共查询到20条相似文献,搜索用时 28 毫秒
1.
Hamaoka T Takechi M Chinen A Nishiwaki Y Kawamura S 《Genesis (New York, N.Y. : 2000)》2002,34(3):215-220
Zebrafish retina contains five morphologically distinct classes of photoreceptors, each expressing a distinct type of opsin gene. Molecular mechanisms underlying specification of opsin expression and differentiation among the cell types are largely unknown. This is partly because mutants affected with expression of a particular class of opsin gene are difficult to find. In this study we established the transgenic lines of zebrafish carrying green fluorescent protein (GFP) gene under the 1.1-kb and 3.7-kb upstream regions of the rod-opsin gene. In transgenic fish, GFP expression initiated and proceeded in the same spatiotemporal pattern with rod-opsin gene. The retinal section from adult transgenic fish showed GFP expression throughout the rod cell layer. These results indicate that the proximal 1.1-kb region is sufficient to drive gene expression in all rod photoreceptor cells. These transgenic fish should facilitate screening of mutants affected specifically with rod-opsin expression or rod cell development by visualization of rod cells by GFP. 相似文献
2.
P Herbomel 《Current biology : CB》1999,9(17):R627-R628
3.
4.
5.
We describe an enhancer trap transgenic zebrafish line, ETvmat2:GFP, in which most monoaminergic neurons are labeled by green fluorescent protein (GFP) during embryonic development. The reporter gene of ETvmat2:GFP was inserted into the second intron of vesicular monoamine transporter 2 (vmat2) gene, and the GFP expression pattern recapitulates that of the vmat2 gene. The GFP positive neurons include the large and pear-shaped tyrosine hydroxylase positive neurons (TH populations 2 and 4) in the posterior tuberculum of ventral diencephalon (PT neurons), which are thought to be equivalent to the midbrain dopamine neurons in mammals. We found that these PT neurons and two other GFP labeled non-TH type neuronal groups, one in the paraventricular organ of the posterior tuberculum and the other in the hypothalamus, were significantly reduced after exposure to MPTP, while the rest of GFP-positive neuronal clusters, including those in telencephalon, pretectum, raphe nuclei and locus coeruleus, remain largely unchanged. Furthermore, we showed that the effects of hedgehog signaling pathway inhibition on the development of monoaminergic neurons can be easily visualized in individual living ETvmat2:GFP embryos. This enhancer trap line should be useful for genetic and pharmacological analyses of monoaminergic neuron development and processes underlying Parkinson's disease. 相似文献
6.
Adult neurogenesis is a widespread trait of vertebrates; however, the degree of this ability and the underlying activity of the adult neural stem cells differ vastly among species. In contrast to mammals that have limited neurogenesis in their adult brains,zebrafish can constitutively produce new neurons along the whole rostrocaudal brain axis throughout its life.This feature of adult zebrafish brain relies on the presence of stem/progenitor cells that continuously proliferate,and the permissive environment of zebrafish brain for neurogenesis. Zebrafish has also an extensive regenerative capacity, which manifests itself in responding to central nervous system injuries by producing new neurons to replenish the lost ones. This ability makes zebrafish a useful model organism for understanding the stem cell activity in the brain, and the molecular programs required for central nervous system regeneration.In this review, we will discuss the current knowledge on the stem cell niches, the characteristics of the stem/progenitor cells, how they are regulated and their involvement in the regeneration response of the adult zebrafish brain. We will also emphasize the open questions that may help guide the future research. 相似文献
7.
Wolfgang Hofmeister Christine A. Devine Brian Key 《Gene expression patterns : GEP》2013,13(3-4):126-132
Axon pathfinding in the neuroepithelium of embryonic brain is dependent on a variety of short and long range guidance cues. Heparan sulfate proteoglycans such as syndecans act as modulators of these cues and their importance in neural development is highlighted by their phylogenetic conservation. In Drosophilia, a single syndecan is present on the surface of axon growth cones and is required for chemorepulsive signalling during midline crossing. Understanding the role of syndecans in the vertebrate nervous system is challenging given that there are four homologous genes, syndecans 1–4. We show here that syndecans 2–4 are expressed in the zebrafish embryonic brain during the major period of axon growth. These genes show differing expression patterns in the brain which provides putative insights into their functional specificity. 相似文献
8.
9.
