首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report results of a field test of the predator avoidance hypothesis as an explanation of the adaptive significance of diel vertical migration in zooplankton. We determined the vertical distribution and diel migration of the planktonic copepod Acartia hudsonica, concurrently with the abundance of pelagic fish, transparency and thermal stratification of the water column, on six cruises over a one year period in a temperate marine lagoon (Jakles Lagoon, San Juan Island, Washington, USA). Striking seasonal variability was observed in all biological and environmental variables. Linear regressions of the strength of diel vertical migration in A. hudsonica on these environmental variables resulted in only one statistically significant relationship, that between copepod diel vertical migration and predator abundance. These results, together with those of previous studies, point to diel vertical migration as a widespread behavioral response of planktonic prey to the presence of their predators.  相似文献   

2.
The foraging ecology of larval and juvenile fishes   总被引:1,自引:0,他引:1  
Knowledge of the foraging ecology of fishes is fundamental both to understanding the processes that function at the individual, population and community levels, and for the management and conservation of their populations and habitats. Furthermore, the factors that influence the acquisition and assimilation of food can have significant consequences for the condition, growth, survival and recruitment of fishes. The majority of marine and freshwater fish species are planktivorous at the onset of exogenous nutrition and have a limited ability to detect, capture, ingest and digest prey. Improvements in vision, development of fins and associated improvements in swimming performance, increases in gape size and development of the alimentary tract during ontogeny often lead to shifts in diet composition. Prey size, morphology, behaviour and abundance can all influence the prey selection of larval and juvenile fishes. Differences in feeding behaviour between fish species, individuals or during ontogeny can also be important, as can inter- and intraspecific interactions (competition, predation risk). Temporal (diel, seasonal, annual) and spatial (microhabitat, mesohabitat, macrohabitat, regional) variations in prey availability can have important implications for the prey selection, diet composition, growth, survival, condition and, ultimately, recruitment success of fishes. For fish populations to persist, habitat must be available in sufficient quality and quantity for the range of activities undertaken during all periods of development. Habitats that enhance the diversity, size ranges and abundance of zooplankton should ensure that sufficient food resources are available to larval and juvenile fishes.  相似文献   

3.
Analysis of original and published data on predator avoidance by marine and freshwater plankton copepods, a major diet of many young fishes, suggests that individual defense mechanisms play a minor role in copepod anti-predator behavior. Capture success by planktivorous fish depends largely on prey visibility and the ability of the prey to escape. Copepods have almost no chance to avoid relatively large fish when encountered, but they can be ranked according to their ability to escape from larvae and fries. In contrast to small pelagic fish, which are also under heavy predation pressure, copepods rely more on prevention of the threat of predation than on active attempts to escape. Seeking a refuge in habitats non-accessible to predators would be more effective for these small and rather slow animals. Retreat into such refuges is accomplished by vertical and horizontal migrations, either diel, seasonal or ontogenetic. A decrease in activity (feeding, metabolism, reproduction, movement), resulting in diapause in deep water layers in its most pronounced version, is the ultimate attempt by copepods to separate from their predators, both in time and in space.  相似文献   

4.
Seasonal, ontogenetic, and diel variations in the diets of chum salmon, Oncorhynchus keta, were examined by analyzing the stomach contents of 1398 fish (300–755 mm fork length) collected in the Bering Sea during summer and early autumn of 2002. Whereas mesozooplankton, including euphausiids, hyperiids, and gastropods, constituted the greatest portion of the stomach contents during the summer, forage fishes (Stenobrachius leucopsarus and Atka mackerel, Pleurogrammus monopterygius) were the most important items during early autumn. Although no apparent diel trend was found in feeding intensity, distinct diel differences in prey composition were observed. Chum salmon caught in the morning contained Stenobrachius leucopsarus, whereas those caught in the afternoon had mainly fed on euphausiids. Thus, chum salmon diets change temporally because of changes in prey availability that result from differences in the annual life cycles and diurnal vertical migrations of prey species.  相似文献   

