首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Reduction in sea ice due to climate change is expected to have a negative impact on habitat availability for Arctic marine fishes and induce range expansion of species from southern environments. Such an effect will likely be observed in the abundance of polar cod, Boreogadus saida (Lepechin, 1774), as well as interspecific interactions of this intermediate-level trophic taxon, particularly in more southerly fringing seas in the Arctic. Polar cod and capelin, Mallotus villosus (Müller, 1776), are pelagic, planktivorous forage fishes, which occupy similar dietary niches and are the primary prey of marine predators. Co-occurring polar cod and capelin were collected at seven stations in Darnley Bay, NT, during August 2013. Standard length (SL), used as a proxy for age, suggested that polar cod (mean ± 1 SD: 71.1 ± 10.3 mm) were predominantly age 1+ and capelin (96.2 ± 13.4 mm) were mostly age 2+. Stomach content analyses indicated that both species feed extensively on calanoid copepods (Calanus hyperboreus, C. glacialis, Metridia longa) and amphipods (Themisto libellula). There was high dietary overlap between capelin and polar cod, evidenced by Schoener’s index (0.80). Additionally the quantity of dietary items, biomass and energetic content consumed differed among size classes in both capelin (SL, 70.5–132.0 mm) and polar cod (SL, 42.1–114.4 mm). This study illustrates that the diets of these sympatric forage fishes in an Arctic ecosystem are very similar, indicating a high potential for interspecific competition as the sub-Arctic capelin expands its range into Arctic regions with climate change.  相似文献   

3.
The current and projected environmental change of the Arctic Ocean contrasts sharply with the limited knowledge of its genetic biodiversity. Polar cod Boreogadus saida (Lepechin, 1774) is an abundant circumpolar marine fish and ecological key species. The central role of polar cod in the Arctic marine food web warrants a better understanding of its population structure and connectivity. In this study, the genetic population structure of 171 juveniles, collected from several fjords off West-Svalbard (Billefjorden, Hornsund and Kongsfjorden), the northern Sophia Basin and the Eurasian Basin of the Arctic Ocean, was analysed using nine DNA microsatellite loci. Genetic analyses indicated moderate to high genetic diversity, but absence of spatial population structure and isolation-by-distance, suggesting ongoing gene flow between the studied sampling regions. High levels of connectivity may be key for polar cod to maintain populations across wide spatial scales. The adaptive capacity of the species will be increasingly important to face challenges such as habitat fragmentation, ocean warming and changes in prey composition. In view of a limited understanding of the population dynamics and evolution of polar cod, a valuable next step to predict future developments should be an integrated biological evaluation, including population genomics, a life-history approach, and habitat and biophysical dispersal modelling.  相似文献   

4.
Fish are critical ecologically and socioeconomically for subsistence economies in the Arctic, an ecosystem undergoing unprecedented environmental change. Our understanding of the responses of nearshore Arctic fishes to environmental change is inadequate because of limited research on the physicochemical drivers of abundance occurring at a fine scale. Here, high‐frequency in situ measurements of pH, temperature, salinity, and dissolved oxygen were paired with daily fish catches in nearshore Alaskan waters of the Beaufort Sea. Due to the threat that climate change poses to high‐latitude marine ecosystems, our main objective was to characterize the abiotic drivers of abundance and elucidate how nearshore fish communities may change in the future. We used generalized additive models (GAMs) to describe responses to the nearshore environment for 18 fish species. Relationships between abundance and the physicochemical environment were variable between species and reflected life history. Each abiotic covariate was significant in at least one GAM, exhibiting both nonlinear and linear associations with abundance. Temperature was the most important predictor of abundance and was significant in GAMs for 11 species. Notably, pH was a significant predictor of abundance for six species: Arctic cod (Boreogadus saida), broad whitefish (Coregonus nasus), Dolly Varden (Salvelinus malma), ninespine stickleback (Pungitius pungitius), saffron cod (Eleginus gracilis), and whitespotted greenling (Hexagrammos stelleri). Broad whitefish and whitespotted greenling abundance was positively associated with pH, while Arctic cod and saffron cod abundance was negatively associated with pH. These results may be a bellwether for future nearshore Arctic fish community change by providing a foundational characterization of the relationships between abundance and the abiotic environment, particularly in regard to pH, and demonstrate the importance of including a wider range of physicochemical habitat covariates in future research.  相似文献   

