首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tsai YL  Hou CW  Liao YH  Chen CY  Lin FC  Lee WC  Chou SW  Kuo CH 《Life sciences》2006,78(25):2953-2959
The current study determined the interactive effects of ischemia and exercise training on glycogen storage and GLUT4 expression in skeletal muscle. For the first experiment, an acute 1-h tourniquet ischemia was applied to one hindlimb of both the 1-week exercise-trained and untrained rats. The contralateral hindlimb served as control. For the second experiment, 1-h ischemia was applied daily for 1 week to both trained (5 h post-exercise) and untrained rats. GLUT4 mRNA was not affected by acute ischemia, but exercise training lowered GLUT4 mRNA in the acute ischemic muscle. GLUT4 protein levels were elevated by exercise training, but not in the acute ischemic muscle. Exercise training elevated muscle glycogen above untrained levels, but this increase was reversed by chronic ischemia. GLUT4 mRNA and protein levels were dramatically reduced by chronic ischemia, regardless of whether the animals were exercise-trained or not. Chronic ischemia significantly reduced plantaris muscle mass, with a greater decrease found in the exercise-trained rats. In conclusion, the exercise training effect on muscle GLUT4 protein expression was prevented by acute ischemia. Furthermore, chronic ischemia-induced muscle atrophy was exacerbated by exercise training. This result implicates that exercise training could be detrimental to skeletal muscle with severely impaired microcirculation.  相似文献   

2.

Background

Heart failure (HF)-induced skeletal muscle atrophy is often associated to exercise intolerance and poor prognosis. Better understanding of the molecular mechanisms underlying HF-induced muscle atrophy may contribute to the development of pharmacological strategies to prevent or treat such condition. It has been shown that autophagy-lysosome system is an important mechanism for maintenance of muscle mass. However, its role in HF-induced myopathy has not been addressed yet. Therefore, the aim of the present study was to evaluate autophagy signaling in myocardial infarction (MI)-induced muscle atrophy in rats.

Methods/Principal Findings

Wistar rats underwent MI or Sham surgeries, and after 12 weeks were submitted to echocardiography, exercise tolerance and histology evaluations. Cathepsin L activity and expression of autophagy-related genes and proteins were assessed in soleus and plantaris muscles by fluorimetric assay, qRT-PCR and immunoblotting, respectively. MI rats displayed exercise intolerance, left ventricular dysfunction and dilation, thereby suggesting the presence of HF. The key findings of the present study were: a) upregulation of autophagy-related genes (GABARAPL1, ATG7, BNIP3, CTSL1 and LAMP2) was observed only in plantaris while muscle atrophy was observed in both soleus and plantaris muscles, and b) Cathepsin L activity, Bnip3 and Fis1 protein levels, and levels of lipid hydroperoxides were increased specifically in plantaris muscle of MI rats.

Conclusions

Altogether our results provide evidence for autophagy signaling regulation in HF-induced plantaris atrophy but not soleus atrophy. Therefore, autophagy-lysosome system is differentially regulated in atrophic muscles comprising different fiber-types and metabolic characteristics.  相似文献   

3.
Our laboratory has demonstrated (Steen MS, Foianini KR, Youngblood EB, Kinnick TR, Jacob S, and Henriksen EJ, J Appl Physiol 86: 2044-2051, 1999) that exercise training and treatment with the angiotensin-converting enzyme (ACE) inhibitor trandolapril interact to improve insulin action in insulin-resistant obese Zucker rats. The present study was undertaken to determine whether a similar interactive effect of these interventions is manifest in an animal model of normal insulin sensitivity. Lean Zucker (Fa/-) rats were assigned to either a sedentary, trandolapril-treated (1 mg. kg(-1). day(-1) for 6 wk), exercise-trained (treadmill running for 6 wk), or combined trandolapril-treated and exercise-trained group. Exercise training alone or in combination with trandolapril significantly (P < 0.05) increased peak oxygen consumption by 26-32%. Compared with sedentary controls, exercise training alone or in combination with ACE inhibitor caused smaller areas under the curve for glucose (27-37%) and insulin (41-44%) responses during an oral glucose tolerance test. Exercise training alone or in combination with trandolapril also improved insulin-stimulated glucose transport in isolated epitrochlearis (33-50%) and soleus (58-66%) muscles. The increases due to exercise training alone or in combination with trandolapril were associated with enhanced muscle GLUT-4 protein levels and total hexokinase activities. However, there was no interactive effect of exercise training and ACE inhibition observed on insulin action. These results indicate that, in rats with normal insulin sensitivity, exercise training improves oral glucose tolerance and insulin-stimulated muscle glucose transport, whereas ACE inhibition has no effect. Moreover, the beneficial interactive effects of exercise training and ACE inhibition on these parameters are not apparent in lean Zucker rats and, therefore, are restricted to conditions of insulin resistance.  相似文献   