5.
Information on the ecology and feeding behaviour of the large oceanic predatory fishes is crucial for the ecosystem approaches to fisheries management models. Co-existing large pelagic predators in the open oceans may avoid competition for the limited forage by resource partitioning on spatial, temporal or trophic levels. To test this, we studied the prey species composition, diet overlap, trophic level, and trophic organisation of 12 large predatory fishes co-existing in the eastern Arabian Sea. Stomach contents of 1,518 specimens caught by exploratory longline operations in the Indian Exclusive Economic Zone during the years 2006–2009 were analysed. Finfishes were dominant prey of all species except blue marlin (Makaira nigricans) and yellowfin tuna (Thunnus albacares), which fed mainly on cephalopods, and long-snouted lancetfish (Alepisaurus ferox) and pelagic stingray (Pteroplatytrygon violacea), which fed mainly on crustaceans. Common dolphinfish (Coryphaena hippurus) and yellowfin tuna fed on a wider variety of prey than the other species, while the diets of lancetfish and black marlin (Istiompax indica) were narrowest. Pelagic stingray and great barracuda (Sphyraena barracuda) fed on species occupying epipelagic waters, whereas the contribution of mesopelagic prey was higher in the diets of swordfish (Xiphias gladius) and pelagic thresher (Alopias pelagicus). Trophic levels of these fishes ranged from 4.13 to 4.37. Diet overlap index revealed that some of the large pelagic predatory fishes share common prey species. Cluster analysis of the diets revealed four distinct trophic guilds namely ‘flyingfish feeders’ (common dolphinfish and great barracuda); ‘mesopelagic predators’ (pelagic thresher and swordfish); ‘crab feeders’ (lancetfish, pelagic stingray and silky shark) and ‘squid feeders’ (yellowfin tuna, Indo-Pacific sailfish (Istiophorus platypterus), skipjack tuna (Katsuwonus pelamis), black marlin and blue marlin). Large predatory fishes of the eastern Arabian Sea target different prey types, and limit their vertical extent and time of feeding to avoid competing for prey.  相似文献   

6.
The meso-scale trophic dynamics of cod Gadus morhua were examined based upon tri-monthly stomach sample collections from a nearshore, localized ( c. 800 km2) region off Cape Cod, Massachusetts, U.S.A. The major objective for this work was to relate any changes in cod diet and amount of food eaten to seasonal variations in prey availability, water temperature and spawning at a spatial scale between broad-scale and laboratory studies. Results suggested that the type and amount of food eaten by cod was generally consistent throughout a year and repeatable across years. Cod feeding was marked by two periods of increased feeding, corresponding to the arrival of small pelagic fishes in the area. This pelagic migration and subsequent increased feeding by cod occurred during important periods in the life history of cod ( e.g . spawning and overwintering). Similar annual patterns in food consumption and diet composition were remarkably consistent over the 2·5 years of the project, suggesting important feeding periods for cod that correspond to environmental and biological events. The diet of cod was composed primarily of several species of forage fishes [ e.g. herrings (predominantly Atlantic herring Clupea harengus ), sand lance Ammodytes sp. and Atlantic mackerel Scomber scombrus ], ophiuroids, Cancer sp. crabs and other small crustaceans. It was inferred that cod exhibited a maintenance diet on local forage fishes and benthic macroinvertebrates, augmenting their diet by seasonally gorge feeding upon migrating pelagic species.  相似文献   

