首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytomegalovirus maturational proteinase is synthesized as a precursor that undergoes at least three processing cleavages. Two of these were predicted to be at highly conserved consensus sequences--one near the carboxyl end of the precursor, called the maturational (M) site, and the other near the middle of the precursor, called the release (R) site. A third less-well-conserved cleavage site, called the inactivation (I) site, was also identified near the middle of the human cytomegalovirus 28-kDa assemblin homolog. We have used site-directed mutagenesis to verify all three predicted sequences in the simian cytomegalovirus proteinase, and have shown that the proteinase precursor is active without cleavage at these sites. We have also shown that the P4 tyrosine and the P2 lysine of the R site were more sensitive to substitution than the other R- and M-site residues tested: substitution of alanine for P4 tyrosine at the R site severely reduced cleavage at that site but not at the M site, and substitution of asparagine for lysine at P2 of the R site reduced M-site cleavage and nearly eliminated I-site cleavage but had little effect on R-site cleavage. With the exception of P1' serine, all R-site mutations hindered I-site cleavage, suggesting a role for the carboxyl end of assemblin in I-site cleavage. Pulse-chase radiolabeling and site-directed mutagenesis indicated that assemblin is metabolically unstable and is degraded by cleavage at its I site. Fourteen amino acid substitutions were also made in assemblin, the enzymatic amino half of the proteinase precursor. Among those tested, only 2 amino acids were identified as essential for activity: the single absolutely conserved serine and one of the two absolutely conserved histidines. When the highly conserved glutamic acid (Glu22) was substituted, the proteinase was able to cleave at the M and I sites but not at the R site, suggesting either a direct (e.g., substrate recognition) or indirect (e.g., protein conformation) role for this residue in determining substrate specificity.  相似文献   

2.
The cytomegalovirus (CMV) maturational protease, assemblin, contains an "internal" (I) cleavage site absent from its homologs in other herpesviruses. Blocking this site for cleavage did not prevent replication of the resulting I(-) mutant virus. However, cells infected with the I(-) virus showed increased amounts of a fragment produced by cleavage at the nearby "cryptic" (C) site, suggesting that its replication may bypass the I-site block by using the C site as an alternate cleavage pathway. To test this and further examine the biological importance of these cleavages, we constructed two additional virus mutants-one blocked for C-site cleavage and another blocked for both I- and C-site cleavage. Infectivity comparisons with the parental wild-type virus showed that the I(-) mutant was the least affected for virus production, whereas infectivity of the C(-) mutant was reduced by approximately 40% and when both sites were blocked virus infectivity was reduced by nearly 90%, providing the first evidence that these cleavages have biological significance. We also present and discuss evidence suggesting that I-site cleavage destabilizes assemblin and its fragments, whereas C-site cleavage does not.  相似文献   

3.
Chemical rescue is an established approach that offers a directed strategy for designing mutant enzymes in which activity can be restored by supplying an appropriate exogenous compound. This method has been used successfully to study a broad range of enzymes in vitro, but its application to living systems has received less attention. We have investigated the feasibility of using chemical rescue to make a conditional-lethal mutant of the cytomegalovirus (CMV) maturational protease. The 28-kDa CMV serine protease, assemblin, has a Ser-His-His catalytic triad and an internal (I) cleavage site near its midpoint. We found that imidazole can restore I-site cleavage to mutants inactivated by replacing the critical active site His with Ala or with Gly, which rescued better. Comparable rescue was observed for counterpart mutants of the human and simian CMV assemblin homologs and occurred in both living cells and in vitro. Cleavage was established to be at the correct site by amino acid sequencing and proceeded at approximately 11%/h in bacteria and approximately 30%/h in vitro. The same mutations were unresponsive to chemical rescue in the context of the assemblin precursor, pUL80a. This catalytic difference distinguishes the two forms of the CMV protease.  相似文献   