4.
We compared the changes in monocarboxylate transporter 1 (MCT1) and 4 (MCT4) proteins in heart and skeletal muscles in sedentary control and streptozotocin (STZ)-induced diabetic rats (3 wk) and in trained (3 wk) control and STZ-induced diabetic animals. In nondiabetic animals, training increased MCT1 in the plantaris (+51%; P < 0.01) but not in the soleus (+9%) or the heart (+14%). MCT4 was increased in the plantaris (+48%; P < 0.01) but not in the soleus muscles of trained nondiabetic animals. In sedentary diabetic animals, MCT1 was reduced in the heart (-30%), and in the plantaris (-31%; P < 0.01) and soleus (-26%) muscles. MCT4 content was also reduced in sedentary diabetic animals in the plantaris (-52%; P < 0.01) and soleus (-25%) muscles. In contrast, in trained diabetic animals, MCT1 and MCT4 in heart and/or muscle were similar to those of sedentary, nondiabetic animals (P > 0.05) but were markedly greater than in the sedentary diabetic animals [MCT1: plantaris +63%, soleus +51%, heart +51% (P > 0.05); MCT4: plantaris +107%, soleus +17% (P > 0.05)]. These studies have shown that 1) with STZ-induced diabetes, MCT1 and MCT4 are reduced in skeletal muscle and/or the heart and 2) exercise training alleviated these diabetes-induced reductions.  相似文献   

5.
Because optimal overload-induced skeletal muscle hypertrophy requires ANG II, we aimed to determine the effects of blocking ANG II production [via angiotensin-converting enzyme (ACE) inhibition] on potential mediators of hypertrophy in overloaded skeletal muscle, namely, myonuclear addition and fibroblast content. In a 2 x 2 design, adult (200-225 g) female Sprague-Dawley rats were placed into one of four groups (n = 8/group): 7-day skeletal muscle overload, sham operation, 7-day skeletal muscle overload with ACE inhibition, or sham operation with ACE inhibition. Functional overloads of the plantaris and soleus muscles were produced via bilateral surgical ablation of the synergistic gastrocnemius muscle, and ACE inhibition was accomplished by the addition of the ACE inhibitor enalapril maleate to the animals' daily drinking water (0.3 mg/ml). Myonuclear addition and extrasarcolemmal nuclear proliferation, as measured by in vivo 5-bromo-2'-deoxyuridine labeling, were significantly (P < or = 0.05) increased by overload in both the slow-twitch soleus and fast-twitch plantaris muscles. Furthermore, ACE inhibition attenuated these overload-induced increases in the soleus muscle but not in the plantaris muscle. However, the effect of ACE inhibition on soleus extrasarcolemmal nuclei was not likely due to differences in fibroblast content because overload elicited significant increases in vimentin-positive areas in soleus and plantaris muscles, and these areas were unaffected by ACE inhibition in either muscle. There was no effect of ACE inhibition on any measure in sham-operated muscles. Collectively, these data indicate that ANG II may mediate the satellite cell response to overload in slow-twitch soleus but not in fast-twitch plantaris muscles and that this effect may occur independently of changes in fibroblast content.  相似文献   

6.

[Purpose]

The purpose of this study was to investigate whether moderate exercise and quercetin intake with a low fat diet contribute to inflammatory cytokine production, mitochondrial biogenesis, and lipid metabolism in skeletal muscle after strenuous exercise by high-fat diet mice.