7.
Black seabream, Acanthopagrus schlegeli, and Japanese seaperch, Lateolabrax japonicus, are important commercial species in the coastal waters of western Pacific Ocean, including Japan, Korea and China. In Hong Kong, larvae and juveniles of these two species occur in bays and estuaries during late winter and spring. This study reports on the ontogenetic changes in food habits in larvae and juveniles of these species in an artificial rocky shore area. Copepods and cladocerans were the most numerous food items for black seabream. There was a shift to larger and benthic prey as the fishes grew. Japanese seaperch <2.1cm fed predominantly on copepods and cladocerans, while larger prey were added as fish size increased. Japanese seaperch >6.0cm were piscivorous. Maximum prey width increased with fish standard length and mouth gape width in both species. Overall, black seabream showed greater diet breadth than did Japanese seaperch. In black seabream, diet breadth increased with fish size. In Japanese seaperch, diet breadth increased with size for fishes <4.0cm, then decreased as the fishes became piscivorous. Prey selectivity in black seabream was determined using information on prey availability in plankton samples. In general, preference was stronger for cypris larvae, Penilia avirostris and decapod larvae than for copepods and podonids. In recent years, overfishing and environmental degradation have led to the decline of fish populations in Tolo Harbour. Absence of fishes with empty gut indicates that inner Tolo Harbour is still an important nursery area for these two commercial species.  相似文献   

8.
Simultaneous high resolution sampling of predator behavior and habitat characteristics is often difficult to achieve despite its importance in understanding the foraging decisions and habitat use of predators. Here we tap into the biosonar system of Blainville''s beaked whales, Mesoplodon densirostris, using sound and orientation recording tags to uncover prey-finding cues available to echolocating predators in the deep-sea. Echolocation sounds indicate where whales search and encounter prey, as well as the altitude of whales above the sea-floor and the density of organisms around them, providing a link between foraging activity and the bio-physical environment. Tagged whales (n = 9) hunted exclusively at depth, investing most of their search time either in the lower part of the deep scattering layer (DSL) or near the sea-floor with little diel change. At least 43% (420/974) of recorded prey-capture attempts were performed within the benthic boundary layer despite a wide range of dive depths, and many dives included both meso- and bentho-pelagic foraging. Blainville''s beaked whales only initiate searching when already deep in the descent and encounter prey suitable for capture within 2 min of the start of echolocation, suggesting that these whales are accessing prey in reliable vertical strata. Moreover, these prey resources are sufficiently dense to feed the animals in what is effectively four hours of hunting per day enabling a strategy in which long dives to exploit numerous deep-prey with low nutritional value require protracted recovery periods (average 1.5 h) between dives. This apparent searching efficiency maybe aided by inhabiting steep undersea slopes with access to both the DSL and the sea-floor over small spatial scales. Aggregations of prey in these biotopes are located using biosonar-derived landmarks and represent stable and abundant resources for Blainville''s beaked whales in the otherwise food-limited deep-ocean.  相似文献   

9.
Understanding the foraging patterns of reef fishes is crucial for determining patterns of resource use and the sensitivity of species to environmental change. While changes in prey availability and interspecific competition have been linked to patterns of prey selection, body condition, and survival in coral reef fishes, rarely has the influence of abiotic environmental conditions on foraging been considered. We used underwater digital video to explore how prey availability and wave exposure influence the behavioural time budgets and prey selectivity of four species of obligate coral-feeding butterflyfishes. All four species displayed high selectivity towards live hard corals, both in terms of time invested and frequency of searching and feeding events. However, our novel analysis revealed that such selectivity was sensitive to wave exposure in some species, despite there being no significant differences in the availability of each prey category across exposures. In most cases, these obligate corallivores increased their selectivity towards their most favoured prey types at sites of high wave exposure. This suggests there are costs to foraging under different wave environments that can shape the foraging patterns of butterflyfishes in concert with other conditions such as prey availability, interspecific competition, and territoriality. Given that energy acquisition is crucial to the survival and fitness of fishes, we highlight how such environmental forcing of foraging behaviour may influence the ecological response of species to the ubiquitous and highly variable wave climates of shallow coral reefs.  相似文献   