4.
Herpesviruses encode an essential serine proteinase called assemblin that is responsible for cleaving the precursor assembly protein during the process of capsid formation. In cytomegalovirus (CMV), assemblin undergoes autoproteolysis at an internal (I) site located near the middle of the molecule. I-site cleavage converts the enzyme to an active two-chain form consisting of the subunits An and Ac. We have recently shown that the recombinant An and Ac subunits can spontaneously associate within eukaryotic cells to yield active two-chain proteinase. This finding indicates that the subunits are able to independently assume their correct functional conformations and led us to test whether they are capable of intermolecular complementation. This was done by coexpressing inactive mutant (point, deletion, and insertion) forms of assemblin together with the wild-type subunit (either An or Ac) corresponding to the domain of assemblin that was mutated. Results of these experiments showed that both An and Ac are able to rescue the enzymatic activity of assemblin mutants. I-site cleavage of the mutated assemblin occurred during complementation but was not absolutely required, as shown by effective complementation of inactive assemblins with noncleavable I sites. We have also shown that intermolecular complementation can rescue the activity of an inactive mutant full-length proteinase precursor and can occur between different species of CMV (e.g., human CMV subunit can rescue activity of mutant simian CMV assemblin). These results indicate that assemblin is able to form active multimeric structures that may be of functional importance.  相似文献   

5.
The cytomegalovirus (CMV) serine proteinase assemblin is synthesized as a precursor that undergoes three principal autoproteolytic cleavages. Two of these are common to the assemblin homologs of all herpes group viruses: one at the maturational site near the carboxyl end of the precursor and another at the release site near the midpoint of the precursor. Release-site cleavage frees the proteolytic amino domain, assemblin, from the nonproteolytic carboxyl domain of the precursor. In CMV, a third autoproteolytic cleavage at an internal site divides assemblin into an amino subunit (An) and a carboxyl subunit (Ac) of approximately the same size that remain associated as an active "two-chain" enzyme. We have cloned the sequences encoding An and Ac as separate genes and expressed them by transfecting human cells with recombinant plasmids and by infecting insect cells with recombinant baculoviruses. When An and Ac from either simian CMV or human CMV were coexpressed in human or insect cells, active two-chain assemblin was formed. This finding demonstrates that An and Ac do not require synthesis as single-chain assemblin to fold and associate correctly in these eukaryotic systems, and it suggests that they may be structurally, if not functionally, distinct domains. An interaction between the independently expressed An and Ac subunits was demonstrated by coimmunoprecipitation experiments, and efforts to disrupt the complex indicate that the subunit interaction is hydrophobic. Cell-based cleavage assays of the two-chain assemblin formed from independently expressed An and Ac also indicate that (i) its specificity for both CMV and herpes simplex virus native substrates is similar to that of single-chain assemblin, (ii) R-site cleavage is not essential for the activity of two-chain recombinant assemblin, and (iii) the human CMV and simian CMV An and Ac recombinant subunits are functionally interchangeable.  相似文献   

6.
The herpesvirus maturational proteinase, assemblin, is made as a precursor that undergoes at least two autoproteolytic cleavages--one in a sequence toward its carboxyl end, called the maturational (M) site, and one in a sequence toward its midpoint, called the release (R) site. The M- and R-site sequences are both well conserved among the herpesvirus proteinase homologs, suggesting that the proteinase of one herpesvirus might be able to cleave the substrates of another. To test this possibility, we cloned and expressed in human cells the long (i.e., full-length open reading frame of proteinase gene) and short (i.e., proteolytic domain, assemblin) forms of the proteinase from human and simian cytomegalovirus (HCMV and SCMV, respectively) and from herpes simplex virus type 1 (HSV-1), as well as the genes for their respective assembly protein precursor substrates. Data from cotransfections of these proteinase genes with appropriate homologous and heterologous substrates showed that although the SCMV and HCMV enzymes cleaved the M-sites of the assembly protein substrates of all three viruses and an SCMV R-site substrate, the HSV-1 proteinase cleaved only its own substrate. This finding demonstrates that the substrate specificity properties of the HSV-1 enzyme differ from those of the two CMV enzymes.  相似文献   

7.
Herpesviruses encode an essential, maturational serine protease whose catalytic domain, assemblin (28 kDa), is released by self-cleavage from a 74-kDa precursor (pPR, pUL80a). Although there is considerable information about the structure and enzymatic characteristics of assemblin, a potential pharmacologic target, comparatively little is known about these features of the precursor. To begin studying pPR, we introduced five point mutations that stabilize it against self-cleavage at its internal (I), cryptic (C), release (R), and maturational (M) sites and at a newly discovered "tail" (T) site. The resulting mutants, called ICRM-pPR and ICRMT-pPR, were expressed in bacteria, denatured in urea, purified by immobilized metal affinity chromatography, and renatured by a two-step dialysis procedure and by a new method of sedimentation into glycerol gradients. The enzymatic activities of the pPR mutants were indistinguishable from that of IC-assemblin prepared in parallel for comparison, as determined by using a fluorogenic peptide cleavage assay, and approximated rates previously reported for purified assemblin. The percentage of active enzyme in the preparations was also comparable, as determined by using a covalent-binding suicide substrate. An unexpected finding was that, in the absence of the kosmotrope Na2SO4, optimal activity of pPR requires interaction through its scaffolding domain. We conclude that although the enzymatic activities of assemblin and its precursor are comparable, there may be differences in how their catalytic sites become fully activated.  相似文献   