[Methods]

Male C57BL/6 mice were randomly divided into four groups: (1) High-fat for 12 weeks and low-fat diet control (C; n = 6); (2) high-fat diet for 12 weeks and low-fat diet with quercetin (Q; n = 4); (3) high-fat diet for 12 weeks and low-fat diet with exercise (E; n = 4); or (4) high-fat diet for 12 weeks and low-fat diet with exercise and quercetin (EQ; n = 5). Quercetin (10 mg/kg) was administered once per day, 5 day/week for 8 weeks. Exercise training was performed at moderate intensity for 8 weeks, 5 days/week for 30–60 min/day. Mice were subjected to a strenuous exercise bout of 60 min at a speed of 25 m/min (VO2 max 85%) conducted as an exercise-induced fatigue just before sacrifice.

[Results]

As results, body weights were significantly different among the groups. Exercise training significantly reduced inflammatory cytokines after strenuous exercise in skeletal muscle of high-fat diet mice. Exercise training increased Tfam mRNA in the soleus muscle after strenuous exercise. Exercise training significantly decreased lipogenesis markers in skeletal muscle of obese mice after strenuous exercise. Moderate exercise significantly increased lipolysis markers in the tibialis anterior muscle.

[Conclusion]

These findings suggest that exercise training reduced inflammatory cytokine levels and improved mitochondrial biogenesis and lipid metabolism. However quercetin supplementation did not affect these parameters. Thus, long-term moderate exercise training has positive effects on obesity.  相似文献   

7.
  • 1.1. The purpose of this study was to examine the effect of exercise, anabolic steroid treatment, and a combination of both treatments on the phospholipid composition of predominantly fast twitch (plantaris) and slow twitch (soleus) skeletal muscles. The 4 experimental groups analyzed were sedentary control (C), steroid-treated (S), exercise-trained (E), and exercise plus steroid-treated (ES).
  • 2.2. Among the 11 phospholipids quantitated, for the plantaris muscle, phosphatidylcholine was reduced in ES relative to C, while phosphatidylethanolamine and phosphatidylethanolamine plasmalogen were elevated in E and ES relative to C. For the soleus muscle, phosphatidylserine was reduced in S and E relative to C, and cardiolipin was elevated in E relative to C.
  • 3.3. Of the 27 metabolic indices calculated for the plantaris, 15 changed significantly among E and ES relative to S and C, while for the soleus, only three indices changed among the four groups, two among E and ES relative to S and C and one between S and C.
  • 4.4. For the plantaris muscle, the results are consistent with an exercise-induced alteration of membrane phospholipid composition that increases ion translocation activity. For the soleus muscle, this membrane alteration essentially does not take place.
  • 5.5. Steroid treatment had little to no statistically significant effect on plantaris and soleus muscle phospholipid systems, regardless of the imposed regimen.
  相似文献   

8.
The mechanisms responsible for the decrements in exercise performance in chronic heart failure (CHF) remain poorly understood, but it has been suggested that sarcolemmal alterations could contribute to the early onset of muscular fatigue. Previously, our laboratory demonstrated that the maximal number of ouabain binding sites (B(max)) is reduced in the skeletal muscle of rats with CHF (Musch TI, Wolfram S, Hageman KS, and Pickar JG. J Appl Physiol 92: 2326-2334, 2002). These reductions may coincide with changes in the Na(+)-K(+)-ATPase isoform (alpha and beta) expression. In the present study, we tested the hypothesis that reductions in B(max) would coincide with alterations in the alpha- and beta-subunit expression of the sarcolemmal Na(+)-K(+)-ATPase of rats with CHF. Moreover, we tested the hypothesis that exercise training would increase B(max) along with producing significant changes in alpha- and beta-subunit expression. Rats underwent a sham operation (sham; n = 10) or a surgically induced myocardial infarction followed by random assignment to either a control (MI; n = 16) or exercise training group (MI-T; n = 16). The MI-T rats performed exercise training (ET) for 6-8 wk. Hemodynamic indexes demonstrated that MI and MI-T rats suffered from severe left ventricular dysfunction and congestive CHF. Maximal oxygen uptake (Vo(2 max)) and endurance capacity (run time to fatigue) were reduced in MI rats compared with sham. B(max) in the soleus and plantaris muscles and the expression of the alpha(2)-isoform of the Na(+)-K(+)-ATPase in the red portion of the gastrocnemius (gastrocnemius(red)) muscle were reduced in MI rats. After ET, Vo(2 max) and run time to fatigue were increased in the MI-T group of rats. This coincided with increases in soleus and plantaris B(max) and the expression of the alpha(2)-isoform in the gastrocnemius(red) muscle. In addition, the expression of the beta(2)-isoform of the gastrocnemius(red) muscle was increased in the MI-T rats compared with their sedentary counterparts. This study demonstrates that CHF-induced alterations in skeletal muscle Na(+)-K(+)-ATPase, including B(max) and isoform expression, can be partially reversed by ET.  相似文献   

