首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wiskott-Aldrich syndrome (WAS) is an inherited immune deficiency that is marked by eczema, bleeding and recurrent infections. The lymphocytes and platelets of WAS patients display cytoskeletal abnormalities, and their T lymphocytes show a diminished proliferative response to stimulation through the T-cell receptor-CD3 complex (TCR-CD3). The product of the WAS gene, WAS protein (WASP), binds to the small GTPase Cdc42. Small GTPases of the Rho family are crucial for the regulation of the actin-based cytoskeleton. WASP and its relative NWASP might play an important role in regulating the actin cytoskeleton. Since both WASP and NWASP have the potential to bind to multiple proteins, they might serve as a hub to coordinate the redistribution of many cellular signals to the actin cytoskeleton. In this review, the authors discuss the possible role of WASP/NWASP and of the newly described protein WIP, which interacts with WASP and NWASP, in coupling signals from the T-cell receptor to the actin-based cytoskeleton.  相似文献   

2.
The WASP-WAVE protein network: connecting the membrane to the cytoskeleton   总被引:2,自引:0,他引:2  
Wiskott-Aldrich syndrome protein (WASP) and WASP-family verprolin-homologous protein (WAVE) family proteins are scaffolds that link upstream signals to the activation of the ARP2/3 complex, leading to a burst of actin polymerization. ARP2/3-complex-mediated actin polymerization is crucial for the reorganization of the actin cytoskeleton at the cell cortex for processes such as cell movement, vesicular trafficking and pathogen infection. Large families of membrane-binding proteins were recently found to interact with WASP and WAVE family proteins, therefore providing a new layer of membrane-dependent regulation of actin polymerization.  相似文献   

3.
The Wiskott-Aldrich syndrome protein (WASP) is a product of the gene defective in an Xid disorder, Wiskott-Aldrich syndrome. WASP expression is limited to hemopoietic cells, and WASP regulates the actin cytoskeleton. It has been reported that monocytes/macrophages from WASP-deficient Wiskott-Aldrich syndrome patients are severely defective in chemotaxis, resulting in recurrent infection. However, the molecular basis of such chemotactic defects is not understood. Recently, the WASP N-terminal region was found to bind to the three mammalian verprolin homologs: WASP interacting protein (WIP); WIP and CR16 homologous protein (WICH)/WIP-related protein (WIRE); and CR16. Verprolin was originally found to play an important role in the regulation of actin cytoskeleton in yeast. We have shown that WASP, WIP, and WICH/WIRE are expressed predominantly in the human monocyte cell line THP-1 and that WIP and WICH/WIRE are involved in monocyte chemotaxis. When WASP binding to verprolins was blocked, chemotactic migration of monocytes was impaired in both THP-1 cells and primary human monocytes. Increased expression of WASP and WIP enhanced monocyte chemotaxis. Blocking WASP binding to verprolins impaired cell polarization but not actin polymerization. These results indicate that a complex of WASP with mammalian verprolins plays an important role in chemotaxis of monocytes. Our results suggest that WASP and mammalian verprolins function as a unit in monocyte chemotaxis and that the activity of this unit is critical to establish cell polarization. In addition, our results also indicate that the WASP-verprolin complex is involved in other functions such as podosome formation and phagocytosis.  相似文献   

4.
Regulation of actin dynamics by WASP family proteins   总被引:10,自引:0,他引:10  
Rapid reorganization of the actin cytoskeleton underlies morphological changes and motility of cells. WASP family proteins have received a great deal of attention as the signal-regulated molecular switches that initiate actin polymerization. The first member, WASP, was identified as the product of a gene of which dysfunction causes the human hereditary disease Wiskott-Aldrich syndrome. There are now five members in this protein family, namely WASP, N-WASP, WAVE/Scar1, 2, and 3. WASP and N-WASP have functional and physical associations with Cdc42, a Rho family small GTPase involved in filopodium formation. In contrast, there is evidence that links the WAVE/Scar proteins with another Rho family protein, Rac, which is a regulator of membrane ruffling. All WASP family members have a VCA domain at the C-terminus through which Arp2/3 complex is activated to nucleate actin polymerization. Analyses of model organisms have just begun to reveal unexpected functions of WASP family proteins in multicellular organisms.  相似文献   