8.
We compared the full-length capsid maturational protease (pPR, pUL80a) of human cytomegalovirus with its proteolytic domain (assemblin) for the ability to cleave two biological substrates, and we found that pPR is more efficient with both. Affinity-purified, refolded enzymes and substrates were combined under defined reaction conditions, and cleavage was monitored and quantified following staining of the resulting electrophoretically separated fragments. The enzymes were stabilized against self-cleavage by a single point mutation in each cleavage site (ICRMT-pPR and IC-assemblin). The substrates were pPR itself, inactivated by replacing its catalytic nucleophile (S132A-pPR), and the sequence-related assembly protein precursor (pAP, pUL80.5). Our results showed that (i) ICRMT-pPR is 5- to 10-fold more efficient than assemblin for all cleavages measured (i.e., the M site of pAP and the M, R, and I sites of S132A-pPR). (ii) Cleavage of substrate S132A-pPR proceeded M>R>I for both enzymes. (iii) Na(2)SO(4) reduced M- and R-site cleavage efficiency by ICRMT-pPR, in contrast to its enhancing effect for both enzymes on I site and small peptide cleavage. (iv) Disrupting oligomerization of either the pPR enzyme or substrate by mutating Leu382 in the amino-conserved domain reduced cleavage efficiency two- to fourfold. (v) Finally, ICRMT-pPR mutants that include the amino-conserved domain, but terminate with Pro481 or Tyr469, retain the enzymatic characteristics that distinguish pPR from assemblin. These findings show that the scaffolding portion of pPR increases its enzymatic activity on biologically relevant protein substrates and provide an additional link between the structure of this essential viral enzyme and its biological mechanism.  相似文献   

9.
The human cytomegalovirus (HCMV) proteinase is synthesized as a 709-amino-acid precursor that undergoes at least three autoproteolytic cleavages. The mature proteinase, called assemblin, is one of the products of autoproteolysis and is composed of the first 256 amino acids of the precursor. HCMV assemblin and its homologs in other herpes group viruses contain five highly conserved domains (CD1 through CD5). An absolutely conserved serine in CD3 has been shown by site-directed mutagenesis of the simian cytomegalovirus (SCMV) and herpes simplex virus type 1 (HSV-1) enzymes and by inhibitor affinity labeling of the HSV-1 and HCMV enzymes to be the active-site nucleophile of assemblin. An absolutely conserved histidine in CD2 has also been demonstrated by site-directed mutagenesis of the SCMV and HSV-1 enzymes to be essential for proteolytic activity and has been proposed to be a second member of the catalytic triad of this serine proteinase. We report here the use of site-directed mutagenesis to investigate the active-site amino acids of HCMV assemblin. Substitutions were made for the CD3 serine and CD2 histidine residues implicated as active-site components, and for other amino acids whose influence on enzyme activity was of interest. The mutant proteinases were tested in a transient transfection assay for their ability to cleave their natural substrate, the assembly protein precursor. Results of these experiments verified that HCMV CD3 serine (Ser-132) and CD2 histidine (His-63) are essential for proteolytic activity and identified a glutamic acid (Glu-122) within CD3 that is also essential for proteolytic activity and may be conserved among all herpesvirus assemblin homologs. We suggest that CD3 Glu-122, CD3 Ser-132, and CD2 His-63 constitute the active-site triad of this serine proteinase.  相似文献   

