首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulmonary endothelial barrier dysfunction is a major pathophysiology observed in acute respiratory distress syndrome (ARDS). Ghrelin, a key regulator of metabolism, has been shown to play protective roles in the respiratory system. However, its effects on lipopolysaccharide (LPS)-induced pulmonary endothelial barrier injury are unknown. In this study, the effects of ghrelin on LPS-induced ARDS and endothelial cell injury were evaluated in vivo and in vitro. In vivo, mice treated with LPS (3 mg/kg intranasal application) were used to establish the ARDS model. Annexin V/propidium iodide apoptosis assay, scratch-wound assay, tube formation assay, transwell permeability assay, and Western blotting experiment were performed to reveal in vitro effects and underlying mechanisms of ghrelin on endothelial barrier function. Our results showed that ghrelin had protective effects on LPS-induced ARDS and endothelial barrier disruption by inhibiting apoptosis, promoting cell migration and tube formation, and activating the PI3K/AKT signaling pathway. Furthermore, ghrelin stabilized LPS-induced endothelial barrier function by decreasing endothelial permeability and increasing the expression of the intercellular junction protein vascular endothelial cadherin. LY294002, a specific inhibitor of the PI3K pathway, reversed the protective effects of ghrelin on the endothelial cell barrier. In conclusion, our findings indicated that ghrelin protected against LPS-induced ARDS by impairing the pulmonary endothelial barrier partly through activating the PI3K/AKT pathway. Thus, ghrelin may be a valuable therapeutic strategy for the prevention or treatment of ARDS.  相似文献   

2.
Liposomal amphotericin B, voriconazole, and caspofungin are currently used for systemic and severe fungal infections. Patients with malignant diseases are treated with granulocyte-colony stimulating factor (G-CSF) for the recovery of granulocytes after chemotherapy or hematopoietic cell (HC) transplantation. Since they have a high incidence of fungal infections, they inevitably receive antifungal drugs for treatment and prophylaxis. Despite their proven less toxicity for various cell types comparatively with amphotericin B and the decrease in the number of leukocytes that has been reported as a possible complication in clinical studies, the effect of liposomal amphotericin B, voriconazole, and caspofungin on HCs has not been clarified. The present study aimed to examine the in vitro and in vivo effect of these three modern antifungals on HCs. Colony-forming unit (CFU) assays of murine bone marrow cells were performed in methylcellulose medium with or without cytokines and in the presence or absence of various concentrations of liposomal amphotericin B, voriconazole, and caspofungin. In the in vivo experiments, the absolute number of granulocytes was determined during leukocyte recovery in sublethally irradiated mice receiving each antifungal agent separately, with or without G-CSF. In vitro, all three antifungal drugs were nontoxic and, interestingly, they significantly increased the number of CFU-granulocyte-macrophage colonies in the presence of cytokines, at all concentrations tested. This was contrary to the concentration-dependent toxicity and the significant decrease caused by conventional amphotericin B. In vivo, the number of granulocytes was significantly higher with caspofungin plus G-CSF treatment, higher and to a lesser extent higher, but not statistically significantly, with voriconazole plus G-CSF and liposomal amphotericin B plus G-CSF treatments, respectively, as compared with G-CSF alone. These data indicate a potential synergistic effect of these antifungals with the cytokines, in vitro and in vivo, with subsequent positive effect on hematopoiesis.  相似文献   

3.
All living organisms adapt their membrane lipid composition in response to changes in their environment or diet. These conserved membrane‐adaptive processes have been studied extensively. However, key concepts of membrane biology linked to regulation of lipid composition including homeoviscous adaptation maintaining stable levels of membrane fluidity, and gel‐fluid phase separation resulting in domain formation, heavily rely upon in vitro studies with model membranes or lipid extracts. Using the bacterial model organisms Escherichia coli and Bacillus subtilis, we now show that inadequate in vivo membrane fluidity interferes with essential complex cellular processes including cytokinesis, envelope expansion, chromosome replication/segregation and maintenance of membrane potential. Furthermore, we demonstrate that very low membrane fluidity is indeed capable of triggering large‐scale lipid phase separation and protein segregation in intact, protein‐crowded membranes of living cells; a process that coincides with the minimal level of fluidity capable of supporting growth. Importantly, the in vivo lipid phase separation is not associated with a breakdown of the membrane diffusion barrier function, thus explaining why the phase separation process induced by low fluidity is biologically reversible.  相似文献   

