首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

The present study investigated the effect of enriched Artemia with Bacillus subtilis on growth performance, reproductive factors, proximate composition, intestinal microflora, and resistance to Aeromonas hydrophila of ornamental fish, Poecilia latipinna. Using a completely randomized design, the experiment included three groups. The first group was fed with commercial food without any probiotic. The second group was fed with unenriched Artemia, and the last group consumed long-time enriched Artemia with Bacillus subtilis. The bacteria B. subtilis with a density of 1 × 105 CFU mL−1 was added daily to Artemia culture medium. The total microflora and Bacillus subtilis counts were significantly increased in enriched Artemia compared to the unenriched group (P < 0.05). In fish fed groups, growth factors did not show any significant difference (P > 0.05). The maximum relative fecundity (28.65 ± 2.52 egg number g−1), fry production (62.93 ± 4.6 individual per female), and fry survival (70.97 ± 1.56%) obtained in the third group were found to be significantly more than those in the first and the second groups. Moreover, intestinal bacterial count for Bacillus revealed that the higher concentration of bacteria was significantly related to the third group (6.24 ± 0.11 log CFU g−1) (P < 0.05). Maximum protein and fat contents were observed in fish fed with Bacillus-enriched Artemia; however, no significant difference was found between control and unenriched Artemia groups (P > 0.05). The highest amount of ash was observed in fish fed with commercial food without any probiotic (P < 0.05). At the end of the feeding period, each of the three groups along with positive group (oxytetracycline 100 mg kg−1 of commercial food) was exposed to A. hydrophila (BCCM5/LMG3770) bacteria intraperitoneally. Based on the results, the lowest cumulative mortality was significantly found in group three (68.75 ± 3.6%) and positive group (62.5 ± 7.0%) compared to control and unenriched Artemia groups (P < 0.05). Hence, B. subtilis with a concentration of 1 × 105 CFU mL−1 during the period of Artemia culturing can improve the reproductive parameters, intestinal microflora, and resistance to pathogenic bacteria of Poecilia latipinna.

  相似文献   

2.
Adavi  Sandeep B.  Sathee  Lekshmy 《Protoplasma》2021,258(1):219-233

Tissue and canopy-level evidence suggests that elevated carbon dioxide (EC) inhibits shoot nitrate assimilation in plants and thereby affects nitrogen (N) and protein content of the economic produce. It is speculated that species or genotypes relying more on root nitrate assimilation can adapt better under EC due to the improved/steady supply of reductants required for nitrate assimilation. A study was conducted to examine the effect of EC on N assimilation and associated gene expression in wheat seedlings. Wheat genotypes, BT-Schomburgk (BTS) with comparatively high leaf nitrate reductase (NR) activity and Gluyas Early (GE) with high root NR activity were grown in hydroponic culture for 30 days with two different nitrate levels (0.05 mM and 5 mM) in the climate controlled growth chambers maintained at either ambient (400 ± 10 μmol mol−1) or EC (700 ± 10 μmol mol−1) conditions. Exposure to EC downregulated the activity of enzyme NR and glutamate synthase (GOGAT) in leaf tissues, whereas in roots, activities of both the enzymes were upregulated by exposure to EC. In addition, EC downregulated N assimilation and signalling gene expression under high N availability. Root N assimilation was less affected in comparison with shoot N assimilation; thereby, the proportion of root contribution towards total assimilation was higher. The results suggest that EC could alter and re-programme N assimilation and signalling in wheat seedlings. The genotype and tissue-specific effects of EC on N assimilation also warrants the need for identification of suitable genotypes and revision of fertiliser regime for tapping the beneficial effects of EC conditions.

  相似文献   

3.