10.
Phosphorylation of the proteins of human cytomegalovirus (CMV) virions, noninfectious enveloped particles (NIEPs), and dense bodies was investigated. Analyses of particles phosphorylated in vivo showed the following. Virions contain three predominant phosphoproteins (i.e., basic phosphoprotein and upper and lower matrix proteins) and at least nine minor phosphorylated species. NIEPs contain all of these and one additional major species, the assembly protein. Dense bodies contain only one (i.e., lower matrix) of the predominant and four of the minor virion phosphoproteins. Two-dimensional (charge-size) separations in denaturing polyacrylamide gels showed that the relative net charges of the predominant phosphorylated species ranged from the basic phosphoprotein to the more neutral upper matrix protein. In vitro assays showed that purified virions of human CMV have an associated protein kinase activity. The activity was detected only after disrupting the envelope; it had a pH optimum of approximately 9 to 9.5 and required a divalent cation, preferring magnesium to manganese. In vitro, this activity catalyzed phosphorylation of the virion proteins observed to be phosphorylated in vivo. Peptide comparisons indicated that the sites phosphorylated in vitro are a subset of those phosphorylated in vivo, underscoring the probable biological relevance of the kinase activity. Casein, phosvitin, and to a minor extent lysine-rich histones served as exogenous phosphate acceptors. Arginine-rich and lysine-rich histones and protamine sulfate, as well as the polyamines spermine and spermidine, stimulated incorporation of phosphate into the endogenous viral proteins. Virions of all human and simian CMV strains tested showed this activity. Analyses of other virus particles, including three intracellular capsid forms (i.e., A, B, and C capsids), NIEPs, and dense bodies, indicated that the active enzyme was not present in the capsid. Rate-velocity sedimentation of disrupted virions separated the protein kinase activity into two fractions: one that phosphorylated exogenous casein and another that phosphorylated primarily the endogenous virion proteins.  相似文献   

11.
The proteolytic processing of the human cytomegalovirus (HCMV) assembly protein, resulting in truncation of its C terminus, is an essential step in virion maturation. The proteinase responsible for this cleavage is the amino-terminal half of the protein encoded by the UL80a open reading fame. We have obtained high expression levels of this 256-amino-acid HCMV proteinase, assemblin, in Escherichia coli. In addition to the 28-kDa proteinase, a 15-kDa protein comprising the first 143 amino acids and a 13-kDa protein comprising the last 113 amino acids of the 28-kDa HCMV proteinase were present. Both the 28-kDa proteinase and the 15-kDa protein were purified by a two-step chromatographic procedure utilizing anion exchange in urea and dithiothreitol and size exclusion in NaSCN and dithiothreitol. Activation of the purified 28-kDa proteinase required denaturation in urea as well as complete reduction of all five cysteine residues in the molecule. Removal of the urea by dialysis with retention of the reducing agent yielded an active proteinase. Addition of glycerol to 50% enhanced the activity. The HCMV proteinase cleaved the peptides RGVVNASSRLAK and SYVKASVSPE, which are mimics of the maturational (M)- and release (R)-site sequences, respectively, in the UL80a-encoded protein. The cleavage site in the peptides was at the same Ala-Ser scissile bond as observed in the UL80a protein. The Km value for the cleavage of RGVVNASSRLAK (M-site mimic) by the proteinase was similar to that for SYVKASVSPE (R-site mimic), but the turnover (kcat) of the M-site peptide mimic substrate by the proteinase was six to eight times faster. The peptide homologs of the herpes simplex virus type 1 M- and R-site sequences in the UL26-encoded protein were also cleaved by the HCMV proteinase, although at rates slower than those for the HCMV substrates. The HCMV proteinase was inhibited by Zn2+ and by alkylating agents, but only at very high inhibitor concentrations. The purified 15-kDa protein, subjected to the same activation conditions as the 28-kDa proteinase, had no enzymatic activity against the HCMV M- and R-site peptide substrates.  相似文献   

12.
Scaffolding proteins of spherical prokaryotic and eukaryotic viruses have critical roles in capsid assembly. The primary scaffolding components of cytomegalovirus, called the assembly protein precursor (pAP, pUL80.5) and the maturational protease precursor (pPR, pUL80a), contain two nuclear localization sequences (NLS1 and NLS2), at least one of which is required in coexpression experiments to translocate the major capsid protein (MCP, pUL85) into the nucleus. In the work reported here, we have mutated NLS1 and NLS2, individually or together, in human cytomegalovirus (HCMV, strain AD169) bacmid-derived viruses to test their effects on virus replication. Consistent with results from earlier transfection/coexpression experiments, both single-mutant bacmids gave rise to infectious virus but the double mutant did not. In comparisons with the wild-type virus, both mutants showed slower cell-to-cell spread; decreased yields of infectious virus (3-fold lower for NLS1(-) and 140-fold lower for NLS2(-)); reduced efficiency of pAP, pPR, and MCP nuclear translocation (sixfold lower for NLS1(-) and eightfold lower for NLS2(-)); increased amounts of a 120-kDa MCP fragment; and reduced numbers of intranuclear capsids. All effects were more severe for the NLS2(-) mutant than the NLS1(-) mutant, and a distinguishing feature of cells infected with the NLS2(-) mutant was the accumulation of large, UL80 protein-containing structures within the nucleus. We conclude that these NLS assist in the nuclear translocation of MCP during HCMV replication and that NLS2, which is unique to the betaherpesvirus UL80 homologs, may have additional involvements during replication.  相似文献   