The brain blood vasculature consists of a highly ramified vessel network that is tailored to meet its physiological functions. How the brain vasculature is formed has long been fascinating biologists. Here we report that the developing vasculature in the zebrafish midbrain undergoes not only angiogenesis but also extensive vessel pruning, which is driven by changes in blood flow. This pruning process shapes the initial exuberant interconnected meshwork into a simplified architecture. Using in vivo long-term serial confocal imaging of the same zebrafish larvae during 1.5-7.5 d post-fertilization, we found that the early formed midbrain vasculature consisted of many vessel loops and higher order segments. Vessel pruning occurred preferentially at loop-forming segments via a process mainly involving lateral migration of endothelial cells (ECs) from pruned to unpruned segments rather than EC apoptosis, leading to gradual reduction in the vasculature complexity with development. Compared to unpruned ones, pruned segments exhibited a low and variable blood flow, which further decreased irreversibly prior to the onset of pruning. Local blockade of blood flow with micro-bead obstruction led to vessel pruning, whereas increasing blood flow by noradrenergic elevation of heartbeat impeded the pruning process. Furthermore, the occurrence of vessel pruning could be largely predicted by haemodynamics-based numerical simulation of vasculature refinement. Thus, changes of blood flow drive vessel pruning via lateral migration of ECs, leading to the simplification of the vasculature and possibly efficient routing of blood flow in the developing brain. 相似文献
10.
hlx1 is a related homeobox gene expressed in a dynamic spatiotemporal expression pattern during development of the zebrafish brain. The homologues of hlx1, mouse dbx1 and Xenopus Xdbx, are known to play a role in the specification of neurons in the spinal cord. However, the role of these molecules in the brain is less well known. We have used two different approaches to elucidate a putative function for hlx1 in the developing zebrafish brain. Blastomeres were injected with either synthetic hlx1 mRNA in gain-of-function experiments or with antisense morpholino oligonucleotides directed against hlx1 in loss-of-function experiments. Mis-expression of hlx1 produced severe defects in brain morphogenesis as a result of abnormal ventricle formation, a phenotype we referred to as "fused-brain". These animals also showed a reduction in the size of forebrain neuronal clusters as well as abnormal axon pathfinding. hlx1 antisense morpholinos specifically perturbed hindbrain morphogenesis leading to defects in the integrity of the neuroepithelium. While hindbrain patterning was in the most part unaffected there were select disruptions to the expression pattern of the neurogenic gene Zash1B in specific rhombomeres. Our results indicate multiple roles for hlx1 during zebrafish brain morphogenesis. 相似文献
11.
12.
The mechanisms of blood vessel formation have become a subject of enormous scientific and clinical interest. However, it is difficult to visualize the developing vasculature in most living animals due to the ubiquitous and deep localization of vessels within other tissues. The establishment of vascular-specific transgenic zebrafish with fluorescently "tagged" blood vessels has facilitated high-resolution imaging studies of developing blood and lymphatic vessels in vivo. Use of these transgenic lines for genetic and chemical screening, experimental manipulations, and time-lapse imaging has extended our knowledge of how complex networks of vessels assemble in vivo. 相似文献
13.
14.
Ajay B. Chitnis Chetan K. Patel Stennis Kim John Y. Kuwada 《Developmental neurobiology》1992,23(7):845-854
Neurons of the nucleus of the posterior commissure (nuc PC), an identifiable cluster of neurons in the embryonic zebrafish brain, project growth cones ventrally along the posterior commissure to the anterior tegmentum where the PC intersects two longitudinal tracts, the tract of the postoptic commissure (TPOC) and the medial longitudinal fasciculus (MLF). Once at the intersection, nuc PC growth cones turn posteriorly onto the TPOC in the dorsal tegmentum and follow it to the hindbrain. Previously we showed that in the absence of the TPOC, nuc PC growth cones often extended along aberrant path ways suggesting that fasciculation, that is, contact with TPOC axons is an important factor in guiding growth cones along their normal pathway. However, a significant number of nuc PC growth cones also followed their normal pathway suggesting that cues associated with the dorsolateral tegmentum, independent of the TPOC, can also guide nuc PC growth cones. We have now confirmed using electron microscopy that nuc PC growth cones fasciculate with axons in the TPOC. In the absence of the TPOC, the nuc PC growth cones that extend along their normal pathway do so in contact with dorsolateral neuroepithelial cells. This suggests that cues associated with these cells can also guide the nuc PC growth cones. Furthermore, in the absence of the TPOC axons, these growth cones now inappropriately turn onto axons that normally intersect the TPOC near the border of the midbrain and hindbrain, that is, at a second intersection of tracts. This suggests that fasciculation with TPOC axons may also guide nuc PC growth cones in this second region of the brain. © 1992 John Wiley & Sons, Inc. 相似文献
15.
16.