The present study was conducted to assess the effects of combined and singular dietary administration of PrimaLac® and potassium diformate (KDF) on growth performance, feed utilization, digestive enzymes activity, and some physiological parameters of rainbow trout (Oncorhynchus mykiss) juvenile. Three hundred sixty rainbow trout juveniles (25 ± 1.8 g) were randomly stocked in 300-L tanks (30 fish/tank), and fed three times daily on a basal diet (control), diets incorporated with 12 g kg−1 KDF (FT1), 1.5 g kg−1 PrimaLac® (FT2), and combination of 1.5 g kg−1 probiotic and 12 g kg−1 KDF (FT3) in triplicates, for 8 weeks. At the end of feeding trial, growth performance, body composition, digestive enzymes, liver enzymes, and biochemical parameters were measured. Our results revealed that combined administration of PrimaLac® and KDF (FT3) exhibited significantly higher weight gain and specific growth rate (SGR) compared to other groups (P < 0.05). Glucose and cortisol levels showed no significant differences between fish fed different test diets (P > 0.05). The highest lipase, protease and amylase activity were observed in group of fish fed FT3 followed by FT2 and FT1. Besides, the diets FT2 and FT3 led to significantly lower of ALP, ALT, and AST compared to control group. The present results indicated that combined administration of PrimaLac® and KDF can be considered as a beneficial feed additive and growth promotor for O. mykiss juvenile.

  相似文献   

4.

Polysaccharides extracted from seaweeds can function as plant biostimulants. The aim of this study was to assess the effects of Polysaccharide Enriched Extracts (PEEs) obtained from 17 Moroccan seaweeds, on tomato seed germination and plant growth. Three concentrations (0.02, 0.05 and 0.1 mg mL−1) of PEEs were applied to tomato seeds to evaluate their effect on 3 germination parameters: germination percentage (GP), germination speed (GS) and mean germination time (MGT). Metabolomic analysis by GC–MS was subsequently performed on seedlings. In the second experiment, four PEEs concentrations (0.02, 0.05, 0.1 and 0.2 mg mL−1) were used as foliar spray or as soil application to tomato plants. Their growth parameters (number of leaves, shoot length, fresh and dry weight of stem and roots) and biochemical parameters (chlorophyll a and b) were measured. Results indicated a significant increase of GP and GS associated with a significant reduction of MGT of tomato seeds treated with 0.02 mg mL−1 of PEEs obtained from Gigartina sp., Gigartina pistillata, Chondracanthus acicularis, Gelidium crinale, Schizymenia dubyi, Cystoseira. foeniculacea and Fucus spiralis. Similar results were also obtained by application of higher PEEs concentration (0.1 mg mL−1) extracted from Ulva rigida, Codium tomentosum, Codium decorticatum and Bifurcaria bifurcata. Metabolomic analysis on seedlings detected the presence of some metabolites which could possibly be involved in seed germination enhancement or inhibition. The results of the second experiment showed that the same PEEs cited above at the same concentrations enhanced plant dry weight and chlorophyll a content except Gigartina sp., C. foeniculacea and C. decorticatum. Furthermore, soil application of PEEs was more effective in improving plant growth parameters than foliar application. The study shows the potential of PEEs from Moroccan seaweed to be used as biostimulants for a sustainable agriculture.

  相似文献   

5.

Coastal wetlands are key in regulating coastal carbon and nitrogen dynamics and contribute significantly to climate change mitigation and anthropogenic nutrient reduction. We investigated organic carbon (OC) and total nitrogen (TN) stocks and burial rates at four adjacent vegetated coastal habitats across the seascape elevation gradient of Cádiz Bay (South Spain), including one species of salt marsh, two of seagrasses, and a macroalgae. OC and TN stocks in the upper 1 m sediment layer were higher at the subtidal seagrass Cymodocea nodosa (72.3 Mg OC ha−1, 8.6 Mg TN ha−1) followed by the upper intertidal salt marsh Sporobolus maritimus (66.5 Mg OC ha−1, 5.9 Mg TN ha−1), the subtidal rhizophytic macroalgae Caulerpa prolifera (62.2 Mg OC ha−1, 7.2 Mg TN ha−1), and the lower intertidal seagrass Zostera noltei (52.8 Mg OC ha−1, 5.2 Mg TN ha−1). The sedimentation rates increased from lower to higher elevation, from the intertidal salt marsh (0.24 g cm−2 y−1) to the subtidal macroalgae (0.12 g cm−2 y−1). The organic carbon burial rate was highest at the intertidal salt marsh (91 ± 31 g OC m−2 y−1), followed by the intertidal seagrass, (44 ± 15 g OC m−2 y−1), the subtidal seagrass (39 ± 6 g OC m−2 y−1), and the subtidal macroalgae (28 ± 4 g OC m−2 y−1). Total nitrogen burial rates were similar among the three lower vegetation types, ranging from 5 ± 2 to 3 ± 1 g TN m−2 y−1, and peaked at S. maritimus salt marsh with 7 ± 1 g TN m−2 y−1. The contribution of allochthonous sources to the sedimentary organic matter decreased with elevation, from 72% in C. prolifera to 33% at S. maritimus. Our results highlight the need of using habitat-specific OC and TN stocks and burial rates to improve our ability to predict OC and TN sequestration capacity of vegetated coastal habitats at the seascape level. We also demonstrated that the stocks and burial rates in C. prolifera habitats were within the range of well-accepted blue carbon ecosystems such as seagrass meadows and salt marshes.

