首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
    
Shih JH  Chatterjee N 《Biometrics》2002,58(3):502-509
In case-control family studies with survival endpoint, age of onset of diseases can be used to assess the familial aggregation of the disease and the relationship between the disease and genetic or environmental risk factors. Because of the retrospective nature of the case--control study, methods for analyzing prospectively collected correlated failure time data do not apply directly. In this article, we propose a semiparametric quasi-partial-likelihood approach to simultaneously estimate the effect of covariates on the age of onset and the association of ages of onset among family members that does not require specification of the baseline marginal distribution. We conducted a simulation study to evaluate the performance of the proposed approach and compare it with the existing semiparametric ones. Simulation results demonstrate that the proposed approach has better performance in terms of consistency and efficiency. We illustrate the methodology using a subset of data from the Washington Ashkenazi Study.  相似文献   

3.
Pairwise dependence diagnostics for clustered failure-time data   总被引:1,自引:0,他引:1  
Glidden  David V. 《Biometrika》2007,94(2):371-385
Frailty and copula models specify a parametric dependence structurefor multivariate failure-time data. Estimation of some jointquantities can be highly sensitive to the assumed parametricform, and hence model fit is an important issue. This paperlays out a general diagnostic framework for evaluating and selectingfrailty and copula models. The approach is based on the cumulativesum of residuals that are calculated in bivariate time. Theresiduals reflect the difference between the observed and expectedbivariate association structures. The proposed model-checkingprocess is interpretable with a limiting distribution whichcan be approximated using the bootstrap. Simulations and a dataexample illustrate the practical application of the method.  相似文献   

4.
    
Hougaard P 《Biometrics》1999,55(1):13-22
Survival data stand out as a special statistical field. This paper tries to describe what survival data is and what makes it so special. Survival data concern times to some events. A key point is the successive observation of time, which on the one hand leads to some times not being observed so that all that is known is that they exceed some given times (censoring), and on the other hand implies that predictions regarding the future course should be conditional on the present status (truncation). In the simplest case, this condition is that the individual is alive. The successive conditioning makes the hazard function, which describes the probability of an event happening during a short interval given that the individual is alive today (or more generally able to experience the event), the most relevant concept. Standard distributions available (normal, log-normal, gamma, inverse Gaussian, and so forth) can account for censoring and truncation, but this is cumbersome. Besides, they fit badly because they are either symmetric or right skewed, but survival time distributions can easily be left-skewed positive variables. A few distributions satisfying these requirements are available, but often nonparametric methods are preferable as they account better conceptually for truncation and censoring and give a better fit. Finally, we compare the proportional hazards regression models with accelerated failure time models.  相似文献   

5.
Oakes  David 《Biometrika》2008,95(4):997-1001
Necessary and sufficient conditions for consistency of a simpleestimator of Kendall's tau under bivariate censoring are presented.The results are extended to data subject to bivariate left truncationas well as right censoring.  相似文献   

6.
    
Chatterjee N  Shih J 《Biometrics》2001,57(3):779-786
For modeling correlation in familial diseases with variable ages at onset, we propose a bivariate model that incorporates two types of pairwise association, one between the lifetime risk or the overall susceptibility of two individuals and one between the ages at onset between two susceptible individuals. For estimation, we consider a two-stage estimation procedure similar to that of Shih (1998, Biometrics 54, 1115-1128). We evaluate the properties of the estimators through simulations and compare the performance with that from a bivariate survival model that allows correlation between ages at onset only. We apply the methodology to breast cancer using the kinship data from the Washington Ashkenazi Study. We also discuss potential applications of the proposed method in the area of cure modeling.  相似文献   

7.
8.
End-stage renal disease (commonly referred to as renal failure) is of increasing concern in the United States and many countries worldwide. Incidence rates have increased, while the supply of donor organs has not kept pace with the demand. Although renal transplantation has generally been shown to be superior to dialysis with respect to mortality, very little research has been directed towards comparing transplant and wait-list patients with respect to morbidity. Using national data from the Scientific Registry of Transplant Recipients, we compare transplant and wait-list hospitalization rates. Hospitalizations are subject to two levels of dependence. In addition to the dependence among within-patient events, patients are also clustered by listing center. We propose two marginal methods to analyze such clustered recurrent event data; the first model postulates a common baseline event rate, while the second features cluster-specific baseline rates. Our results indicate that kidney transplantation offers a significant decrease in hospitalization, but that the effect is negated by a waiting time (until transplant) of more than 2 years. Moreover, graft failure (GF) results in a significant increase in the hospitalization rate which is greatest in the first month post-GF, but remains significantly elevated up to 4 years later. We also compare results from the proposed models to those based on a frailty model, with the various methods compared and contrasted.  相似文献   

9.
10.
A popular way to represent clustered binary, count, or other data is via the generalized linear mixed model framework, which accommodates correlation through incorporation of random effects. A standard assumption is that the random effects follow a parametric family such as the normal distribution; however, this may be unrealistic or too restrictive to represent the data. We relax this assumption and require only that the distribution of random effects belong to a class of 'smooth' densities and approximate the density by the seminonparametric (SNP) approach of Gallant and Nychka (1987). This representation allows the density to be skewed, multi-modal, fat- or thin-tailed relative to the normal and includes the normal as a special case. Because an efficient algorithm to sample from an SNP density is available, we propose a Monte Carlo EM algorithm using a rejection sampling scheme to estimate the fixed parameters of the linear predictor, variance components and the SNP density. The approach is illustrated by application to a data set and via simulation.  相似文献   

11.
Copula model generated by Dabrowska's association measure   总被引:1,自引:0,他引:1  
Oakes  David; Wang  Antai 《Biometrika》2003,90(2):478-481
  相似文献   

12.
    