5.
Yeast protein, Bee1, exhibits sequence homology to Wiskott-Aldrich syndrome protein (WASP), a human protein that may link signaling pathways to the actin cytoskeleton. Mutations in WASP are the primary cause of Wiskott-Aldrich syndrome, characterized by immuno-deficiencies and defects in blood cell morphogenesis. This report describes the characterization of Bee1 protein function in budding yeast. Disruption of BEE1 causes a striking change in the organization of actin filaments, resulting in defects in budding and cytokinesis. Rather than assemble into cortically associated patches, actin filaments in the buds of Δbee1 cells form aberrant bundles that do not contain most of the cortical cytoskeletal components. It is significant that Δbee1 is the only mutation reported so far that abolishes cortical actin patches in the bud. Bee1 protein is localized to actin patches and interacts with Sla1p, a Src homology 3 domain–containing protein previously implicated in actin assembly and function. Thus, Bee1 protein may be a crucial component of a cytoskeletal complex that controls the assembly and organization of actin filaments at the cell cortex.  相似文献   

6.
Actin nucleation and branching by the Arp2/3 complex is tightly regulated by activating factors. However, the mechanism of Arp2/3 complex activation remains unclear. We used fluorescence resonance energy transfer (FRET) to probe the conformational dynamics of the Arp2/3 complex accompanying its activation. We demonstrate that nucleotide binding promotes a substantial conformational change in the complex, with distinct conformations depending on the bound nucleotide. Nucleotide binding to each Arp is critical for activity and is coupled to nucleation promoting factor (NPF) binding. The binding of Wiskott-Aldrich syndrome protein (WASP) family NPFs induces further conformational reorganization of the Arp2/3 complex, and the ability to promote this conformational reorganization correlates with activation efficiency. Using an Arp2/3 complex that is fused to the actin binding domain of WASP, we confirm that the NPF-induced conformational change is critical for activation, and that the actin and Arp2/3 binding activities of WASP are separable, but are independently essential for activity.  相似文献   

7.
T cell receptor (TCR)-driven activation of helper T cells induces a rapid polarization of their cytoskeleton towards bound antigen presenting cells (APCs). We have identified the Fyn- and SLP-76-associated protein Fyb/SLAP as a new ligand for Ena/ vasodilator-stimulated phosphoprotein (VASP) homology 1 (EVH1) domains. Upon TCR engagement, Fyb/SLAP localizes at the interface between T cells and anti-CD3-coated beads, where Evl, a member of the Ena/VASP family, Wiskott-Aldrich syndrome protein (WASP) and the Arp2/3 complex are also found. In addition, Fyb/SLAP is restricted to lamellipodia of spreading platelets. In activated T cells, Fyb/SLAP associates with Ena/VASP family proteins and is present within biochemical complexes containing WASP, Nck, and SLP-76. Inhibition of binding between Fyb/SLAP and Ena/VASP proteins or WASP and the Arp2/3 complex impairs TCR-dependent actin rearrangement, suggesting that these interactions play a key role in linking T cell signaling to remodeling of the actin cytoskeleton.  相似文献   

8.
9.
Lei M  Lu W  Meng W  Parrini MC  Eck MJ  Mayer BJ  Harrison SC 《Cell》2000,102(3):387-397
The p21-activated kinases (PAKs), stimulated by binding with GTP-liganded forms of Cdc42 or Rac, modulate cytoskeletal actin assembly and activate MAP-kinase pathways. The 2.3 A resolution crystal structure of a complex between the N-terminal autoregulatory fragment and the C-terminal kinase domain of PAK1 shows that GTPase binding will trigger a series of conformational changes, beginning with disruption of a PAK1 dimer and ending with rearrangement of the kinase active site into a catalytically competent state. An inhibitory switch (IS) domain, which overlaps the GTPase binding region of PAK1, positions a polypeptide segment across the kinase cleft. GTPase binding will refold part of the IS domain and unfold the rest. A related switch has been seen in the Wiskott-Aldrich syndrome protein (WASP).  相似文献   