4.
5.
Betaine (N,N,N-trimethylglycine) is an important food component with established health benefits through its homocysteine-lowering effects, and is used to lower total homocysteine concentration in plasma of patients with homocystinuria. It is well established that hyperhomocysteinemia is an established risk factor for cardiovascular disease and stroke. However, the possible protective effect of betaine on coagulation events in vivo and in vitro has thus far not been studied. Betaine was given to mice at oral doses of either 10 mg/kg (n = 6) or 40 mg/kg (n = 6) for seven consecutive days, and control mice (n = 6) received water only. The thrombotic occlusion time in photochemically induced thrombosis in pial arterioles was significantly delayed in mice pretreated with betaine at doses of 10 mg/kg (P < 0.001) and 40 mg/kg (P < 0.01). Similar effects were observed in pial venules with 10 mg/kg (P < 0.05) and 40 mg/kg (P < 0.05) betaine. In vitro, in whole blood samples collected from untreated mice (n = 3–5), betaine (0.01–1 mg/mL) significantly reversed platelet aggregation induced by adenosine diphosphate (5 µM). The number of circulating platelets and plasma concentration of fibrinogen in vivo were not significantly affected by betaine pretreament compared with the control group. Lipid peroxidation (LPO) in mice pretreated with betaine was significantly reduced compared with the control group. Moreover, betaine (0.01–1 mg/mL) caused a dose-dependent and significant prolongation of PT (n = 5) and aPTT (n = 4–6). In conclusion, our data show that betaine protected against coagulation events in vivo and in vitro and decreased LPO in plasma.  相似文献   

6.
Synchronization of oocyte maturation in vitro has been shown to produce higher in vitro fertilization (IVF) rates than those observed in oocytes matured in vitro without synchronization. However, the increased IVF rates never exceeded those observed in oocytes matured in vivo without synchronization. This study was therefore designed to define the effect of in vivo synchronization of oocyte maturation on IVF rates. Mice were superovulated and orally treated with 7.5 mg cilostazol (CLZ), a phosphodiesterase 3A (PDE3A) inhibitor, to induce ovulation of immature oocytes at different stages depending on frequency and time of administration of CLZ. Mice treated with CLZ ovulated germinal vesicle (GV) or metaphase I (MI) oocytes that underwent maturation in vitro or in vivo (i.e. in the oviduct) followed by IVF. Superovulated control mice ovulated mature oocytes that underwent IVF directly upon collection. Ovulated MI oocytes matured in vitro or in vivo had similar maturation rates but significantly higher IVF rates, 2–4 cell embryos, than those observed in control oocytes. Ovulated GV oocytes matured in vitro showed similar maturation rates but significantly higher IVF rates than those observed in control oocytes. However, ovulated GV oocytes matured in vivo had significantly lower IVF rates than those noted in control oocytes. It is concluded that CLZ is able to synchronize oocyte maturation and improve IVF rates in superovulated mice. CLZ may be capable of showing similar effects in humans, especially since temporal arrest of human oocyte maturation with other PDE3A inhibitors in vitro was found to improve oocyte competence level. The capability of a clinically approved PDE3A inhibitor to improve oocyte fertilization rates in mice at doses extrapolated from human therapeutic doses suggests the potential scenario of the inclusion of CLZ in superovulation programs. This may improve IVF outcomes in infertile patients.  相似文献   

7.
8.
Functional delivery of mRNA has high clinical potential. Previous studies established that mRNAs can be delivered to cells in vitro and in vivo via RNA-loaded lipid nanoparticles (LNPs). Here we describe an alternative approach using exosomes, the only biologically normal nanovesicle. In contrast to LNPs, which elicited pronounced cellular toxicity, exosomes had no adverse effects in vitro or in vivo at any dose tested. Moreover, mRNA-loaded exosomes were characterized by efficient mRNA encapsulation (∼90%), high mRNA content, consistent size, and a polydispersity index under 0.2. Using an mRNA encoding the red light-emitting luciferase Antares2, we observed that mRNA-loaded exosomes were superior to mRNA-loaded LNPs at delivering functional mRNA into human cells in vitro. Injection of Antares2 mRNA-loaded exosomes also led to strong light emission following injection into the vitreous fluid of the eye or into the tissue of skeletal muscle in mice. Furthermore, we show that repeated injection of Antares2 mRNA-loaded exosomes drove sustained luciferase expression across six injections spanning at least 10 weeks, without evidence of signal attenuation or adverse injection site responses. Consistent with these findings, we observed that exosomes loaded with mRNAs encoding immunogenic forms of the SARS-CoV-2 Spike and Nucleocapsid proteins induced long-lasting cellular and humoral responses to both. Taken together, these results demonstrate that exosomes can be used to deliver functional mRNA to and into cells in vivo.  相似文献   