Kang S  Cai J 《Biometrics》2009,65(2):405-414
Summary .  A retrospective dental study was conducted to evaluate the degree to which pulpal involvement affects tooth survival. Due to the clustering of teeth, the survival times within each subject could be correlated and thus the conventional method for the case–control studies cannot be directly applied. In this article, we propose a marginal model approach for this type of correlated case–control within cohort data. Weighted estimating equations are proposed for the estimation of the regression parameters. Different types of weights are also considered for improving the efficiency. Asymptotic properties of the proposed estimators are investigated and their finite sample properties are assessed via simulations studies. The proposed method is applied to the aforementioned dental study.  相似文献   

13.
    
Liang Y  Lu W  Ying Z 《Biometrics》2009,65(2):377-384
Summary .  In analysis of longitudinal data, it is often assumed that observation times are predetermined and are the same across study subjects. Such an assumption, however, is often violated in practice. As a result, the observation times may be highly irregular. It is well known that if the sampling scheme is correlated with the outcome values, the usual statistical analysis may yield bias. In this article, we propose joint modeling and analysis of longitudinal data with possibly informative observation times via latent variables. A two-step estimation procedure is developed for parameter estimation. We show that the resulting estimators are consistent and asymptotically normal, and that the asymptotic variance can be consistently estimated using the bootstrap method. Simulation studies and a real data analysis demonstrate that our method performs well with realistic sample sizes and is appropriate for practical use.  相似文献   

14.
    
Maples JJ  Murphy SA  Axinn WG 《Biometrics》2002,58(4):754-763
We extend the proportional hazards model to a two-level model with a random intercept term and random coefficients. The parameters in the multilevel model are estimated by a combination of EM and Newton-Raphson algorithms. Even for samples of 50 groups, this method produces estimators of the fixed effects coefficients that are approximately unbiased and normally distributed. Two different methods, observed information and profile likelihood information, will be used to estimate the standard errors. This work is motivated by the goal of understanding the determinants of contraceptive use among Nepalese women in the Chitwan Valley Family Study (Axinn, Barber, and Ghimire, 1997). We utilize a two-level hazard model to examine how education and access to education for children covary with the initiation of permanent contraceptive use.  相似文献   

15.
    
Current status data arise due to only one feasible examination such that the failure time of interest occurs before or after the examination time. If the examination time is intrinsically related to the failure time of interest, the examination time is referred to as an informative censoring time. Such data may occur in many fields, for example, epidemiological surveys and animal carcinogenicity experiments. To avoid severely misleading inferences resulted from ignoring informative censoring, we propose a class of semiparametric transformation models with log‐normal frailty for current status data with informative censoring. A shared frailty is used to account for the correlation between the failure time and censoring time. The expectation‐maximization (EM) algorithm combining a sieve method for approximating an infinite‐dimensional parameter is employed to estimate all parameters. To investigate finite sample properties of the proposed method, simulation studies are conducted, and a data set from a rodent tumorigenicity experiment is analyzed for illustrative purposes.  相似文献   

16.
    
Clegg LX  Cai J  Sen PK 《Biometrics》1999,55(3):805-812
In multivariate failure time data analysis, a marginal regression modeling approach is often preferred to avoid assumptions on the dependence structure among correlated failure times. In this paper, a marginal mixed baseline hazards model is introduced. Estimating equations are proposed for the estimation of the marginal hazard ratio parameters. The proposed estimators are shown to be consistent and asymptotically Gaussian with a robust covariance matrix that can be consistently estimated. Simulation studies indicate the adequacy of the proposed methodology for practical sample sizes. The methodology is illustrated with a data set from the Framingham Heart Study.  相似文献   

17.
18.
    
Summary .   A common and important problem in clustered sampling designs is that the effect of within-cluster exposures (i.e., exposures that vary within clusters) on outcome may be confounded by both measured and unmeasured cluster-level factors (i.e., measurements that do not vary within clusters). When some of these are ill/not accounted for, estimation of this effect through population-averaged models or random-effects models may introduce bias. We accommodate this by developing a general theory for the analysis of clustered data, which enables consistent and asymptotically normal estimation of the effects of within-cluster exposures in the presence of cluster-level confounders. Semiparametric efficient estimators are obtained by solving so-called conditional generalized estimating equations. We compare this approach with a popular proposal by Neuhaus and Kalbfleisch (1998, Biometrics 54, 638–645) who separate the exposure effect into a within- and a between-cluster component within a random intercept model. We find that the latter approach yields consistent and efficient estimators when the model is linear, but is less flexible in terms of model specification. Under nonlinear models, this approach may yield inconsistent and inefficient estimators, though with little bias in most practical settings.  相似文献   

19.
20.
Additive hazards model with multivariate failure time data   总被引:2,自引:0,他引:2  
Yin  Guosheng; Cai  Jianwen 《Biometrika》2004,91(4):801-818
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号