-cultivation. Meristematic nodular calli of Lilium were inoculated with an overnight culture of A. tumefaciens strain EHA101 containing the plasmid pIG121-Hm harboring an intron-containing β-glucuronidase (GUS), hygromycin phosphotransferase, and neomycin phosphotransferase II genes. The effects of ten different types of media and carbohydrates (sucrose, d-glucose, and l-arabinose) in both inoculation and co-cultivation media were evaluated. Interestingly, a dramatic increase in the frequency of transformation (25.4%) was observed when Murashige and Skoog (MS) medium containing sucrose and lacking KH2PO4, NH4NO3, KNO3, and CaCl2 was used. Hygromycin-resistant transgenic calli were obtained only in medium supplemented with sucrose. The effects of this modified medium were also investigated for Lilium cultivars ‘Acapulco’, ‘Casa Blanca’, and ‘Red Ruby’. The highest frequency of transformation (23.3%) was obtained for cv. Acapulco. Hygromycin-resistant calli were successfully regenerated into plantlets on plant growth regulator-free MS medium. Transgenic plants were confirmed by GUS histochemical assay, polymerase chain reaction (PCR), and Southern blot analyses.  相似文献   

19.
We have developed a strategy for the optimization of plant cell suspension culture media using a combination of fractional factorial designs (FFDs) and response surface methodology (RSM). This sequential approach was applied to transformed tobacco BY‐2 cells secreting a human antibody (M12) into the culture medium, in an effort to maximize yields. We found that the nutrients KNO3, NH4NO3 and CaCl2 and the hormones 2,4‐dichlorophenoxyacetic acid (2,4–D) and 6‐benzylaminopurine (BAP) had the most significant impact on antibody accumulation. The factorial screening revealed strong interactions within the nutrients group (KNO3, NH4NO3 and CaCl2) and also individually between 2,4‐D and three other components (KNO3, NH4NO3 and BAP). The RSM design resulted in a fivefold increase in the antibody concentration after 5 days and a twofold reduction in the packed cell volume (PCV). Longer cultivation in the optimized medium led to the further accumulation of antibody M12 in the culture medium (up to 107 μg/mL, day 10). Because the packed cell volume was reduced in the optimized medium, this enhanced the overall yield by 20‐fold (day 7) and 31‐fold (day 10) compared to the conventional MS medium.  相似文献   

20.
A protocol has been standardized for establishment and characterization of cell suspension cultures of Stevia rebaudiana in shake flasks, as a strategy to obtain an in vitro stevioside producing cell line. The effect of growth regulators, inoculum density and various concentrations of macro salts have been analyzed, to optimize the biomass growth. Dynamics of stevioside production has been investigated with culture growth in liquid suspensions. The callus used for this purpose was obtained from leaves of 15-day-old in vitro propagated plantlets, on MS medium fortified with benzyl aminopurine (8.9 μM) and naphthalene acetic acid (10.7 μM). The optimal conditions for biomass growth in suspension cultures were found to be 10 g l?1 of inoculum density on fresh weight basis in full strength MS liquid basal medium of initial pH 5.8, augmented with 2,4-dichlorophenoxy acetic acid (0.27 μM), benzyl aminopurine (0.27 μM) and ascorbic acid (0.06 μM), 1.0× NH4NO3 (24.7 mM), 3.0× KNO3 (56.4 mM), 3.0× MgSO4 (4.5 mM) and 3.0× KH2PO4 (3.75 mM), in 150 ml Erlenmeyer flask with 50 ml media and incubated in dark at 110 rpm. The growth kinetics of the cell suspension culture has shown a maximum specific cell growth rate of 3.26 day?1, doubling time of 26.35 h and cell viability of 75 %, respectively. Stevioside content in cell suspension was high during exponential growth phase and decreased subsequently at the stationary phase. The results of present study are useful to scale-up process and augment the S. rebaudiana biological research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号