5.
Climate change and harvesting can affect the ecosystems'' functioning by altering the population dynamics and interactions among species. Knowing how species interact is essential for better understanding potentially unintended consequences of harvest on multiple species in ecosystems. I analyzed how stage‐specific interactions between two harvested competitors, the haddock (Melanogrammus aeglefinus) and Atlantic cod (Gadus morhua), living in the Barents Sea affect the outcome of changes in the harvest of the two species. Using state‐space models that account for observation errors and stochasticity in the population dynamics, I run different harvesting scenarios and track population‐level responses of both species. The increasing temperature elevated the number of larvae of haddock but did not significantly influence the older age‐classes. The nature of the interactions between both species shifted from predator‐prey to competition around age‐2 to ‐3. Increased cod fishing mortality, which led to decreasing abundance of cod, was associated with an increasing overall abundance of haddock, which suggests compensatory dynamics of both species. From a stage‐specific approach, I show that a change in the abundance in one species may propagate to other species, threatening the exploited species'' recovery. Thus, this study demonstrates that considering interactions among life history stages of harvested species is essential to enhance species'' co‐existence in harvested ecosystems. The approach developed in this study steps forward the analyses of effects of harvest and climate in multi‐species systems by considering the comprehension of complex ecological processes to facilitate the sustainable use of natural resources.  相似文献   

6.
Oceans are experiencing increasing acidification in parallel to a distinct warming trend in consequence of ongoing climate change. Rising seawater temperatures are mediating a northward shift in distribution of Atlantic cod (Gadus morhua), into the habitat of polar cod (Boreogadus saida), that is associated with retreating cold water masses. This study investigates the competitive strength of the co-occurring gadoids under ocean acidification and warming (OAW) scenarios. Therefore, we incubated specimens of both species in individual tanks for 4 months, under different control and projected temperatures (polar cod: 0, 3, 6, 8 °C, Atlantic cod: 3, 8, 12, 16 °C) and PCO2 conditions (390 and 1170 µatm) and monitored growth, feed consumption and standard metabolic rate. Our results revealed distinct temperature effects on both species. While hypercapnia by itself had no effect, combined drivers caused nonsignificant trends. The feed conversion efficiency of normocapnic polar cod was highest at 0 °C, while optimum growth performance was attained at 6 °C; the long-term upper thermal tolerance limit was reached at 8 °C. OAW caused only slight impairments in growth performance. Under normocapnic conditions, Atlantic cod consumed progressively increasing amounts of feed than individuals under hypercapnia despite maintaining similar growth rates during warming. The low feed conversion efficiency at 3 °C may relate to the lower thermal limit of Atlantic cod. In conclusion, Atlantic cod displayed increased performance in the warming Arctic such that the competitive strength of polar cod is expected to decrease under future OAW conditions.  相似文献   

7.
The thermal sensitivity of Arctic fish species is poorly understood, yet such data are a critical component of forecasting and understanding ecosystem impacts of climate change. In this study, we experimentally measured temperature-dependent growth and routine swim activity in the juvenile stage of two Arctic gadids (Arctic cod, Boreogadus saida and saffron cod, Eleginus gracilis) and two North Pacific gadids (walleye pollock, Gadus chalcogrammus and Pacific cod, Gadus macrocephalus) over a 6-week growth period across five temperatures (0, 5, 9, 16 and 20 °C). Arctic cod demonstrated a cold-water, stenothermic response in that there was relatively high growth at 0 °C (0.73 % day?1), near-maximal growth at 5 °C (1.35 % day?1) and negative impacts on activity, growth and survival at 16 °C. In contrast, saffron cod demonstrated a warmer-water, eurythermic response, and temperature had a positive effect on growth and condition beyond 16 °C. However, despite these distinct thermal responses, walleye pollock and Pacific cod grew 2–3 times faster than Arctic gadids across a relatively broad temperature range above 5 °C. These results, coupled with possible northward expansion by both Pacific cod and walleye pollock, suggest Arctic cod are highly vulnerable to continued climate change in the Arctic, especially in coastal areas of the Beaufort and Chukchi Seas where temperatures already exceed 14 °C in the summer growth period.  相似文献   