10.
Torres E  Rosen MK 《Molecular cell》2003,11(5):1215-1227
Cells can retain information about previous stimuli to produce distinct future responses. The biochemical mechanisms by which this is achieved are not well understood. The Wiskott-Aldrich syndrome protein (WASP) is an effector of the Rho-family GTPase Cdc42, whose activation leads to stimulation of the actin nucleating assembly, Arp2/3 complex. We demonstrate that efficient phosphorylation and dephosphorylation of WASP at Y291 are both contingent on binding to activated Cdc42. Y291 phosphorylation increases the basal activity of WASP toward Arp2/3 complex and enables WASP activation by new stimuli, SH2 domains of Src-family kinases. The requirement for contingency in both phosphorylation and dephosphorylation enables long-term storage of information by WASP following decay of GTPase signals. This biochemical circuitry allows WASP to respond to the levels and timing of GTPase and kinase signals. It provides mechanisms to specifically achieve transient or persistent actin remodeling, as well as long-lasting potentiation of actin-based responses to kinases.  相似文献   

11.
Members of the Wiskott-Aldrich syndrome protein (WASP) family control actin dynamics in eukaryotic cells by stimulating the actin nucleating activity of the Arp2/3 complex. The prevailing paradigm for WASP regulation invokes allosteric relief of autoinhibition by diverse upstream activators. Here we demonstrate an additional level of regulation that is superimposed upon allostery: dimerization increases the affinity of active WASP species for Arp2/3 complex by up to 180-fold, greatly enhancing actin assembly by this system. This finding explains a large and apparently disparate set of observations under a common mechanistic framework. These include WASP activation by the bacterial effector EspFu and a large number of SH3 domain proteins, the effects on WASP of membrane localization/clustering and assembly into large complexes, and cooperativity between different family members. Allostery and dimerization act in hierarchical fashion, enabling WASP/WAVE proteins to integrate different classes of inputs to produce a wide range of cellular actin responses.  相似文献   

12.
The actin-related protein 2/3 (Arp2/3) complex is the primary nucleator of new actin filaments in most crawling cells. Nucleation-promoting factors (NPFs) of the Wiskott-Aldrich syndrome protein (WASP)/Scar family are the currently recognized activators of the Arp2/3 complex. We now report that the Arp2/3 complex must be phosphorylated on either threonine or tyrosine residues to be activated by NPFs. Phosphorylation of the Arp2/3 complex is not necessary to bind NPFs or the sides of actin filaments but is critical for binding the pointed end of actin filaments and nucleating actin filaments. Mass spectrometry revealed phosphorylated Thr237 and Thr238 in Arp2, which are evolutionarily conserved residues. In cells, phosphorylation of only the Arp2 subunit increases in response to growth factors, and alanine substitutions of Arp2 T237 and T238 or Y202 inhibits membrane protrusion. These findings reveal an additional level of regulation of actin filament assembly independent of WASP proteins, and show that phosphorylation of the Arp2/3 complex provides a logical “or gate” capable integrating diverse upstream signals.  相似文献   

13.
The Wiskott-Aldrich syndrome is an inherited X-linked immunodeficiency characterized by thrombocytopenia, eczema, and a tendency toward lymphoid malignancy. Lymphocytes from affected individuals have cytoskeletal abnormalities, and monocytes show impaired motility. The Wiskott-Aldrich syndrome protein (WASP) is a multi-domain protein involved in cytoskeletal organization. In a two-hybrid screen, we identified the protein Cdc42-interacting protein 4 (CIP4) as a WASP interactor. CIP4, like WASP, is a Cdc42 effector protein involved in cytoskeletal organization. We found that the WASP-CIP4 interaction is mediated by the binding of the Src homology 3 domain of CIP4 to the proline-rich segment of WASP. Cdc42 was not required for this interaction. Co-expression of CIP4 and green fluorescent protein-WASP in COS-7 cells led to the association of WASP with microtubules. In vitro experiments showed that CIP4 binds to microtubules via its NH(2) terminus. The region of CIP4 responsible for binding to active Cdc42 was localized to amino acids 383-417, and the mutation I398S abrogated binding. Deletion of the Cdc42-binding domain of CIP4 did not affect the colocalization of WASP with microtubules in vivo. We conclude that CIP4 can mediate the association of WASP with microtubules. This may facilitate transport of WASP to sites of substrate adhesion in hematopoietic cells.  相似文献   