9.
Patients with congestive heart failure (CHF) are prone to increased skeletal muscle fatigue. Elevated circulatory concentrations of tumor necrosis factor (TNF)-alpha and monocyte chemoattractant protein-1, which may stimulate matrix metalloproteinase (MMP) activity and, thereby, contribute to skeletal muscle dysfunction, are frequently found in CHF. However, whether skeletal muscle MMP activity is altered in CHF is unknown. Hence, we have used a gelatinase assay to assess the activity of MMP and tissue inhibitors of MMP in single skeletal muscles of rats with CHF 6 wk after induction of myocardial infarction. Sham-operated (Sham) rats were used as controls. We also measured the gene expression and protein contents of MMP-2 and MMP-9 in skeletal muscles of these rats. Plasma MMP activity was nearly seven times higher (P < 0.05) in CHF than in Sham rats. Concomitantly, the MMP activity within single slow- and fast-twitch skeletal muscles of CHF rats increased two- to fourfold compared with Sham animals, whereas tissue inhibitor of MMP activity did not differ (P > 0.05). Preformed MMP-2 and MMP-9 were probably activated in CHF, because neither their gene expression nor protein levels were altered (P > 0.05). Serum concentrations of TNF-alpha and monocyte chemoattractant protein-1 remained unchanged (P > 0.05) between CHF and Sham rats during the 6-wk observation period. We conclude that development of CHF in rats enhances MMP activity, which in turn may distort the normal contractile function of skeletal muscle, thereby contributing to increased skeletal muscle fatigue.  相似文献   

10.
ANG II mediates the hypertrophic response of overloaded cardiac muscle, likely via the ANG II type 1 (AT(1)) receptor. To examine the potential role of ANG II in overload-induced skeletal muscle hypertrophy, plantaris and/or soleus muscle overload was produced in female Sprague-Dawley rats (225-250 g) by the bilateral surgical ablation of either the synergistic gastrocnemius muscle (experiment 1) or both the gastrocnemius and plantaris muscles (experiment 2). In experiment 1 (n = 10/group), inhibiting endogenous ANG II production by oral administration of an angiotensin-converting enzyme (ACE) inhibitor during a 28-day overloading protocol attenuated plantaris and soleus muscle hypertrophy by 57 and 96%, respectively (as measured by total muscle protein content). ACE inhibition had no effect on nonoverloaded (sham-operated) muscles. With the use of new animals (experiment 2; n = 8/group), locally perfusing overloaded soleus muscles with exogenous ANG II (via osmotic pump) rescued the lost hypertrophic response in ACE-inhibited animals by 71%. Furthermore, orally administering an AT(1) receptor antagonist instead of an ACE inhibitor produced a 48% attenuation of overload-induced hypertrophy that could not be rescued by ANG II perfusion. Thus ANG II may be necessary for optimal overload-induced skeletal muscle hypertrophy, acting at least in part via an AT(1) receptor-dependent pathway.  相似文献   