  相似文献   

6.
An in vitro regeneration system was developed in cowpea [Vigna unguiculata (L.) Walp.] Blackeye. Among several explants studied, shoot initiation response was observed from shoot apices of 3–5-day-old seedlings. The optimal medium for maximum shoot initiation comprised MS salts, B5 vitamins, 8.88 μM N 6-benzylaminopurine, 1 gl-1 casein hydrolysate, 342 μM L-glutamine, 3% sucrose, 0.3% phytagel, adjusted to pH 5.8. A shift in pH from 5.8 to 7.0 had no effect on shoot initiation and on number of shoots per explant. The highest shoot initiation frequency (77%) was obtained using this preferred medium, reaching a maximum of eight shoots per explant. For shoot elongation, 14 μM gibberellic acid was supplemented in the shoot initiation medium. Presence of indolebutyric acid in the rooting medium had no effect on root induction. The regenerated plants were fertile and developed normally.  相似文献   

7.

The thermal ecosystems, including geothermal springs, are proving to be source of thermophiles able to produce extracellular polysaccharides (EPSs). Among the sixteen thermophilic bacilli isolated from sediment sampled from Arzakan geothermal spring, Armenia, two best EPSs producer strains were identified based on 16S rRNA gene sequence analysis and phenotypic characteristics, and designated as Geobacillus thermodenitrificans ArzA-6 and Geobacillus toebii ArzA-8 strains. EPSs production was investigated under different time, temperature and culture media’s composition. The highest specific EPSs production yield (0.27 g g−1 dry cells and 0.22 g g−1 dry cells for strains G. thermodenitrificans ArzA-6 and G. toebii ArzA-8, respectively) was observed after 24 h when fructose was used as sole carbon source at 65 °C and pH 7.0. Purified EPSs displayed a high molecular mass: 5 × 105 Da for G. thermodenitrificans ArzA-6 and 6 × 105 Da for G. toebii ArzA-8. Chemical composition and structure of the biopolymers, determined by GC–MS, HPAE-PAD and NMR, showed that both the two EPSs are heteropolymers composed by mannose as major monomer unit. Optical rotation values [α] 25 °CD of the two EPSs (2 mg ml−1 H2O) were − 142,135 and − 128,645 for G. thermodenitrificans ArzA-6 and G. toebii ArzA-8, respectively.

  相似文献   

8.
Fluorescent indicators of Na+ are valuable tools for nondestructive monitoring of its spatial and temporal distribution in plants. We tested whether CoroNa Green fluorescent dye, a newly developed sodium indicator, is suitable for measuring relative concentrations in planta. To determine the ideal conditions for its use, we incubated NaCl-pretreated Arabidopsis thaliana seedlings with different concentrations of CoroNa Green and visualized fluorescence in each organ with a fluorescein isothiocyanate filter. When 50 μM of dye was applied, fluorescence was distributed more uniformly and intensely in the root tips than in other tissues. Under those conditions, fluorescence gradually increased in the root tips when Na+ was bound to CoroNa Green for concentrations up to 100 mM NaCl. Confocal fluorescence microscopy revealed that when Arabidopsis seedlings were incubated with the same concentration of NaCl, the sos1 mutant had much stronger fluorescence than the wild type. This report is the first to describe the properties of CoroNa Green for measuring Na+ content in intact plants and demonstrates the usefulness of this technique for investigating the mechanism of Na+ homeostasis.  相似文献   