8.
Arctic and boreal/temperate species are likely to be evolutionary adapted to different light regimes. Currently, the boreal/temperate Atlantic cod (Gadus morhua) is coexisting with the native polar cod (Boreogadus saida) in the Arctic waters around Svalbard, Norway. Here, we studied light/dark adaptative optical plasticity of their eye lenses by exposing fish to bright light during the polar night. Schlieren photography, high-definition laser scanning and ray tracing were used to determine the optical properties of excised crystalline lenses. Both species have multifocal lenses, an optical adaptation for improved color vision. In polar cod, the optical properties of the lens were independent of light exposure. In the more southern Atlantic cod, the optical properties of the lens changed within hours upon exposure to light, even after months of darkness. Such fast optical adjustment has previously only been shown in a tropical cichlid. During the polar night the Atlantic cod lens seems to be unregulated and dysfunctional since it had an unsuitable focal length and severe spherical aberration. We present a system, to our knowledge unique, for studying visual plasticity on different timescales in relation to evolutionary history and present the first study on the polar cod visual system.  相似文献   

9.
Although the Arctic cod (Boreogadus saida) has a pan-Arctic distribution, little is known about its occurrence in near-shore waters where this species is the principal prey for seabirds, marine mammals and other fish. Published research describes the scyphomedusa Cyanea capillata as an Arctic cod predator, and this paper presents observations from long-term investigations using active hydroacoustics that suggest the Arctic cod avoided C. capillata in two small bays of Cornwallis Island (Canadian High Arctic archipelago). Distribution patterns in echograms suggested that features such as boundary layer fronts restricted jellyfish movements and Arctic cod were often abundant on the side of fronts where C. capillata were absent. Thus, habitat partitioning allowed Arctic cod to share habitat with its predator, albeit exceptions to this sharing occurred when jellyfish abundance was high and Arctic cod were displaced. Thus, if a warmer Arctic triggers an increase in C. capillata abundance, it is possible that small-scale aspects of Arctic cod distribution could be affected. This in turn could have significant ripple effects within the Arctic food web, an additional and previously unrecognized consequence of climate change.  相似文献   

10.
1. Global change models predict the greatest impact in climate to occur in the northern polar region. Change in temperature will alter individual metabolism and has the potential to change community structure to an unknown degree.
2. The temperature-dependent energy budget of Arctic Daphnia middendorffiana was investigated by measuring respiration rates, ingestion rates and assimilation rates. The scope for growth and reproduction was determined and compared with data from the literature for a clone of Daphnia pulicaria collected in the temperate zone.
3. A difference was observed between the Arctic species and the temperate zone clone in both temperature tolerance, and the energy available for growth and reproduction at various temperatures. A low availability of energy for growth and reproduction indicated that life history patterns as well as physiological mechanisms are important in allowing D. middendorffiana to exist successfully in Arctic environments.
4. The lower available energy for growth compared to Daphnia clones from temperate zones may be detrimental to D. middendorffiana , which might have to compete with species expanding their range under the predicted temperature increase for Arctic regions.  相似文献   

11.
Polar cod (Boreogadus saida) is considered a key species in the Arctic marine ecosystems. Yet detailed or even basic knowledge regarding its biology and adaptations, especially during the polar night, is in many cases poor. Data are presently unavailable in Western literature on the gonad development of polar cod and its reproductive biology in wild specimens. Accordingly, gonad development of wild-caught polar cod from fjords of the Svalbard archipelago was studied across seasons (April, August, September, November and January). Histological analyses of polar cod showed strong indication of a group-synchronous oocyte development with determinate fecundity and iteroparity. Females started gonadal development prior to April and had not yet reached the final stage of maturation in January. Testes matured more rapidly, with males ready to spawn in January. Furthermore, our data show that polar cod were able to reach sexual maturity at age 1+. Based on our data and previous reports, we hypothesise that polar cod is a total spawner.  相似文献   