9.
10.
Human GPKOW [G-patch (glycine-rich) domain and KOW (Kyrpides, Ouzounis and Woese) domain] protein contains a G-patch domain and two KOW domains, and is a homologue of Arabidopsis MOS2 and Saccharomyces Spp2 protein. GPKOW is found in the human spliceosome, but its role in pre-mRNA splicing remains to be elucidated. In this report, we showed that GPKOW interacted directly with the DHX16/hPRP2 and with RNA. Immuno-depletion of GPKOW from HeLa nuclear extracts resulted in an inactive spliceosome that still bound DHX16. Adding back recombinant GPKOW restored splicing to the depleted extract. In vivo, overexpression of GPKOW partially suppressed the splicing defect observed in dominant-negative DHX16 mutant expressing cells. Mutations at the G-patch domain greatly diminished the GPKOW–DHX16 interaction; however, the mutant was active in splicing and was able to suppress splicing defect. Mutations at the KOW1 domain slightly altered the GPKOW–RNA interaction, but the mutant was less functional in vitro and in vivo. Our results indicated that GPKOW can functionally impact DHX16 but that interaction between the proteins is not required for this activity.  相似文献   

11.
NTT (N-terminal tags) on the catalytic (p110) sub-unit of PI 3-K (phosphoinositol 3-kinase) have previously been shown to increase cell signalling and oncogenic transformation. Here we test the impact of an NT (N-terminal) His-tag on in vitro lipid and protein kinase activity of all class-1 PI 3-K isoforms and two representative oncogenic mutant forms (E545K and H1047R), in order to elucidate the mechanisms behind this elevated signalling and transformation observed in vivo. Our results show that an NT His-tag has no impact on lipid kinase activity as measured by enzyme titration, kinetics and inhibitor susceptibility. Conversely, the NT His-tag did result in a differential effect on protein kinase activity, further potentiating the elevated protein kinase activity of both the helical domain and catalytic domain oncogenic mutants with relation to p110 phosphorylation. All other isoforms also showed elevated p110 phosphorylation (although not statistically significant). We conclude that the previously reported increase in cell signalling and oncogenic-like transformation in response to p110 NTT is not mediated via an increase in the lipid kinase activity of PI 3-K, but may be mediated by increased p110 autophosphorylation and/or other, as yet unidentified, intracellular protein/protein interactions. We further observe that tagged recombinant protein is suitable for use in in vitro lipid kinase screens to identify PI 3-K inhibitors; however, we recommend that in vivo (including intracellular) experiments and investigations into the protein kinase activity of PI 3-K should be conducted with untagged constructs.  相似文献   

12.
Scaffolding proteins can customize the response of signaling networks to support cell development and behaviors. PleC is a bifunctional histidine kinase whose signaling activity coordinates asymmetric cell division to yield a motile swarmer cell and a stalked cell in the gram-negative bacterium Caulobacter crescentus. Past studies have shown that PleC’s switch in activity from kinase to phosphatase correlates with a change in its subcellular localization pattern from diffuse to localized at the new cell pole. Here we investigated how the bacterial scaffolding protein PodJ regulates the subcellular positioning and activity of PleC. We reconstituted the PleC-PodJ signaling complex through both heterologous expressions in Escherichia coli and in vitro studies. In vitro, PodJ phase separates as a biomolecular condensate that recruits PleC and inhibits its kinase activity. We also constructed an in vivo PleC-CcaS chimeric histidine kinase reporter assay and demonstrated using this method that PodJ leverages its intrinsically disordered region to bind to PleC’s PAS sensory domain and regulate PleC-CcaS signaling. Regulation of the PleC-CcaS was most robust when PodJ was concentrated at the cell poles and was dependent on the allosteric coupling between PleC-CcaS’s PAS sensory domain and its downstream histidine kinase domain. In conclusion, our in vitro biochemical studies suggest that PodJ phase separation may be coupled to changes in PleC enzymatic function. We propose that this coupling of phase separation and allosteric regulation may be a generalizable phenomenon among enzymes associated with biomolecular condensates.  相似文献   