11.
Exercise training or chronic treatment with angiotensin-converting enzyme (ACE) inhibitors can ameliorate glucose intolerance, insulin resistance of muscle glucose metabolism, and dyslipidemia associated with the obese Zucker rat. The purpose of the present study was to determine the interactions of exercise training and ACE inhibition (trandolapril) on these parameters in the obese Zucker rat. Animals were assigned to a sedentary control, a trandolapril-treated (1 mg. kg-1. day-1 for 6 wk), an exercise-trained (treadmill running for 6 wk), or a combined trandolapril-treated and exercise-trained group. Exercise training, alone or with trandolapril, significantly (P < 0. 05) increased peak O2 consumption by 31-34%. Similar decreases in fasting plasma insulin (34%) and free fatty acids (31%) occurred with exercise training alone or in combination with trandolapril. Compared with control, exercise training or trandolapril alone caused smaller areas under the curve (AUC) for glucose (12-14%) and insulin (28-33%) during an oral glucose tolerance test. The largest decreases in the glucose AUC (40%) and insulin AUC (53%) were observed in the combined group. Similarly, whereas exercise training or trandolapril alone improved maximally activated insulin-stimulated glucose transport in isolated epitrochlearis (26-34%) or soleus (39-41%) muscles, the greatest improvements in insulin action (67 and 107%, respectively) were seen in the combined group and were associated with similarly enhanced muscle GLUT-4 protein and total hexokinase levels. In conclusion, these results indicate combined exercise training and ACE inhibition improve oral glucose tolerance and insulin-stimulated muscle glucose transport to a greater extent than does either intervention alone.  相似文献   

12.
The insulin-resistance effect of growth hormone (GH) administration has been frequently reported. The present study investigated the effect of GH administration on glucose tolerance and muscle GLUT4 protein expression in exercise-trained and untrained rats. Forty-eight rats were weight-matched and assigned to the following 4 groups: control, GH, exercise training, and exercise training + GH groups. After 2 weeks of GH injections (65 µg/kg/day) and exercise training, the glucose tolerance and insulin response were measured in these rats. The GLUT4 protein level, glycogen storage, and citrate synthase activity were determined in red gastrocnemius and plantaris muscles. Daily GH administration elevated the curves of the oral glucose tolerance test and insulin response compared with those of saline-injected control rats. Furthermore, exercise training completely eliminated this GH-induced insulin resistance as determined 18 h after the last bout of exercise training. Additionally, exercise training significantly increased muscle glycogen storage and GLUT4 protein levels. GH administration did not affect the GLUT4 protein and glycogen storage increases induced by exercise training, but the citrate synthase activity in the plantaris muscle was further elevated by GH administration to a level above that induced by training. In conclusion, this is the first study that demonstrates that regular exercise training prevents GH-induced insulin-resistance side effect in rats.  相似文献   

13.
Exercise training and sulfonylurea treatment, either individually or in combination, were evaluated for their effects on plasma glucose concentrations, oral glucose tolerance, and glucose clearance in the perfused hindquarter of diabetic rats. Female rats that were injected with streptozocin (45 mg/kg iv) and had plasma glucose concentrations between 11 and 25 mM were considered diabetic and divided into sedentary, glyburide-treated, exercise-trained, and glyburide-treated plus exercise-trained groups. The sedentary streptozocin-treated rats were severely diabetic, as indicated by elevated glucose concentrations, impaired insulin response during oral glucose tolerance tests, and lower rates of glucose clearance in hindlimb skeletal muscle. Neither 8 wk of exercise training nor 4 wk of glyburide treatment alone improved these parameters. In contrast, the diabetic rats that were both trained and treated with glyburide showed some improvement in glucose homeostasis, as evidenced by lower plasma glucose concentrations, an enhanced insulin response to an oral glucose load, and a decrease in the severity of skeletal muscle insulin resistance compared with the diabetic controls. These data suggest that glyburide treatment or exercise training alone does not alter glucose homeostasis in severely insulin-deficient diabetic rats; however, the combination of exercise training and glyburide treatment may interact to improve glucose homeostasis in these animals.  相似文献   

14.

Purpose

We examined whether resistance exercise training restores impaired autophagy functions caused by Chloroquine (CQ)-induced Sporadic Inclusion Body Myositis (sIBM) in rat skeletal muscle.

Methods

Male wistar rats were randomly assigned into three groups: Sham (n = 6), CQ (n = 6), and CQ + Exercise (CE, n = 6). To create a rat model of sIBM, rats in the CQ and CE group were intraperitoneally injected with CQ 5 days a week for 16 weeks. Rats in the CE group performed resistance exercise training 3 times a week for 8 weeks in conjunction with CQ starting from week 9 to week 16. During the training period, maximal carrying load, body weight, muscle weight, and relative muscle weight were measured. Autophagy responses were examined by measuring specific markers.