12.
During a recent period of increased influx of warm Atlantic water to the western coast of Svalbard, we have observed a northward expansion of boreal Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) into areas dominated by the native polar cod (Boreogadus saida). To determine the potential impact of new ecological interactions, we studied the diet of co-occurring juvenile gadoids in fjords, open water, and sea ice around Svalbard. We also reviewed the available literature on polar cod feeding in different habitats across the Arctic to determine whether region, habitat, or fish size may influence diet. Feeding by polar cod in the pelagic zone was size dependent, with small fish primarily consuming Calanus spp. and smaller copepods, with an increasing ration of Themisto spp. at larger sizes. In benthic habitats, diets were more varied and included considerably more unidentified material and sediment. Less than 40% dietary overlap was detected among the three species when they were found together. Stable isotope analyses indicated these patterns were representative of longer-term assimilation. The low interspecific dietary overlap suggests little direct competition. Future increases in abundance and the high predation potential of the boreal taxa, however, may impact the persistence of polar cod on some Arctic shelves.  相似文献   

13.
In the Arctic Ocean, sea-ice habitats are undergoing rapid environmental change. Polar cod (Boreogadus saida) is the most abundant fish known to reside under the pack-ice. The under-ice distribution, association with sea-ice habitat properties and origins of polar cod in the central Arctic Ocean, however, are largely unknown. During the RV Polarstern expedition ARK XXVII/3 in the Eurasian Basin in 2012, we used for the first time in Arctic waters a Surface and Under Ice Trawl with an integrated bio-environmental sensor array. Polar cod was ubiquitous throughout the Eurasian Basin with a median abundance of 5000 ind. km?2. The under-ice population consisted of young specimens with a total length between 52 and 140 mm, dominated by 1-year-old fish. Higher fish abundance was associated with thicker ice, higher ice coverage and lower surface salinity, or with higher densities of the ice-amphipod Apherusa glacialis. The fish were in good condition and well fed according to various indices. Back-tracking of the sea-ice indicated that sea-ice sampled in the Amundsen Basin originated from the Laptev Sea coast, while sea-ice sampled in the Nansen Basin originated from the Kara Sea. Assuming that fish were following the ice drift, this suggests that under-ice polar cod distribution in the Eurasian Basin is dependent on the coastal populations where the sea-ice originates. The omnipresence of polar cod in the Eurasian Basin, in a good body condition, suggests that the central Arctic under-ice habitats may constitute a favourable environment for this species survival, a potential vector of genetic exchange and a recruitment source for coastal populations around the Arctic Ocean.  相似文献   

14.
Rising temperatures are predicted to melt all perennial ice cover in the Arctic by the end of this century, thus opening up suitable habitat for temperate and subarctic species. Canopy‐forming seaweeds provide an ideal system to predict the potential impact of climate‐change on rocky‐shore ecosystems, given their direct dependence on temperature and their key role in the ecological system. Our primary objective was to predict the climate‐change induced range‐shift of Fucus distichus, the dominant canopy‐forming macroalga in the Arctic and subarctic rocky intertidal. More specifically, we asked: which Arctic/subarctic and cold‐temperate shores of the northern hemisphere will display the greatest distributional change of Fdistichus and how will this affect niche overlap with seaweeds from temperate regions? We used the program MAXENT to develop correlative ecological niche models with dominant range‐limiting factors and 169 occurrence records. Using three climate‐change scenarios, we projected habitat suitability of Fdistichus – and its niche overlap with three dominant temperate macroalgae – until year 2200. Maximum sea surface temperature was identified as the most important factor in limiting the fundamental niche of Fdistichus. Rising temperatures were predicted to have low impact on the species' southern distribution limits, but to shift its northern distribution limits poleward into the high Arctic. In cold‐temperate to subarctic regions, new areas of niche overlap were predicted between Fdistichus and intertidal macroalgae immigrating from the south. While climate‐change threatens intertidal seaweeds in warm‐temperate regions, seaweed meadows will likely flourish in the Arctic intertidal. Although this enriches biodiversity and opens up new seaweed‐harvesting grounds, it will also trigger unpredictable changes in the structure and functioning of the Arctic intertidal ecosystem.  相似文献   

