首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
2.
3.
Han SE  Seo YS  Kim D  Sung SK  Kim WT 《Plant cell reports》2007,26(8):1321-1331
Fruit ripening involves complex biochemical and physiological changes. Ethylene is an essential hormone for the ripening of climacteric fruits. In the process of ethylene biosynthesis, cyanide (HCN), an extremely toxic compound, is produced as a co-product. Thus, most cyanide produced during fruit ripening should be detoxified rapidly by fruit cells. In higher plants, the key enzyme involved in the detoxification of HCN is β-cyanoalanine synthase (β-CAS). As little is known about the molecular function of β-CAS genes in climacteric fruits, we identified two homologous genes, MdCAS1 and MdCAS2, encoding Fuji apple β-CAS homologs. The structural features of the predicted polypeptides as well as an in vitro enzyme activity assay with bacterially expressed recombinant proteins indicated that MdCAS1 and MdCAS2 may indeed function as β-CAS isozymes in apple fruits. RNA gel-blot studies revealed that both MdCAS1 and MdCAS2 mRNAs were coordinately induced during the ripening process of apple fruits in an expression pattern comparable with that of ACC oxidase and ethylene production. The MdCAS genes were also activated effectively by exogenous ethylene treatment and mechanical wounding. Thus, it seems like that, in ripening apple fruits, expression of MdCAS1 and MdCAS2 genes is intimately correlated with a climacteric ethylene production and ACC oxidase activity. In addition, β-CAS enzyme activity was also enhanced as the fruit ripened, although this increase was not as dramatic as the mRNA induction pattern. Overall, these results suggest that MdCAS may play a role in cyanide detoxification in ripening apple fruits.  相似文献   

4.
5.
A role for jasmonates in climacteric fruit ripening   总被引:12,自引:0,他引:12  
Jasmonates are a class of oxylipins that induce a wide variety of higher-plant responses. To determine if jasmonates play a role in the regulation of climacteric fruit ripening, the effects of exogenous jasmonates on ethylene biosynthesis and color, as well as the endogenous concentrations of jasmonates were determined during the onset of ripening of apple (Malus domestica Borkh. cv. Golden Delicious) and tomato (Lycopersicon esculentum Mill. cv. Cobra) fruit. Transient (12 h) treatment of pre-climacteric fruit discs with exogenous jasmonates at low concentration (1 or 10 μM) promoted ethylene biosynthesis and color change in a concentration-dependent fashion. Activities of both 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase and ACC synthase were stimulated by jasmonate treatments in this concentration range. The endogenous concentration of jasmonates increased transiently prior to the climacteric increase in ethylene biosynthesis during the onset of ripening of both apple and tomato fruit. The onset of tomato fruit ripening was also preceded by an increase in the percentage of the cis-isomer of jasmonic acid. Inhibition of ethylene action by diazocyclopentadiene negated the jasmonate-induced stimulation of ethylene biosynthesis, indicating jasmonates act at least in part via ethylene action. These results suggest jasmonates may play a role together with ethylene in regulating the early steps of climacteric fruit ripening. Received: 14 August 1997 / Accepted: 4 October 1997  相似文献   

6.
7.
8.
9.
10.
Ethylene regulation of fruit ripening: Molecular aspects   总被引:19,自引:0,他引:19  
Progress in ethylene regulating fruit ripening concerning itsperception and signal transduction and expression of ACC synthaseand ACC oxidase genes is reviewed. ACC synthase and ACC oxidasehave been characterized and their genes cloned from various fruittissues. Both ACC synthase and ACC oxidase are encoded bymultigene families, and their activities are associated withfruit ripening. In climacteric fruit, the transition toautocatalytic ethylene production appears to be due to a seriesof events in which ACC sythase and ACC oxidase genes have beenexpressed developmentally. Differential expression of ACCsynthase and ACC oxidase gene family members is probably involvedin such a transition that ultimately controls the onset of fruitripening.In comparison to ACC synthase and ACC oxidase, less is knownabout ethylene perception and signal transduction because of thedifficulties in isolating and purifying ethylene receptors orethylene-binding proteins using biochemical methods. However, theidentification of the Nr tomato ripening mutant as anethylene receptor, the applications of new potent anti-ethylenecompounds and the generation of transgenic fruits with reducedethylene production have provided evidence that ethylenereceptors regulate a defined set of genes which are expressedduring fruit ripening. The properties and functions of ethylenereceptors, such as ETR1, are being elucidated.Application of molecular genetics, in combination withbiochemical approaches, will enable us to better understand theindividual steps leading from ethylene perception and signaltransduction and expression of ACC synthase and ACC oxidase genefamily member to the physiological responses.  相似文献   