14.
Chemotactic migration of macrophages is critical for the recruitment of leukocytes to inflamed tissues. Macrophages use a specialized adhesive structure called a podosome to migrate. Podosome formation requires the Wiskott-Aldrich syndrome protein (WASP), which is a product of the gene defective in an X-linked inherited immunodeficiency disorder, the Wiskott-Aldrich syndrome. Macrophages from WASP-deficient Wiskott-Aldrich syndrome patients lack podosomes, resulting in defective chemotactic migration. However, the molecular basis for podosome formation is not fully understood. I have shown that the WASP interacting protein (WIP), a binding partner of WASP, plays an important role in podosome formation in macrophages. I showed that WASP bound WIP to form a complex at podosomes and that the knockdown of WIP impairs podosome formation. When WASP binding to WIP was blocked, podosome formation was also impaired. When WASP expression was reduced by small interfering RNA transfection, the amount of the complex of WASP with WIP decreased, resulting in reduced podosome formation. Podosomes were restored by reconstitution of the WASP-WIP complex in WASP knockdown cells. These results indicate that the WASP-WIP complex is required for podosome formation in macrophages. When podosome formation was reduced by blocking WASP binding to WIP, transendothelial migration of macrophages, the most crucial process in macrophage trafficking, was impaired. These results suggest that a complex of WASP with WIP plays a critical role in podosome formation, thereby mediating efficient transendothelial migration of macrophages.  相似文献   

15.
Actin polymerization at the cell cortex is thought to provide the driving force for aspects of cell-shape change and locomotion. To coordinate cellular movements, the initiation of actin polymerization is tightly regulated, both spatially and temporally. The Wiskott-Aldrich syndrome protein (WASP), encoded by the gene that is mutated in the immunodeficiency disorder Wiskott-Aldrich syndrome [1], has been implicated in the control of actin polymerization in cells [2] [3] [4] [5]. The Arp2/3 complex, an actin-nucleating factor that consists of seven polypeptide subunits [6] [7] [8], was recently shown to physically interact with WASP [9]. We sought to determine whether WASP is a cellular activator of the Arp2/3 complex and found that WASP stimulates the actin nucleation activity of the Arp2/3 complex in vitro. Moreover, WASP-coated microspheres polymerized actin, formed actin tails and exhibited actin-based motility in cell extracts, similar to those behaviors displayed by the pathogenic bacterium Listeria monocytogenes. In extracts depleted of the Arp2/3 complex, WASP-coated microspheres and L. monocytogenes were non-motile and exhibited only residual actin polymerization. These results demonstrate that WASP is sufficient to direct actin-based motility in cell extracts and that this function is mediated by the Arp2/3 complex. WASP interacts with diverse signaling proteins and may therefore function to couple signal transduction pathways to Arp2/3-complex activation and actin polymerization.  相似文献   

16.
Integration of signals to the Arp2/3 complex   总被引:14,自引:0,他引:14  
The Arp2/3 complex is necessary for nucleating the formation of branched networks of actin filaments at the cell cortex, and an increasing number of proteins able to activate the Arp2/3 complex have been described. The Wiskott-Aldrich syndrome protein (WASP) family and cortactin comprise the large majority of the known activators. WASPs bind to Arp2/3 via an acidic (A) domain, and a WH2 domain appears to bring an actin monomer to Arp2/3, promoting the nucleation of the new filament. Cortactin also binds the Arp2/3 complex via an A domain; however, it also binds to actin filaments, which helps activate the Arp2/3 complex and stabilise the newly created branches between the filaments.  相似文献   