15.
Life strategy, ecophysiology and ecology of seaweeds in polar waters   总被引:1,自引:0,他引:1  
Polar seaweeds are strongly adapted to the low temperatures of their environment, Antarctic species more strongly than Arctic species due to the longer cold water history of the Antarctic region. By reason of the strong isolation of the Southern Ocean the Antarctic marine flora is characterized by a high degree of endemism, whereas in the Arctic only few endemic species have been found so far. All polar species are strongly shade adapted and their phenology is finely tuned to the strong seasonal changes of the light conditions. The paper summarises the present knowledge of seaweeds from both polar regions with regard to the following topics: the history of seaweed research in polar regions; the environment of seaweeds in polar waters; biodiversity, biogeographical relationships and vertical distribution of Arctic and Antarctic seaweeds; life histories and physiological thallus anatomy; temperature demands and geographical distribution; light demands and depth zonation; the effect of salinity, temperature and desiccation on supra-and eulittoral seaweeds; seasonality of reproduction and the physiological characteristics of microscopic developmental stages; seasonal growth and photosynthesis; elemental and nutritional contents and chemical and physical defences against herbivory. We present evidence to show that specific characteristics and adaptations in polar seaweeds help to explain their ecological success under environmentally extreme conditions. In conclusion, as a perspective and guide for future research we draw attention to many remaining gaps in knowledge. Dedicated to Prof. Dr. Gunter O. Kirst and to Prof. Dr. Klaus Lüning on occasion of their retirement 28. Februar 2006 and 31. March 2006, respectively.  相似文献   

16.
  • Under exploitation and environmental change, it is essential to assess the sensitivity and vulnerability of marine ecosystems to such stress. A species' response to stress depends on its life history. Sensitivity to harvesting is related to the life history “fast–slow” continuum, where “slow” species (i.e., large, long lived, and late maturing) are expected to be more sensitive to fishing than “fast” ones. We analyze life history traits variation for all common fish species in the Barents Sea and rank fishes along fast–slow gradients obtained by ordination analyses. In addition, we integrate species' fast–slow ranks with ecosystem survey data for the period 2004–2009, to assess life history variation at the community level in space and time. Arctic fishes were smaller, had shorter life spans, earlier maturation, larger offspring, and lower fecundity than boreal ones. Arctic fishes could thus be considered faster than the boreal species, even when body size was corrected for. Phylogenetically related species possessed similar life histories. Early in the study period, we found a strong spatial gradient, where members of fish assemblages in the southwestern Barents Sea displayed slower life histories than in the northeast. However, in later, warmer years, the gradient weakened caused by a northward movement of boreal species. As a consequence, the northeast experienced increasing proportions of slower fish species. This study is a step toward integrating life history traits in ecosystem‐based areal management. On the basis of life history traits, we assess the fish sensitivity to fishing, at the species and community level. We show that climate warming promotes a borealization of fish assemblages in the northeast, associated with slower life histories in that area. The biology of Arctic species is still poorly known, and boreal species that now establish in the Arctic are fishery sensitive, which calls for cautious ecosystem management of these areas.
  相似文献   

17.
Mosses are the dominant plants in polar and boreal regions, areas which are experiencing rapid impacts of regional warming. Long‐term monitoring programmes provide some records of the rate of recent climate change, but moss peat banks contain an unrivalled temporal record of past climate change on terrestrial plant Antarctic systems. We summarise the current understanding of climatic proxies and determinants of moss growth for contrasting continental and maritime Antarctic regions, as informed by 13C and 18O signals in organic material. Rates of moss accumulation are more than three times higher in the maritime Antarctic than continental Antarctica with growing season length being a critical determinant of growth rate, and high carbon isotope discrimination values reflecting optimal hydration conditions. Correlation plots of 13C and 18O values show that species (Chorisodontium aciphyllum / Polytrichum strictum) and growth form (hummock / bank) are the major determinants of measured isotope ratios. The interplay between moss growth form, photosynthetic physiology, water status and isotope composition are compared with developments of secondary proxies, such as chlorophyll fluorescence. These approaches provide a framework to consider the potential impact of climate change on terrestrial Antarctic habitats as well as having implications for future studies of temperate, boreal and Arctic peatlands. There are many urgent ecological and environmental problems in the Arctic related to mosses in a changing climate, but the geographical ranges of species and life‐forms are difficult to track individually. Our goal was to translate what we have learned from the more simple systems in Antarctica, for application to Arctic habitats.  相似文献   