Results

While maximal carrying capacity for resistance exercise training was dramatically increased in the CE group, no significant changes occurred in the skeletal muscle weight as well as in the relative muscle weight of CE compared to the other groups. CQ treatment caused significant increases in the levels of Beclin-1 and p62, and decreases in the levels of LAMP-2 proteins. Interestingly, no significant differences in the LC3-II/I ratio or the LC3-II protein levels were observed. Although CQ-treatment groups suppressed the levels of the potent autophagy inducer, BNIP3, p62 levels were decreased in only the CE group.

Conclusion

Our findings demonstrate that sIBM induced by CQ treatment results in muscle degeneration via impaired autophagy and that resistance exercise training improves movable loading activity. Finally, regular exercise training may provide protection against sIBM by enhancing the autophagy flux through p62 protein.  相似文献   

15.
It is thought that changes in sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) of skeletal muscle contribute to alterations in skeletal muscle function during congestive heart failure (CHF). It is well established that exercise training can improve muscle function. However, it is unclear whether similar adaptations will result from exercise training in a CHF patient. Therefore, the purpose of this study was to determine whether skeletal muscle during moderate CHF adapts to increased activity, utilizing the functional overload (FO) model. Significant increases in plantaris mass of the CHF-FO and sham-FO groups compared with the CHF and control (sham) groups were observed. Ca(2+) uptake rates were significantly elevated in the CHF group compared with all other groups. No differences were detected in Ca(2+) uptake rates between the CHF-FO, sham, and sham-FO groups. Increases in Ca(2+) uptake rates in moderate-CHF rats were not due to changes in SERCA isoform proportions; however, FO may have attenuated the CHF-induced increases through alterations in SERCA isoform expression. Therefore, changes in skeletal muscle Ca(2+) handling during moderate CHF may be due to alterations in regulatory mechanisms, which exercise may override, by possibly altering SERCA isoform expression.  相似文献   

16.

Background

Heart failure (HF) is associated with cachexia and consequent exercise intolerance. Given the beneficial effects of aerobic exercise training (ET) in HF, the aim of this study was to determine if the ET performed during the transition from cardiac dysfunction to HF would alter the expression of anabolic and catabolic factors, thus preventing skeletal muscle wasting.

Methods and Results

We employed ascending aortic stenosis (AS) inducing HF in Wistar male rats. Controls were sham-operated animals. At 18 weeks after surgery, rats with cardiac dysfunction were randomized to 10 weeks of aerobic ET (AS-ET) or to an untrained group (AS-UN). At 28 weeks, the AS-UN group presented HF signs in conjunction with high TNF-α serum levels; soleus and plantaris muscle atrophy; and an increase in the expression of TNF-α, NFκB (p65), MAFbx, MuRF1, FoxO1, and myostatin catabolic factors. However, in the AS-ET group, the deterioration of cardiac function was prevented, as well as muscle wasting, and the atrophy promoters were decreased. Interestingly, changes in anabolic factor expression (IGF-I, AKT, and mTOR) were not observed. Nevertheless, in the plantaris muscle, ET maintained high PGC1α levels.

Conclusions

Thus, the ET capability to attenuate cardiac function during the transition from cardiac dysfunction to HF was accompanied by a prevention of skeletal muscle atrophy that did not occur via an increase in anabolic factors, but through anti-catabolic activity, presumably caused by PGC1α action. These findings indicate the therapeutic potential of aerobic ET to block HF-induced muscle atrophy by counteracting the increased catabolic state.  相似文献   

