首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
Summary

Avenanthramide C (AVC), found mainly in oats, mediates anti-inflammatory activities by reducing the anti-inflammatory cytokine levels. This study investigated the effects of AVC on hypoxia-induced cyclooxygenase-2 (COX-2) expression in A549 cells. AVC suppressed the hypoxia-induced increase in COX-2 protein levels and promoter activity. We also observed that the effects of AVC were reversed by a SIRT1 inhibitor, indicating that the inhibitory effects of AVC on hypoxia-induced COX-2 expression are mediated by SIRT1. Therefore, AVC inhibits the hypoxic induction of COX-2 expression via SIRT1 activation. Our results suggest that AVC could be beneficial for preventing lung inflammation under hypoxia.  相似文献   

8.
9.
10.
Phorbol myristate acetate (PMA) and ionomycin (Io) can induce T cell activation and proliferation. Furthermore, they stimulate activation-induced cell death (AICD) in mature lymphocytes via Fas/Fas ligand (FasL) up-regulation. In this study, we explored the influence of PMA/Io treatment on glioblastoma cells, and found that AICD-like phenomena may also occur in glioma. Using the MTT assay and cell counting, we demonstrated that treatment of PMA/Io significantly inhibited the proliferation of glioma cell lines, U87 and U251. TUNEL assays and transmission electron microscopy revealed that PMA/Io markedly induced U87 and U251 cell apoptosis. Propidium iodide staining and flow cytometry showed that treatment with PMA/Io resulted in an arrestment of cell cycle and an increase in cell death. Using real-time PCR and western blot, we found that PMA/Io up-regulated the expression of Fas and FasL at both mRNA and protein level, which confirmed that PMA/Io induced glioma cell death. Specific knockdown of NFAT1 expression by small hairpin RNA greatly reduced the PMA/Io induced cell death and apoptosis by inhibition of FasL expression. Microarray analysis showed that the expression of NFAT1 significantly correlated with the expression of Fas. The coexistence of Fas with NFAT1 in vivo provides the background for AICD-like phenomena to occur in glioma. These findings demonstrate that PMA/Io can induce glioblastoma cell death through the NFAT1-Fas/FasL pathway. Glioma-related AICD-like phenomena may provide a novel avenue for glioma treatment.  相似文献   

11.
Activation and dysfunction of the endothelium underlie many vascular disorders including atherosclerosis, tumor growth, and inflammation. We recently reported that thrombin and vascular endothelial growth factor, but not tumor necrosis factor-alpha, results in dramatic up-regulation of Down syndrome critical region (DSCR)-1 gene in endothelial cells, a negative feedback regulator of calcineurin-NFAT signaling. Constitutive expression of DSCR-1 in activated endothelial cells markedly impaired NFAT nuclear localization, proliferation, tube formation, and tumor growth. The goal of the present study was to elucidate the relative roles of NFAT/DSCR-1 and NF-kappaB/I-kappaB in mediating thrombin-responsive gene expression in endothelial cells. DNA microarrays of thrombin-treated human umbilical vein endothelial cells overexpressing DSCR-1 or constitutive active IkappaBalpha revealed genes that were dependent on NFAT and/or NF-kappaB activity. Vascular cell adhesion molecule-1 was inhibited both by DSCR-1 and I-kappaB at the level of mRNA, protein, promoter activity, and function (monocyte adhesion). Using a combination of transient transfections, electrophoretic mobility shift assays, and chromatin immunoprecipitation, thrombin was shown to induce time-dependent coordinate binding of RelA and NFATc to a tandem NF-kappaB element in the upstream promoter region of vascular cell adhesion molecule-1. Together, these findings suggest that thrombin-mediated activation of endothelial cells involves an interplay between NFAT and NF-kappaB signaling pathways and their negative feedback inhibitors, DSCR-1 and I-kappaB, respectively. As natural brakes in the inflammatory process, DSCR-1 and I-kappaB may lend themselves to therapeutic manipulation in vasculopathic disease states.  相似文献   

12.
《Autophagy》2013,9(12):2033-2045
Inflammation participates centrally in all stages of atherosclerosis (AS), which begins with inflammatory changes in the endothelium, characterized by expression of the adhesion molecules. Resveratrol (RSV) is a naturally occurring phytoalexin that can attenuate endothelial inflammation; however, the exact mechanisms have not been thoroughly elucidated. Autophagy refers to the normal process of cell degradation of proteins and organelles, and is protective against certain inflammatory injuries. Thus, we intended to determine the role of autophagy in the antiinflammatory effects of RSV in human umbilical vein endothelial cells (HUVECs). We found that RSV pretreatment reduced tumor necrosis factor α (TNF/TNFα)-induced inflammation and increased MAP1LC3B2 (microtubule-associated protein 1 light chain 3 β 2) expression and SQSTM1/p62 (sequestosome 1) degradation in a concentration-dependent manner. A bafilomycin A1 (BafA1) challenge resulted in further accumulation of MAP1LC3B2 in HUVECs. Furthermore, autophagy inhibitors 3-methyladenine (3-MA), chloroquine as well as ATG5 and BECN1 siRNA significantly attenuated RSV-induced autophagy, which, subsequently, suppressed the downregulation of RSV-induced inflammatory factors expression. RSV also increased cAMP (cyclic adenosine monophosphate) content, the expression of PRKA (protein kinase A) and SIRT1 (sirtuin 1), as well as the activity of AMPK (AMP-activated protein kinase). RSV-induced autophagy in HUVECs was abolished in the presence of inhibitors of ADCY (adenylyl cyclase, KH7), PRKA (H-89), AMPK (compound C), or SIRT1 (nicotinamide and EX-527), as well as ADCY, PRKA, AMPK, and SIRT1 siRNA transfection, indicating that the effects of RSV on autophagy induction were dependent on cAMP, PRKA, AMPK and SIRT1. In conclusion, RSV attenuates endothelial inflammation by inducing autophagy, and the autophagy in part was mediated through the activation of the cAMP-PRKA-AMPK-SIRT1 signaling pathway.  相似文献   

13.
14.
The purpose of this investigation is to determine whether the levels of cyclooxygenase-2 (COX-2) expression are cell cycle dependent. We used a serum-starved human foreskin fibroblast model to determine changes in COX-2 mRNA, protein, and promoter activity in response to stimulation with interleukin-1b (IL-1b) and phorbol 12-myristate 13-acetate (PMA) at G0, G1, S and G2/M phases of the cell cycle. IL-1b (1 ng/ml) and PMA (100 nM) induced robust COX-2 expression in the G0 cells, and the level of COX-2 expression declined progressively after the cells had entered the cell cycle. The COX-2 mRNA level at G1, S and G2/M phases of the cell cycle was 76%, 46%, and 30% of that at G0, respectively. A 5-flanking promoter fragment of COX-2 constructed into a luciferase expression vector was transfected into cells. The promoter activity in response to PMA stimulation was significantly higher in G0 than in S phase cells. These results imply that G0 cells are the key players in inflammation and other COX-2-dependent pathophysiological processes. When the cells are in the proliferative phase, COX-2 inducibility becomes restrained probably by an endogenous control mechanism to avoid COX-2 mediated oxidative DNA damage.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号