9.
Zhang  Yue  An  Yanhuang  Yang  Ning  Wang  Wei  Liu  Ruirui  Gao  Run  Zhou  Yaping 《Journal of Plant Growth Regulation》2022,41(3):1174-1186

Oridonin is a diterpenoid isolated from medicinal herb Rabdosia rubescens (Hemsl.) Hara (Lamiaceae), which has an allelopathic effect on plants. Phospholipase C (PLC1) and hydrogen peroxide (H2O2) are involved in many biotic or abiotic stress responses. Using the 16-day-old seedlings of Arabidopsis thaliana ecotype (WT) and PLC1-deficient mutant (plc1) as materials (treated with 10 μM or 60 μM oridonin for 72 h), the effect of oridonin on root growth regulating by PLC1 and H2O2 was investigated. The results showed that the promoting of root growth was about 6.9% at 10 μmol L?1 oridonin and the inhibiting of root growth was about 19.73% at 60 μmol L?1 oridonin in WT, the inhibiting of root growth was about 10.5% and 41.2% at 10 mol L?1 and 60 mol L?1 oridonin, respectively, in plc1. The expression of ARR1, ARR12, and AHK3 was promoted at low concentrations of oridonin and inhibited at high concentrations in WT, whereas the expression of ARR1 and ARR12 was inhibited with the increase of oridonin concentration in plc1. This suggested that PLC1 was involved in the root growth regulation of oridonin. H2O2 was promoted by oridonin with concentration dependence pattern in root cells. Oridonin increased the activity of antioxidant enzymes in both WT and plc1, but the activity of antioxidant enzymes in plc1 was lower than WT. This indicated that PLC1 involved in the activation of antioxidant enzymes promoted by the oridonin. Exogenous CaCl2 facilitated the accumulation of H2O2 in both WT and plc1. And the H2O2 of WT was obviously higher than that of plc1. The root growth of WT was inhibited by CaCl2 with the increase of oridonin. However, there is no effect of CaCl2 on the root growth in plc1. This reflected that PLC1 positively involved in the regulation of Ca2+ on the H2O2 and the inhibition effect of Ca2+ on the root growth under oridonin treatment. PA promoted the H2O2 and suppressed the root growth under oridonin treatment in both WT and plc1. In plc1, PA facilitated the root growth with no oridonin and inhibited the root growth with the increase of oridonin. This reflected that PLC1 positively regulated the promotion effect of PA on the root growth under high oridonin treatment. PLC1 mediated oridonin (10 and 60 mol L?1) to regulate H2O2 levels in A. thaliana seedlings, thereby regulating root tip cell morphology and mitosis. These results demonstrated that PLC1 mediated the low-promotion and high-inhibition effect of oridonin on the root growth in A. thaliana by regulating the concentrations of Ca2+ and PA, and further affecting the intracellular H2O2 level.

  相似文献   

10.

The present study evaluated 13 strains of yeast for ethanol and xylitol production from xylose. Among them, Spathaspora hagerdaliae UFMG-CM-Y303 produced ethanol yields (YP/S) of 0.25 g g− 1 and 0.39 g g− 1 under aerobic and microaerophilic conditions, respectively, from a mixture of glucose and xylose in flasks. A pH of 5.0 and an inoculum of 3.0 × 108 cells mL− 1r resulted in the highest ethanol yields. These conditions were tested in a bioreactor for fermenting a medium containing an enzymatic hydrolysate of sugarcane bagasse with 15.5 g L− 1 of glucose and 3 g L− 1 of xylose, and achieved a YP/S of 0.47 g g− 1, in relation to total available sugar. These results suggest that S. hagerdaliae UFMG-CM-Y303 has potential for use in second-generation ethanol studies.

  相似文献   

11.