13.
Osteoporosis and multiple sclerosis are highly prevalent diseases with limited treatment options. In light of these unmet medical needs, novel therapeutic approaches are urgently sought. Previously, the activation of the transmembrane receptor Plexin-B1 by its ligand semaphorin 4D (Sema4D) has been shown to suppress bone formation and promote neuroinflammation in mice. However, it is unclear whether inhibition of this receptor–ligand interaction by an anti–Plexin-B1 antibody could represent a viable strategy against diseases related to these processes. Here, we raised and systematically characterized a monoclonal antibody directed against the extracellular domain of human Plexin-B1, which specifically blocks the binding of Sema4D to Plexin-B1. In vitro, we show that this antibody inhibits the suppressive effects of Sema4D on human osteoblast differentiation and mineralization. To test the therapeutic potential of the antibody in vivo, we generated a humanized mouse line, which expresses transgenic human Plexin-B1 instead of endogenous murine Plexin-B1. Employing these mice, we demonstrate that the anti–Plexin-B1 antibody exhibits beneficial effects in mouse models of postmenopausal osteoporosis and multiple sclerosis in vivo. In summary, our data identify an anti–Plexin-B1 antibody as a potential therapeutic agent for the treatment of osteoporosis and multiple sclerosis.  相似文献   

14.
Glycosylphosphatidylinositol (GPI) is a posttranslational glycolipid modification of proteins that anchors proteins in lipid rafts on the cell surface. Although some GPI-anchored proteins (GPI-APs), including the prion protein PrPC, have a glycan side chain composed of N-acetylgalactosamine (GalNAc)−galactose−sialic acid on the core structure of GPI glycolipid, in vivo functions of this GPI-GalNAc side chain are largely unresolved. Here, we investigated the physiological and pathological roles of the GPI-GalNAc side chain in vivo by knocking out its initiation enzyme, PGAP4, in mice. We show that Pgap4 mRNA is highly expressed in the brain, particularly in neurons, and mass spectrometry analysis confirmed the loss of the GalNAc side chain in PrPC GPI in PGAP4-KO mouse brains. Furthermore, PGAP4-KO mice exhibited various phenotypes, including an elevated blood alkaline phosphatase level, impaired bone formation, decreased locomotor activity, and impaired memory, despite normal expression levels and lipid raft association of various GPI-APs. Thus, we conclude that the GPI-GalNAc side chain is required for in vivo functions of GPI-APs in mammals, especially in bone and the brain. Moreover, PGAP4-KO mice were more vulnerable to prion diseases and died earlier after intracerebral inoculation of the pathogenic prion strains than wildtype mice, highlighting the protective roles of the GalNAc side chain against prion diseases.  相似文献   

15.
Glioblastoma multiforme is an extremely aggressive and invasive form of central nervous system tumor commonly treated with the chemotherapeutic drug Temozolomide. Unfortunately, even with treatment, the median survival time is less than 12 months. 2,9-Di-sec-butyl-1,10-phenanthroline (SBP), a phenanthroline-based ligand originally developed to deliver gold-based anticancer drugs, has recently been shown to have significant antitumor activity in its own right. SBP is hypothesized to initiate tumor cell death via interaction with non-DNA targets, and considering most glioblastoma drugs kill tumors through DNA damage processes, SBP was tested as a potential novel drug candidate against glial-based tumors. In vitro studies demonstrated that SBP significantly inhibited the growth of rodent GL-26 and C6 glioma cells, as well as human U-87, and SW1088 glioblastomas/astrocytomas. Furthermore, using a syngeneic glioma model in mice, in vivo administration of SBP significantly reduced tumor volume and increased survival time. There was no significant toxicity toward nontumorigenic primary murine and human astrocytes in vitro, and limited toxicity was observed in ex vivo tissues obtained from noncancerous mice. Terminal deoxynucleotidyl transferase dUTP nick end labeling staining and recovery assays suggest that SBP induces apoptosis in gliomas. This exploratory study suggests SBP is effective in slowing the growth of tumorigenic cells in the brain while exhibiting limited toxicity to normal cells and tissues and should therefore be further investigated for its potential in glioblastoma treatment.  相似文献   