The human brain exhibits notable asymmetries. Little is known about these symmetry deviations; however scientists are beginning to understand them by employing the lateralized zebrafish epithalamus as a model. The zebrafish epithalamus consists of the pineal and parapineal organs and paired habenular nuclei located bilateral to the pineal complex. While zebrafish pineal and parapineal organs arise from a common population of cells, parapineal cells undergo a separate program that allows them to migrate left of the pineal anlage. Studying the processes that lead to brain laterality in zebrafish will allow a better understanding of how human brain laterality is established. 相似文献
17.
Neurons of the nucleus of the posterior commissure (nuc PC), an identifiable cluster of neurons in the embryonic zebrafish brain, project growth cones ventrally along the posterior commissure to the anterior tegmentum where the PC intersects two longitudinal tracts, the tract of the postoptic commissure (TPOC) and the medial longitudinal fasciculus (MLF). Once at the intersection, nuc PC growth cones turn posteriorly onto the TPOC in the dorsal tegmentum and follow it to the hindbrain. Previously we showed that in the absence of the TPOC, nuc PC growth cones often extended along aberrant pathways suggesting that fasciculation, that is, contact with TPOC axons is an important factor in guiding growth cones along their normal pathway. However, a significant number of nuc PC growth cones also followed their normal pathway suggesting that cues associated with the dorsolateral tegmentum, independent of the TPOC, can also guide nuc PC growth cones. We have now confirmed using electron microscopy that nuc PC growth cones fasciculate with axons in the TPOC. In the absence of the TPOC, the nuc PC growth cones that extend along their normal pathway do so in contact with dorsolateral neuroepithelial cells. This suggests that cues associated with these cells can also guide the nuc PC growth cones. Furthermore, in the absence of the TPOC axons, these growth cones now inappropriately turn onto axons that normally intersect the TPOC near the border of the midbrain and hindbrain, that is, at a second intersection of tracts. This suggests that fasciculation with TPOC axons may also guide nuc PC growth cones in this second region of the brain. 相似文献
18.
Poor recovery of neuronal functions is one of the most common healthcare challenges for patients with different types of brain injuries and/or neurodegenerative diseases. Therapeutic interventions face two major challenges: (1) How to generate neurons de novo to replenish the neuronal loss caused by injuries or neurodegeneration (restorative neurogenesis) and (2) How to prevent or limit the secondary tissue damage caused by long-term accumulation of glial cells, including microglia, at injury site (glial scar). In contrast to mammals, zebrafish have extensive regenerative capacity in numerous vital organs, including the brain, thus making them a valuable model to improve the existing therapeutic approaches for human brain repair. In response to injuries to the central nervous system (CNS), zebrafish have developed specific mechanisms to promote the recovery of the lost tissue architecture and functionality of the damaged CNS. These mechanisms include the activation of a restorative neurogenic program in a specific set of glial cells (ependymoglia) and the resolution of both the glial scar and inflammation, thus enabling proper neuronal specification and survival. In this review, we discuss the cellular and molecular mechanisms underlying the regenerative ability in the adult zebrafish brain and conclude with the potential applicability of these mechanisms in repair of the mammalian CNS. 相似文献
19.
20.
Visualization and characterization of interleukin 1 receptors in brain 总被引:14,自引:0,他引:14
W L Farrar P L Kilian M R Ruff J M Hill C B Pert 《Journal of immunology (Baltimore, Md. : 1950)》1987,139(2):459-463
Interleukin 1 (IL 1) is a polypeptide hormone produced by macrophages, keratinocytes, and brain glial cells which acts as a soluble mediator in immunological and inflammatory reactions. Although its best known effect on the central nervous system is its ability to cause fever, it has been found to influence cell growth, food intake, and slow-wave sleep. We have developed a binding assay for 125I-labeled recombinant murine IL 1 and show it to be highly specific. Additionally, affinity cross-linking studies indicate that the rat brain IL 1 receptor has a m.w. of approximately 80,000, which is similar to the previously described recognition molecule on T cells and fibroblasts. Using autoradiographic techniques, we visualized the distribution of 125I-IL 1 binding in sections of fresh frozen rat brain. IL 1 receptors were found to be widespread throughout the brain, forming a distinctive pattern of distribution. Areas especially dense in receptors were typically neuron-rich sites of the brain such as granule cell layer of the dentate gyrus, the pyramidal cell layer of the hippocampus, and the granule cell layer of the cerebellum as well as in the hypothalamus. The pattern of IL 1 receptor distribution indicates the presence of receptors on neuron cell bodies and the localization to numerous discrete brain areas other than those hypothalamic sites involved in temperature regulation, suggesting a broader role for IL 1 in brain functioning than previously recognized. IL 1, derived from local or systemic sources, may function in the brain to coordinate behavioral and neuroendocrine activities with immunological and inflammatory reactions throughout the body. 相似文献