11.
12.
13.
14.
The plant hormone ethylene is important to many plant processes from germination through senescence, including responses to in vitro growth and plant regeneration. Knowledge of the number and function of genes that are involved in ethylene biosynthesis and reception is necessary to determine the role of specific genes within gene families known to influence ethylene biosynthesis and other aspects of ethylene function in plants. Our objective was built on previous studies that have established the critical role of ethylene in the in vitro response of barley (Hordeum vulgare L.), and that have identified ethylene-related QTL in the barley genome. In this study, we have identified the locations of genes in the barley 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS), ACC oxidase (ACO), and ethylene receptor (ETR) gene families. Specific primers for PCR amplification of each gene were developed and used to map these genes in the Oregon Wolf Barley mapping population. Five ACS, 8 ACO, and 7 ETR genes were identified and mapped to six of the barley chromosomes. Gene locations were syntenous to the orthologs in rice except for two that mapped to chromosome 6H. Gene duplication was evident for ACO genes on chromosomes 5H and 6H. Gene-specific primers will be useful for determining expression of each gene under various environmental conditions, including in vitro environments, to better understand the role of ethylene. Of the six known QTL for green plant regeneration in barley, three were located near the genes mapped in this study.  相似文献   

15.
16.
Mume (Japanese apricot: Prunus mume Sieb. et Zucc.) is a climacteric fruit that produces large amounts of ethylene as it ripens. Ripening is accompanied by marked increases in the activities of two ethylene-biosynthetic enzymes, namely, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase. To study the molecular aspects of ripening of mume, we isolated cDNA clones for proteins that we considered likely to be involved in the biosynthesis and perception of ethylene during ripening, namely, ACC synthase, ACC oxidase and the ethylene receptor. Northern blotting analysis revealed the markedly increased expression of ACC synthase prior to that of ACC oxidase and the increase in ethylene production during ripening. Overall, the levels of the mRNAs for the genes corresponded closely to the levels of activity of the ethylene-biosynthetic enzymes. Exposure of mature green mume fruit to ethylene for 12 h induced strong expression of ACC synthase, as well as of ACC oxidase. Wounding of the pericarp of mume fruit induced the expression of ACC synthase but not of ACC oxidase. The rate of ethylene production increased only slightly after wounding. These results suggest that expression of the genes for ACC synthase and ACC oxidase must be activated sequentially for maximum production of ethylene during ripening of mume fruit and that several mechanisms regulate the expression of ethylene-biosynthetic genes during ripening.  相似文献   

17.
18.
The shelf life of Japanese pear fruit is determined by its level of ethylene production. Relatively high levels of ethylene reduce storage potential and fruit quality. We have identified RFLP markers tightly linked to the locus that determines the rate of ethylene evolution in ripening fruit of the Japanese pear. The study was carried out using sequences of two types of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase genes (PPACS1 and pPPACS2) and a ACC oxidase gene (PPAOX1) as probes on 35 Japanese pear cultivars expressing different levels of ethylene (0.0∼300 μl/kg fresh weight/h) in ripening fruit. When total DNA was digested with HindIII and probed with pPPACS1, we identified a band of 2.8 kb which was specific to cultivars having very high ethylene levels (≧10 μ1/kg f.w./h) during fruit ripening. The probe pPPACS2 identified a band of 0.8 kb specific to cultivars with moderate ethylene levels (0.5 μl/kg f.w./h–10 μl/kg f.w./h) during fruit ripening. The cultivars that produce high levels of ethylene possess at least one additional copy of pPPACS1 and those producing moderate levels of ethylene have at least one additional copy of pPPACS2. These results suggest that RFLP analysis with different ACC synthase genes could be useful for predicting the maximum ethylene level during fruit ripening in Japanese pear. Received: 1 July 1998 / Accepted: 6 October 1998  相似文献   

19.
Coffee quality is strongly influenced by a great number of factors, among which the fruit ripening stage at harvest time has a major influence on this feature. Studies comprising ethylene production and the regulation of ethylene biosynthesis genes during the ripening process indicate that ethylene plays an important role on coffee fruit ripening. Coffee early cultivars usually show a more uniform ripening process although little is known about the genetic factors that promote the earliness of ripening. Thus, in order to better understand the physiological and genetic factors involved in the regulation of ripening time, and consequently ripening uniformity, this study aimed to analyze ethylene and respiration patterns during coffee ripening, as well as to analyze ACC oxidase, an ethylene biosynthesis enzyme, gene expression, in fruits of early (Catucaí 785-15) and late (Acauã) coffee cultivars. Coffee fruits were harvested monthly from 124 days after flowering (end of February), until complete maturation (end of June). Dry matter, moisture content, color, respiratory rate and ethylene production analysis were performed. In silico analysis identified a coffee ACC oxidase gene (CaACO-like) and its expression was analyzed by real-time PCR. Dry matter and relative water content constantly increased and gradually decreased, respectively, during fruit ripening, and the color analysis enabled the observation of the earliness in the ripening process displayed by Catucaí 785-15 and its higher fruit ripening uniformity. The results obtained from the CaACO-like expression analysis and respiration and ethylene analysis suggest that the differences in ripening behavior between the two coffee cultivars analyzed in this study may be related to the differences in their capacity to produce ethylene, with fruits of Catucaí 785-15 and Acauã showing a typical and an attenuated climacteric phase, respectively, which may have lead to differences in their ripening time and uniformity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号