10.
Vertical migration is a geographically and taxonomically widespread behaviour among zooplankton that spans across diel and seasonal timescales. The shorter-term diel vertical migration (DVM) has a periodicity of up to 1 day and was first described by the French naturalist Georges Cuvier in 1817. In 1888, the German marine biologist Carl Chun described the longer-term seasonal vertical migration (SVM), which has a periodicity of ca. 1 year. The proximate control and adaptive significance of DVM have been extensively studied and are well understood. DVM is generally a behaviour controlled by ambient irradiance, which allows herbivorous zooplankton to feed in food-rich shallower waters during the night when light-dependent (visual) predation risk is minimal and take refuge in deeper, darker waters during daytime. However, DVMs of herbivorous zooplankton are followed by their predators, producing complex predator–prey patterns that may be traced across multiple trophic levels. In contrast to DVM, SVM research is relatively young and its causes and consequences are less well understood. During periods of seasonal environmental deterioration, SVM allows zooplankton to evacuate shallower waters seasonally and take refuge in deeper waters often in a state of dormancy. Both DVM and SVM play a significant role in the vertical transport of organic carbon to deeper waters (biological carbon sequestration), and hence in the buffering of global climate change. Although many animal migrations are expected to change under future climate scenarios, little is known about the potential implications of global climate change on zooplankton vertical migrations and its impact on the biological carbon sequestration process. Further, the combined influence of DVM and SVM in determining zooplankton fitness and maintenance of their horizontal (geographic) distributions is not well understood. The contrasting spatial (deep versus shallow) and temporal (diel versus seasonal) scales over which these two migrations occur lead to challenges in studying them at higher spatial, temporal and biological resolution and coverage. Extending the largely population-based vertical migration knowledge base to individual-based studies will be an important way forward. While tracking individual zooplankton in their natural habitats remains a major challenge, conducting trophic-scale, high-resolution, year-round studies that utilise emerging field sampling and observation techniques, molecular genetic tools and computational hardware and software will be the best solution to improve our understanding of zooplankton vertical migrations.  相似文献   

11.
Strong and predictable environmental variability can reward flexible behaviors among animals. We used long-term records of activity data that cover several lunar cycles to investigate whether behavior at-sea of swallow-tailed gulls Creagrus furcatus, a nocturnal pelagic seabird, varied with lunar phase in the Galápagos Islands. A Bayesian hierarchical model showed that nighttime at-sea activity of 37 breeding swallow-tailed gulls was clearly associated with changes in moon phase. Proportion of nighttime spent on water was highest during darker periods of the lunar cycle, coinciding with the cycle of the diel vertical migration (DVM) that brings prey to the sea surface at night. Our data show that at-sea behavior of a tropical seabird can vary with environmental changes, including lunar phase.  相似文献   

12.
Seamounts may influence the distribution of marine mammals through a combination of increased ocean mixing, enhanced local productivity and greater prey availability. To study the effects of seamounts on the presence and acoustic behaviour of cetaceans, we deployed a high-frequency acoustic recording package on the summit of Cross Seamount during April through October 2005. The most frequently detected cetacean vocalizations were echolocation sounds similar to those produced by ziphiid and mesoplodont beaked whales together with buzz-type signals consistent with prey-capture attempts. Beaked whale signals occurred almost entirely at night throughout the six-month deployment. Measurements of prey presence with a Simrad EK-60 fisheries acoustics echo sounder indicate that Cross Seamount may enhance local productivity in near-surface waters. Concentrations of micronekton were aggregated over the seamount in near-surface waters at night, and dense concentrations of nekton were detected across the surface of the summit. Our results suggest that seamounts may provide enhanced foraging opportunities for beaked whales during the night through a combination of increased productivity, vertical migrations by micronekton and local retention of prey. Furthermore, the summit of the seamount may act as a barrier against which whales concentrate prey.  相似文献   