Phellodendron chinense Schneid is an important Chinese herb with berberine and phellodendrine in stems and leaves, but with little information available on in vitro culture of this species. Disinfection of explants in 75% alcohol for 45 s, sterilization in 0.1% HgCl2 for 20 min, and submersion in 1.0 mol L−1 gibberellin3 (GA3) solution for 24 h was the optimal condition for seed germination. Murashige and Skoog’s (MS) medium supplemented with 2.0 mg L−1 6-benzylaminopurine (6-BA) in combination with 1.5 mg L−1 1-naphthylacetic acid (NAA) was optimal for callus induction. MS medium supplemented with 2.0 mg L−1 6-BA was the appropriate medium for induction of adventitious shoots, and 1/2MS medium supplemented with 2.0 mg L−1 indole-3-butytric acid (IBA) and 0.5% active carbon was the optimal medium for root induction. The 15-d survival rate of regenerated plantlets after transplanting to basins containing perlite and peat moss (1:4) was greater than 80%, and the berberine and phellodendrine accumulation was lower in callus compared with regenerated plantlets. The establishment of highly efficient regeneration system provides technical support for genetic breeding of Phellodendron chinense Schneid.

  相似文献   

12.

Echinodorus ‘Indian Red’ is an underwater plant, used worldwide for aquarium ornamentation. An efficient method for in vitro propagation and plantlet acclimatization of this popular aquarium plant was standardized. Surface-disinfected shoot-tips were cultured in submerged conditions in a solid–liquid bilayer medium, consisting of an upper, liquid layer (sterile distilled water) and a lower, solid layer Murashige and Skoog (MS) basal medium supplemented with 3.0% (w/v) sucrose, 0.8% (w/v) agar-agar, and plant growth regulators (PGRs) in different combinations and concentrations. The combination of 2.5 mg L−1 6-benzylaminopurine and 1.0 mg L−1 α-naphthaleneacetic acid improved the multiplication rate to a maximum of 26.8 ± 0.51 shoots per explant after 60 d of culture. The number of multiplied shoots increased with each regeneration cycle, thus from only 26.8 ± 0.51 shoots per explant (first regeneration cycle), this number increased to 33.5 ± 0.58 (second regeneration cycle), and to 38.3 ± 0.62 for the third regeneration cycle with the same medium composition. The highest number of roots (8.3 ± 0.28) per shoot was induced in the presence of 1.0 mg L−1 indole-3-butyric acid, but further growth of these roots was stunted. The best rooting was achieved on PGR-free ½-strength MS medium, where 6.1 ± 0.21 roots per shoot were induced with 5.8 ± 0.35 cm length after 30 d of culture. The regenerated plantlets were successfully acclimatized to submerged underwater conditions, with 100% survival rate. The present protocol is suitable for the commercial propagation of Echinodorus ‘Indian Red’ for aquarium-industries.

  相似文献   

13.
Pseudomonas putida can be used as a host for the autotransporter-mediated surface display of enzymes (autodisplay), resulting in whole-cell biocatalysts with recombinant functionalities on their cell envelope. The efficiency of autotransporter-mediated secretion depends on the N-terminal signal peptide as well as on the C-terminal translocator domain of autotransporter fusion proteins. We set out to optimize autodisplay for P. putida as the host bacterium by comparing different signal peptides and translocator domains for the surface display of an esterase. The translocator domain did not have a considerable effect on the activity of the whole-cell catalysts. In contrast, by using the signal peptide of the P. putida outer membrane protein OprF, the activity was more than 12-fold enhanced to 638 mU ml−1 OD−1 compared with the signal peptide of V. cholerae CtxB (52 mU ml−1 OD−1). This positive effect was confirmed with a β-glucosidase as a second example enzyme. Here, cells expressing the protein with N-terminal OprF signal peptide showed more than fourfold higher β-glucosidase activity (181 mU ml−1 OD−1) than with the CtxB signal peptide (42 mU ml−1 OD−1). SDS-PAGE and flow cytometry analyses indicated that the increased activities correlated with an increased amount of recombinant protein in the outer membrane and a higher number of enzymes detectable on the cell surface.  相似文献   