17.
The renin–angiotensin system (RAS) is involved in the cardiac and vascular remodeling associated with cardiovascular diseases. Angiotensin (Ang) II/AT1 axis is known to promote cardiac hypertrophy and collagen deposition. In contrast, Ang-(1–7)/Mas axis opposes Ang II effects in the heart producing anti-trophic and anti-fibrotic effects. Exercise training is known to induce cardiac remodeling with physiological hypertrophy without fibrosis. We hypothesize that cardiac remodeling induced by chronic exercise depends on the action of Ang-(1–7)/Mas axis. Thus, we evaluated the effect of exercise training on collagen deposition and RAS components in the heart of FVB/N mice lacking Mas receptor (Mas-KO). Male wild-type and Mas-KO mice were subjected to a moderate-intense swimming exercise training for 6 weeks. The left ventricle (LV) of the animals was sectioned and submitted to qRT-PCR and histological analysis. Circulating and tissue angiotensin peptides were measured by RIA. Sedentary Mas-KO presented a higher circulating Ang II/Ang-(1–7) ratio and an increased ACE2 expression in the LV. Physical training induced in Mas-KO and WT a similar cardiac hypertrophy accompanied by a pronounced increase in collagen I and III mRNA expression. Trained Mas-KO and trained WT presented increased Ang-(1–7) in the blood. However, only in trained-WT there was an increase in Ang-(1–7) in the LV. In summary, we showed that deletion of Mas in FVB/N mice produced an unbalance in RAS equilibrium increasing Ang II/AT1 arm and inducing deleterious cardiac effects as deposition of extracellular matrix proteins. These data indicate that Ang-(1–7)/Mas axis is an important counter-regulatory mechanism in physical training mediate cardiac adaptations.  相似文献   

18.
Increases in aerobic capacity in both young and senescent rats consequent to endurance exercise training are now known to occur not only in locomotor skeletal muscle but also in diaphragm. In the current study the effects of aging and exercise training on the myosin heavy chain (MHC) composition were determined in both the costal and crural diaphragm regions of female Fischer 344 rats. Exercise training [treadmill running at 75% maximal oxygen consumption (1 h/day, 5 day/wk, x 10 wk)] resulted in similar increases in plantaris muscle citrate synthase activity in both young (5 mo) and old (23 mo) trained animals (P < 0.05). Computerized densitometric image analysis of fast and slow MHC bands revealed the ratio of fast to slow MHC to be significantly higher (P < 0.005) in the crural compared with costal diaphragm region in both age groups. In addition, a significant age-related increase (P < 0.05) in percentage of slow MHC was observed in both diaphragm regions. However, exercise training failed to change the relative proportion of slow MHC in either the costal or crural region.  相似文献   

19.
To evaluate the relationship between enhanced insulin action and level of exercise training, in vivo glucose uptake was assessed in the absence of added insulin and during insulin-stimulated conditions for three activity levels of voluntarily trained rats (low 2-5 km/day, medium 6-9 km/day, high 11-16 km/day). After rats rested for 24 h and fasted overnight, glucose uptake was estimated by comparing steady-state serum glucose (SSSG) levels at low insulin (SSSI) concentrations achieved during an insulin suppression test. In the absence of added insulin, SSSI averaged approximately 20 microU/ml and glucose uptake was similar for high runners and younger weight-matched controls. However, with insulin added to sustain SSSI at approximately 35 microU/ml, SSSG was significantly reduced in all runners (P less than 0.02), with the lowest value attained in high runners. Fasting serum triglycerides were also reduced in all runners (P less than 0.05), with the lowest values seen in medium and high runners. The concentration of glycogen in liver and select skeletal muscles at the start of the study was not different between trained and control rats, suggesting that enhanced insulin-stimulated glucose uptake was not the result of lower glycogen levels. In addition, glycogen synthase and succinate dehydrogenase activities in biceps femoris muscle were only elevated for high runners, but glycogen synthase activity was not enhanced in plantaris muscle and was decreased in soleus muscle. These findings indicate that enhanced insulin-stimulated glucose uptake and reduced serum triglyceride concentrations induced in exercise-trained rats at varying activity levels are dissociated from changes in glycogen synthase and oxidative enzyme activity for skeletal muscle.  相似文献   

20.
The response of hypertrophied soleus and plantaris muscle of rats to endurance training was studied. Hypertrophy was produced by bilateral extirpation of the gastrocnemius muscle. A 13-wk training program of treadmill running initiated 30 days after removal of the gastrocnemius muscle accentuated (P less than 0.01) the hypertrophy. Succinate dehydrogenase activities of the enlarged muscles of sedentary rats were similar to those of normal animals, as were the increases associated with training. Phosphorylase and hexokinase activities were unaltered as a result of the experimental perturbations. Rates of glycogen depletion during exercise were lower (P less than 0.01) in the liver and soleus and plantaris muscles of endurance-trained animals. No difference existed in the rate of glycogen depletion of normal and hypertrophied muscle within the sedentary or trained groups. These data demonstrate that extensively hypertrophied muscle responds to training and exercise in a manner similar to that of normal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号