16.
Metformin is the first-line antidiabetic agent for type 2 diabetes mellitus (T2DM) treatment. Although accumulated evidence has shed light on the consequences of metformin action, the precise mechanisms of its action, especially in the pancreas, are not fully understood. Aquaporin 7 (AQP7) acts as a critical regulator of intraislet glycerol content, which is necessary for insulin production and secretion. The aim of this study was to investigate the effects of different doses of metformin on AQP7 expression and explore the possible mechanism of its protective effects in the pancreatic islets. We used an in vivo model of high-fat diet in streptozocin-induced diabetic rats and an in vitro model of rat pancreatic β-cells (INS-1 cells) damaged by hyperglycemia and hyperlipidemia. Our data showed that AQP7 expression levels were decreased, whereas p38 and JNK mitogen-activated protein kinases (MAPKs) were activated in vivo and in vitro in response to hyperglycemia and hyperlipidemia. T2DM rats treated with metformin demonstrated a reduction in blood glucose levels and increased regeneration of pancreatic β-cells. In addition, metformin upregulated AQP7 expression as well as inhibited activation of p38 and JNK MAPKs both in vivo and in vitro. Overexpression of AQP7 increased glycerol influx into INS-1 cells, whereas inhibition of AQP7 reduced glycerol influx, thereby decreasing subsequent insulin secretion. Our findings demonstrate a new mechanism by which metformin suppresses the p38 and JNK pathways, thereby upregulating pancreatic AQP7 expression and promoting glycerol influx into pancreatic β-cells and subsequent insulin secretion in T2DM.  相似文献   

17.
Anti-breast cancer action of novel human carbonic anhydrase IX (hCA IX) inhibitor BSM-0004 has been investigated using in vitro and in vivo models of breast cancer. BSM-0004 was found to be a potent and selective hCA IX inhibitor with a Ki value of 96 nM. In vitro anticancer effect of BSM-0004 was analysed against MCF 7 and MDA-MA-231 cells, BSM-0004 exerted an effective cytotoxic effect under normoxic and hypoxic conditions, inducing apoptosis in MCF 7 cells. Additionally, this compound significantly regulates the expression of crucial biomarkers associated with apoptosis. The investigation was extended to confirm the efficacy of this hCA IX inhibitor against in vivo model of breast cancer. The results specified that the treatment of BSM-0004 displayed an effective in vivo anticancer effect, reducing tumour growth in a xenograft cancer model. Hence, our investigation delivers an effective anti-breast cancer agent that engenders the anticancer effect by inhibiting hCA IX.  相似文献   

18.
19.
Bacteria present a promising delivery system for treating human diseases. Here, we engineered the genome‐reduced human lung pathogen Mycoplasma pneumoniae as a live biotherapeutic to treat biofilm‐associated bacterial infections. This strain has a unique genetic code, which hinders gene transfer to most other bacterial genera, and it lacks a cell wall, which allows it to express proteins that target peptidoglycans of pathogenic bacteria. We first determined that removal of the pathogenic factors fully attenuated the chassis strain in vivo. We then designed synthetic promoters and identified an endogenous peptide signal sequence that, when fused to heterologous proteins, promotes efficient secretion. Based on this, we equipped the chassis strain with a genetic platform designed to secrete antibiofilm and bactericidal enzymes, resulting in a strain capable of dissolving Staphylococcus aureus biofilms preformed on catheters in vitro, ex vivo, and in vivo. To our knowledge, this is the first engineered genome‐reduced bacterium that can fight against clinically relevant biofilm‐associated bacterial infections.  相似文献   

20.
Mitophagy removes defective mitochondria via lysosomal elimination. Increased mitophagy coincides with metabolic reprogramming, yet it remains unknown whether mitophagy is a cause or consequence of such state changes. The signalling pathways that integrate with mitophagy to sustain cell and tissue integrity also remain poorly defined. We performed temporal metabolomics on mammalian cells treated with deferiprone, a therapeutic iron chelator that stimulates PINK1/PARKIN‐independent mitophagy. Iron depletion profoundly rewired the metabolome, hallmarked by remodelling of lipid metabolism within minutes of treatment. DGAT1‐dependent lipid droplet biosynthesis occurred several hours before mitochondrial clearance, with lipid droplets bordering mitochondria upon iron chelation. We demonstrate that DGAT1 inhibition restricts mitophagy in vitro, with impaired lysosomal homeostasis and cell viability. Importantly, genetic depletion of DGAT1 in vivo significantly impaired neuronal mitophagy and locomotor function in Drosophila. Our data define iron depletion as a potent signal that rapidly reshapes metabolism and establishes an unexpected synergy between lipid homeostasis and mitophagy that safeguards cell and tissue integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号