14.
Priming is a technique used to improve seedling establishment of direct-seeded crops such as onion and carrot, resulting in a quick and uniform emergence. This work investigated the application of four selected beneficial microorganisms (Pseudomonas chlororaphis MA342, Pseudomonas fluorescens CHA0, Clonostachys rosea IK726d11 and Trichoderma harzianum T22) to onion and carrot seed during drum priming, and their subsequent survival and establishment in the rhizosphere once the seed was planted. Different application rates of fungi (7 log10 cfu g−1 dry seed) and bacteria (6 log10 cfu g−1 dry seed) were required on onion to achieve the end target of 5 log10 cfu g−1 dry seed, whereas a lower rate (5 log10 cfu g−1 dry seed for both bacteria and fungi) was successful on carrot. Microorganism-treated seed was planted in soil in the glasshouse and root and rhizosphere soil samples were taken at 2, 4 and 8 weeks post-planting. All seed-applied microorganisms were recovered throughout the experiment, although differences in the survival patterns were seen. The bacterial isolates declined in number over time, with P. fluorescens CHA0 showing better overall survival than P. chlororaphis MA342, particularly on the roots and in the rhizosphere soil of carrot. In contrast to the bacteria, the fungal isolate C. rosea IK726d11 showed good survival on both onion and carrot, and increased significantly in number throughout the 8-week period. Trichoderma harzianum T22 remained relatively constant in number throughout the experiment, but showed better survival on carrot than onion roots. Similar results were found in three different soil-types.  相似文献   

15.
In this study, the effects of cadmium chloride (CdCl2) on plant growth, histology of roots, photosynthetic pigments content, δ-aminolevulinic acid dehydratase (ALA-D; E.C. 4.2.1.24) and acid phosphatase activities (AP; E.C. 3.1.3.2), soluble phosphorus (Pi) measurement and mineral nutrients content in cucumber seedlings (Cucumis sativus L.) were investigated. Cucumber seedlings were grown in vitro in an agar-solidified substrate containing four CdCl2 treatments (0, 100, 400, and 1000 μM) for ten days. Cd was readily absorbed by seedlings and its content was greater in the roots than in the shoot. Cd reduced shoot and root length, and fresh and dry biomass of seedlings. Inhibition of root cell elongation in Cd-treated seedlings was observed by the increase of the mean radial size of cells belonging to three zones of the root tip. The highest level of Cd reduced in a similar manner chlorophyll a, chlorophyll b and total chlorophyll contents. Increasing concentrations of Cd resulted in a linear decrease in carotenoids levels of cotyledons. Interestingly, the ALA-D activity in cotyledons was inhibited only at the highest level of Cd. Root and shoot AP activities were, respectively, activated and inhibited at all CdCl2 concentrations. Root Pi concentration was increased in all Cd treatments and it was not altered in the shoot tissues. Moreover, in general, the nutrient contents were increased in the root and decreased in the shoot. Therefore, we suggest that Cd affects negatively growth, photosynthetic pigments, ALA-D and AP activities and partition of mineral nutrients in cucumber seedlings.  相似文献   

16.

Nitrogen (N) inputs from atmospheric deposition can increase soil organic carbon (SOC) storage in temperate and boreal forests, thereby mitigating the adverse effects of anthropogenic CO2 emissions on global climate. However, direct evidence of N-induced SOC sequestration from low-dose, long-term N addition experiments (that is, addition of < 50 kg N ha−1 y−1 for > 10 years) is scarce worldwide and virtually absent for European temperate forests. Here, we examine how tree growth, fine roots, physicochemical soil properties as well as pools of SOC and soil total N responded to 20 years of regular, low-dose N addition in two European coniferous forests in Switzerland and Denmark. At the Swiss site, the addition of 22 kg N ha−1 y−1 (or 1.3 times throughfall deposition) stimulated tree growth, but decreased soil pH and exchangeable calcium. At the Danish site, the addition of 35 kg N ha−1 y−1 (1.5 times throughfall deposition) impaired tree growth, increased fine root biomass and led to an accumulation of N in several belowground pools. At both sites, elevated N inputs increased SOC pools in the moderately decomposed organic horizons, but decreased them in the mineral topsoil. Hence, long-term N addition led to a vertical redistribution of SOC pools, whereas overall SOC storage within 30 cm depth was unaffected. Our results imply that an N-induced shift of SOC from older, mineral-associated pools to younger, unprotected pools might foster the vulnerability of SOC in temperate coniferous forest soils.