17.
WASP family proteins are involved in cortical actin cytoskeleton reorganization. Neural Wiskott-Aldrich syndrome protein (N-WASP), a ubiquitously expressed WASP homologous protein, directly binds with Cdc42, activating Arp2/3 complex. In this study, we show that N-WASP-dependent microspike formation is inhibited by formin binding protein 11 (FBP11). Endogenous FBP11 localizes with nuclear-speckles, and co-localization of N-WASP and FBP11 was observed when they were co-expressed. Epidermal growth factor (EGF) induced actin-microspike formation in COS7 cells. However, transient expression of FBP11 suppressed N-WASP-dependent actin-microspike formation by trapping N-WASP in the nucleus. These results indicate that FBP11 regulates localization of N-WASP, thus negatively regulating the function of N-WASP in the cytoplasm.  相似文献   

18.
WASP (Wiskott-Aldrich syndrome protein) was identified as the gene product whose mutation causes the human hereditary disease Wiskott-Aldrich syndrome. WASP contains many functional domains and has been shown to induce the formation of clusters of actin filaments in a manner dependent on Cdc42. However, there has been no report investigating what domain(s) is(are) important for the function. Here we present for the first time the results of detailed analyses on the domain-function relationship of WASP. First, the C-terminal verprolin-cofilin-acidic domain was shown to be essential for the regulation of actin cytoskeleton. In addition, we found that the clustering of WASP itself is distinct from actin clustering. The partial protein containing the region from the N-terminal pleckstrin homology domain to the basic residue-rich region also clustered especially around the nucleus as wild type WASP without inducing actin clustering. Finally, we obtained the quite unexpected result that a WASP mutant deficient in binding to Cdc42 still induced actin cluster formation, indicating that direct interaction between Cdc42 and WASP is not required for the regulation of actin cytoskeleton. This result may explain why no Wiskott-Aldrich syndrome patients have been identified with a missense mutation in the Cdc42-binding site.  相似文献   

19.
Members of the Wiskott-Aldrich syndrome protein (WASP) family link Rho GTPase signaling pathways to the cytoskeleton through a multiprotein assembly called Arp2/3 complex. The C-terminal VCA regions (verprolin-homology, central hydrophobic, and acidic regions) of WASP and its relatives stimulate Arp2/3 complex to nucleate actin filament branches. Here we show by differential line broadening in NMR spectra that the C (central) and A (acidic) segments of VCA domains from WASP, N-WASP and Scar bind Arp2/3 complex. The C regions of these proteins have a conserved sequence motif consisting of hydrophobic residues and an arginine residue. Point mutations in this conserved sequence motif suggest that it forms an amphipathic helix that is required in biochemical assays for activation of Arp2/3 complex. Key residues in this motif are buried through contacts with the GTPase binding domain in the autoinhibited structure of WASP and N-WASP, indicating that sequestration of these residues is an important aspect of autoinhibition.  相似文献   

20.
The mammalian genome encodes multiple Wiskott-Aldrich syndrome protein (WASP)/WASP-family Verprolin homologous (WAVE) proteins. Members of this family interact with the actin related protein (Arp) 2/3 complex to promote growth of a branched actin network near the plasma membrane or the surface of moving cargos. Arp2/3 mediated branching can further lead to formation of comet tails (actin rockets). Despite their similar domain structure, different WASP/WAVE family members fulfill unique functions that depend on their subcellular location and activity levels. We measured the relative efficiency of actin nucleation promotion of full-length WASP/WAVE proteins in a cytoplasmic extract from primary human umbilical vein endothelial cells (HUVEC). In this assay WAVE2 and WAVE3 complexes showed higher nucleation efficiency than WAVE1 and N-WASP, indicating distinct cellular controls for different family members. Previously, WASP and N-WASP were the only members that were known to stimulate comet formation. We observed that in addition to N-WASP, WAVE3 also induced short actin tails, and the other WAVEs induced formation of asymmetric actin shells. Differences in shape and structure of actin-based growth may reflect varying ability of WASP/WAVE proteins to break symmetry of the actin shell, possibly by differential recruitment of actin bundling or severing (pruning or debranching) factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号