13.
In a small, 12 ha, mesotropic lake, roach Rutilus rutilus performed diel habitat shifts that clearly influenced the composition of their diet. During daytime, roach stayed in the littoral zone and concentrated on littoral prey. At night they were found in the pelagic zone, and pelagic prey items such as Daphnia spp. or Chaoborus flaricans dominated their food. On a seasonal scale, there were shifts in the importance of different food items and in the diel pattern of feeding intensity. Bioenergetics modelling in combination with an evacuation rate method for estimating daily rations allowed for changes in feeding modes to be taken into account, and so food item specific daily rations over the season could be determined. With the evacuation rate method applied on selected days, diel changes in diet compositions and feeding intensities could be quantitatively accounted for. When the 24 h integrated diet proportions were then used as an input parameter for bioenergetics modelling, food item specific consumption could be determined over the entire sampling season. The consideration of the diel diet shifts proved to be essential for the model output. If only the daytime or the night-time diet composition (derived from one single daily sampling) was taken into account for bioenergetics modelling, severe under- or overestimations of daily rations for specific food items resulted.  相似文献   

14.
The importance of seamounts as foraging hotspots for cetaceans depends on interactions between ocean flow and topographical features that concentrate prey. However, the oceanographic processes driving these aggregations are still unclear. Here, we analyzed two months of passive acoustic recordings from two remote seamounts in the Northeast Atlantic, Atlantis and Irving, in relation to regional oceanography and estimates of prey biomass. Delphinids and sperm whales were detected in both seamounts with higher foraging activity at night, indicating feeding on diel migrating prey. There were more detections of delphinids and sperm whales at Atlantis than at Irving. These two seamounts lie in different oceanographic settings created by the Azores Current that separates colder and less saline water masses in the north (Atlantis seamount) from warmer and more saline waters in the south (Irving seamount). Irving seamount is only affected by transient features like eddies that enhance productivity for short time periods. These conditions translate into more productive waters at Atlantis seamount than at Irving, as shown by predicted prey biomasses that ultimately attract top predators. Comparative studies such as this one can help to explain the main drivers of presence of top predators at seamounts.  相似文献   

15.
16.
Circadian rhythms occur widely amongst living organisms, often in response to diel changes in environmental conditions. In aquatic animals, circadian activity is often synchronised with diel changes in the depths individuals occupy and may be related to predator–prey interactions, where the circadian rhythm is determined by ambient light levels, or have a thermoregulatory purpose, where the circadian rhythm is governed by temperature. Here, these two hypotheses are examined using animal-attached accelerometers in juvenile freshwater sawfish occupying a riverine environment displaying seasonal changes in thermal stratification. Across seasons, diel patterns of depth use (shallow at night and deep in the day) tended to occur only in the late dry seasons when the water was stratified, whereas individuals were primarily shallow in the early dry season which featured no thermal stratification. Activity was elevated during crepuscular and nocturnal periods compared to daytime, regardless of the thermal environment. Our observation of resting at cooler depths is consistent with behavioural thermoregulation to reduce energy expenditure, whereas activity appears linked to ambient light levels and predator–prey interactions. This suggests that circadian rhythms in activity and vertical migrations are decoupled in this species and respond to independent environmental drivers.  相似文献   

17.
Northern gannets (Sula bassana) are considered to obtain prey usually by rapid, vertical, shallow plunge dives. In order to test this contention and investigate underwater foraging behaviour, we attached two types of data-logging systems to 11 parental northern gannets at Funk Island in the North-Wiest Atlantic. We documented, for the first time to the authors' knowledge, gannets performing long, flat-bottomed, U-shaped dives that involved underwater wing propulsion as well as rapid, shallow, V-shaped dives. The median and maximum dive depths and durations were 4.6 and 22.0 m and 8 and 38 s, respectively. Short, shallow dives were usually V-shaped and dives deeper than 8 m and longer than 10 s were usually U-shaped, including a period at constant depth (varying between 4 and 28s with median 8s). Diving occurred throughout the daylight period and deepest dives were performed during late morning. On the basis of motion sensors in the loggers and food collections from telemetered birds, we concluded that extended, deep dives were directed at deep schools of capelin, a small pelagic fish, and we hypothesized that V-shaped dives were aimed at larger, pelagic fishes and squids. Furthermore, these V-shaped dives allowed the birds to surprise their pelagic prey and this may be critical because the maximum swimming speeds of the prey species may exceed the maximum dive speeds of the birds.  相似文献   