18.
To understand trophic responses of polar cod Boreogadus saida (a key species in Arctic food webs) to changes in zooplankton and benthic invertebrate communities (prey), we compared its stomach contents and body condition between three regions with different environments: the northern Bering Sea (NB), southern Chukchi Sea (SC), and central Chukchi Sea (CC). Polar cod were sampled using a bottom trawl, and their potential prey species in the environment were sampled using a plankton net and a surface sediment sampler. Polar cod fed mainly on appendicularians in the NB and SC where copepods were the most abundant in the environment, while they fed on copepods, euphausiids, and gammarids in the CC where barnacle larvae were the most abundant species in plankton samples on average. The stomach fullness index of polar cod was higher in the NB and SC than CC, while their body condition index did not differ between these regions. The lower lipid content of appendicularians compared to other prey species is the most plausible explanation for this inconsistency.  相似文献   

19.
Climatic changes during the quaternary history in Arctic regions have shaped the genetic variation and genealogies of Arctic species. Several studies have been conducted in recent years on genetic diversity of Arctic organisms, but marine fishes are largely underrepresented in these studies. Here, we present a study on mitochondrial variation in three Arctic gadoids: Arctic cod (Arctogadus glacialis), Greenland cod (Gadus ogac), and Polar cod (Boreogadus saida). In addition, geographic variation in Polar cod is presented. The sequence variation at the mtDNA presents similar patterns as observed for other related marine fishes. Variation in these three species reflects rather different historic processes, due to colonization and climatic changes than differences in life histories. In Polar cod, a deeper genealogy is observed and variation is dependent on both latitude and longitude. The deep genealogy indicates either admixture of separate lineages or a population, which has been stable in size during alternating cold and warm periods of the pleistocene. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
In the warming Arctic, aquatic habitats are in flux and salmon are exploring their options. Adult Pacific salmon, including sockeye (Oncorhynchus nerka), coho (O. kisutch), Chinook (O. tshawytscha), pink (O. gorbuscha) and chum (O. keta) have been captured throughout the Arctic. Pink and chum salmon are the most common species found in the Arctic today. These species are less dependent on freshwater habitats as juveniles and grow quickly in marine habitats. Putative spawning populations are rare in the North American Arctic and limited to pink salmon in drainages north of Point Hope, Alaska, chum salmon spawning rivers draining to the northwestern Beaufort Sea, and small populations of chum and pink salmon in Canada’s Mackenzie River. Pacific salmon have colonized several large river basins draining to the Kara, Laptev and East Siberian seas in the Russian Arctic. These populations probably developed from hatchery supplementation efforts in the 1960’s. Hundreds of populations of Arctic Atlantic salmon (Salmo salar) are found in Russia, Norway and Finland. Atlantic salmon have extended their range eastward as far as the Kara Sea in central Russian. A small native population of Atlantic salmon is found in Canada’s Ungava Bay. The northern tip of Quebec seems to be an Atlantic salmon migration barrier for other North American stocks. Compatibility between life history requirements and ecological conditions are prerequisite for salmon colonizing Arctic habitats. Broad-scale predictive models of climate change in the Arctic give little information about feedback processes contributing to local conditions, especially in freshwater systems. This paper reviews the recent history of salmon in the Arctic and explores various patterns of climate change that may influence range expansions and future sustainability of salmon in Arctic habitats. A summary of the research needs that will allow informed expectation of further Arctic colonization by salmon is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号