  相似文献   

17.

Seed germination is the critical initial phase in the life cycle of plant and it is affected by various exogenous factors, including heavy metals. Seed germination and subsequent seedling growth of alfalfa (Medicago sativa L.) incubated in glass Petri dish in presence of elevated concentrations of pentavalent vanadium V(V) solution (0, 0.1, 0.5, 2, 4, 10, 50 mg L−1 V, supplied as NaVO3·2H2O) were evaluated. Results showed that vanadium did not (P > 0.05) affect seed germination, final survival rate, and seedling height of alfalfa when exogenously treated dosages were ≤ 10 mg L−1 V, whereas the root vitality and root elongation were distinctly inhibited at ≥ 0.5 mg L−1 V treatments. A progressively deepened testa color at increasing vanadium concentrations during germination and an apparent modified structure of the seed coat at 50 mg L−1 V compared to control in alfalfa were noted. Alfalfa seeds showed rapid and almost synchronous radicle emergence, independently of the vanadium concentration in the medium. The accumulation of vanadium in testa is beneficial to alleviate its toxicity to the seed germination of alfalfa. Leaf proline content was dramatically increased at ≥ 0.5 mg L−1 V treatments compared with the control. Emerged seedlings displayed enough vigor and health to potentially colonize in the vanadium-contained matrix. Thus, alfalfa represents a good candidate for phytoremediation approach aimed at decontaminating environments when vanadium concentrations are within the determined thresholds.

  相似文献   

18.
19.
In the present study, we examined the effects of long- and short-term hypoxia on net uptake and transport of phosphorus to shoots of pond pine (Pinus serotina Michx.), a moderately flood-tolerant southern pine, and the influence aerenchyma formation might have in maintenance of P uptake and transport. Seedlings were grown under aerobic (250 μM O2) or hypoxic (≤50 μM O2) solution conditions for 5.3 weeks in continuously flowing solution culture containing 100 μM P. Intact seedlings were then labeled with 32P for up to 24 h to determine how short- and long-term hypoxic solution conditions affected rates of unidirectional influx and the accumulation of 32P in roots and shoots. Seedlings in the long-term hypoxic treatment were grown for 5.3 weeks in hypoxic solution and also labeled in hypoxic uptake solution. The short-term hypoxic treatments included a 24-h hypoxic pretreatment followed by time in labeled hypoxic uptake solution for seedlings grown under aerobic or hypoxic conditions; in the latter case, diffusion of atmospheric O2 entry into stem and root collar lenticels was blocked, thus removing any influence that aerenchyma formation might have had on enhancing O2 concentrations of root tissue. Although unidirectional influx rates of 32P in roots of seedlings grown under long-term hypoxic conditions were 1.4 times those of aerobically grown seedlings, accumulation of 32P in roots was similar after 24 h in labeled uptake solution. These results suggest that 32P efflux was also higher under hypoxic conditions. Higher shoot/root fresh weight ratios and lower shoot P concentrations in seedlings grown under hypoxic solution conditions suggest that the “shoot P demand” per unit root should be high. Yet accumulation of 32P in shoots was reduced by 50% after 24 h in hypoxic uptake solution. Both short-term hypoxic treatments decreased accumulation of 32P in roots by more than 50%. Short-term hypoxia decreased shoot accumulation in seedlings grown under aerobic and hypoxic conditions by 84 and 50%. respectively. Short- and long-term hypoxic conditions increased the percentage of root 32P in the nucleic acid and chelated-P pools, resulting in a significantly smaller percentage of 32P in the soluble inorganic phosphate (pi) pool, the pool available for transport to the shoot. However, a reduction in pool size or in labeling of the pool available for transport cannot fully account for the large reduction in accumulation of 32P in shoots, particularly in the short-term hypoxic treatment of aerobically grown seedlings. Our results suggest that both influx and transport of 32P to shoots of pond pine seedlings are O2-dependent processes, and that the transport of 32P to shoots may be more sensitive to hypoxic solution conditions than influx at the cortical and epidermal plasmalemma, with aerenchyma formation supporting a substantial amount of both 32P uptake and transport.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号