18.
Predation and food consumption of five deep‐sea fish species living below 1000 m depth in the western Mediterranean Sea were analysed to identify the feeding patterns and food requirements of a deep‐sea fish assemblage. A feeding rhythm was observed for Risso's smooth‐head Alepocephalus rostratus, Mediterranean grenadier Coryphaenoides mediterraeus and Mediterranean codling Lepidion lepidion. Differences in the patterns of the prey consumed suggest that feeding rhythms at such depths are linked with prey availability. The diets of those predators with feeding rhythms are based principally on active‐swimmer prey, including pelagic prey known to perform vertical migrations. The diets of Günther's grenadier Coryphaenoides guentheri and smallmouth spiny eel Polyacanthonotus rissoanus, which did not show any rhythm in their feeding patterns, are based mainly on benthic prey. Food consumption estimates were low (<1% of body wet mass day?1). Pelagic feeding species showing diel feeding rhythms consumed more food than benthic feeding species with no feeding rhythms.  相似文献   

19.
Biuw M  Nøst OA  Stien A  Zhou Q  Lydersen C  Kovacs KM 《PloS one》2010,5(11):e13816
Weddell Sea hydrography and circulation is driven by influx of Circumpolar Deep Water (CDW) from the Antarctic Circumpolar Current (ACC) at its eastern margin. Entrainment and upwelling of this high-nutrient, oxygen-depleted water mass within the Weddell Gyre also supports the mesopelagic ecosystem within the gyre and the rich benthic community along the Antarctic shelf. We used Conductivity-Temperature-Depth Satellite Relay Data Loggers (CTD-SRDLs) to examine the importance of hydrographic variability, ice cover and season on the movements and diving behavior of southern elephant seals in the eastern Weddell Sea region during their overwinter feeding trips from Bouvetøya. We developed a model describing diving depth as a function of local time of day to account for diel variation in diving behavior. Seals feeding in pelagic ice-free waters during the summer months displayed clear diel variation, with daytime dives reaching 500-1500 m and night-time targeting of the subsurface temperature and salinity maxima characteristic of CDW around 150–300 meters. This pattern was especially clear in the Weddell Cold and Warm Regimes within the gyre, occurred in the ACC, but was absent at the Dronning Maud Land shelf region where seals fed benthically. Diel variation was almost absent in pelagic feeding areas covered by winter sea ice, where seals targeted deep layers around 500–700 meters. Thus, elephant seals appear to switch between feeding strategies when moving between oceanic regimes or in response to seasonal environmental conditions. While they are on the shelf, they exploit the locally-rich benthic ecosystem, while diel patterns in pelagic waters in summer are probably a response to strong vertical migration patterns within the copepod-based pelagic food web. Behavioral flexibility that permits such switching between different feeding strategies may have important consequences regarding the potential for southern elephant seals to adapt to variability or systematic changes in their environment resulting from climate change.  相似文献   

20.
Pelagic fish populations in the upper San Francisco Estuary have experienced significant declines since the turn of the century; a pattern known as the pelagic organism decline (POD). This study investigated food habits of piscivorous fishes over two consecutive fall seasons following the decline of pelagic fish prey. Specifically, this study addressed the contribution of pelagic versus benthic prey to piscivorous fish diets, including the frequency of predation on special-status pelagic species, and the spatial variability in prey consumption. The piscivore community was dominated by Striped Bass and also included small numbers of Sacramento Pikeminnow and Largemouth Bass. Overall, pelagic prey items contributed less than 10% of the diet by weight in both years, whereas pre-POD studies gleaned from the literature found contributions of 39–100%, suggesting a major switch from pelagic to benthic prey resources. Between-year variation in piscivore diets reflected differences in environmental conditions associated with variation in freshwater outflow. No special status fish species were detected in any of the piscivore stomachs examined. The consequences of this pelagic to benthic diet shift warrants further investigation to understand its ecological relevance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号