13.
Properties of avian retrovirus particles defective in viral protease.   总被引:35,自引:30,他引:5       下载免费PDF全文
L Stewart  G Schatz    V M Vogt 《Journal of virology》1990,64(10):5076-5092
  相似文献   

14.
Many steps in the replication cycle of cytomegalovirus (CMV), like cell entry, capsid assembly, and egress of newly synthesized virions, have not been completely analyzed yet. In order to facilitate these studies, we decided to construct a recombinant CMV that incorporates the green fluorescent protein (GFP) into the nucleocapsid. A comparable herpes simplex virus type 1 (HSV-1) mutant has recently been generated by fusion of the GFP open reading frame (ORF) with the HSV-1 ORF encoding small capsid protein (SCP) VP26 (P. Desai and S. Person, J. Virol. 72:7563-7568, 1998). Recombinant CMV genomes expressing a fusion protein consisting of GFP and the SCP were constructed by the recently established bacterial artificial chromosome mutagenesis procedure. In transfected cells, the SCP-GFP fusion protein localized to distinct foci in the nucleus that may represent sites for capsid assembly (assemblons). However, no viable progeny was reconstituted from these mutant CMV genomes. CMV genomes with deletion of the SCP ORF also did not give rise to infectious virus. Rescue of the mutation by insertion of the SCP gene at an ectopic position in an SCP knockout genome indicates that, in contrast to the HSV-1 SCP, the CMV SCP is essential for viral growth. Expression of the SCP-GFP fusion protein together with the authentic SCP blocked the CMV infection cycle, suggesting that the SCP-GFP fusion protein exerts a dominant-negative effect on the assembly of new virions. The results of this study are discussed with regard to recently published data about the structure of the CMV virion and its differences from the HSV-1 virion.  相似文献   

15.
16.
It is thought that complete cleavage of retroviral envelope protein into mature surface protein (SU) and transmembrane protein (TM) is critical for its assembly into virions and the formation of infectious virus particles. Here we report the identification of highly infectious, cleavage-deficient envelope mutant proteins. Substitution of aspartate for lysine 104, arginines 124 and 126, or arginines 223 and 225 strongly suppressed cleavage of the envelope precursor and yet allowed efficient incorporation of precursor molecules as the predominant species in virions that were almost as infectious as the wild-type virus. These results indicate that cleavage of the envelope precursor into mature SU and TM is not necessary for assembly into virions. Moreover, they call into question how many mature envelope protein subunits are required to complete virus entry, suggesting that a very few molecules suffice. The failure of host cell proteases to cleave these mutant proteins, whose substitutions are distal to the actual site of cleavage, suggests that the envelope precursor is misfolded, sequestering the cleavage site. In agreement with this, all cleavage mutant proteins exhibited significant losses of receptor binding, suggesting that these residues play roles in proper envelope protein folding. We also identified a charged residue, arginine 102, whose substitution suppressed envelope cleavage and allowed precursor incorporation but resulted in virions that were virtually noninfectious and that exhibited the greatest reduction in receptor binding. Placement of these cleavage mutations into envelope proteins of targeted retroviral vectors for human gene therapy may prevent loss of the modified surface proteins from virions, improving their infectivity and storage hardiness.  相似文献   

17.
Assembly of poliovirus virions requires proteolytic cleavage of the P1 capsid precursor polyprotein between two separate glutamine-glycine (QG) amino acid pairs by the viral protease 3CD. In this study, we have investigated the effects on P1 polyprotein processing and subsequent assembly of processed capsid proteins caused by substitution of the glycine residue at the individual QG cleavage sites with valine (QG-->QV). P1 cDNAs encoding the valine substitutions were created by site-directed mutagenesis and were recombined into wild-type vaccinia virus to generate recombinant vaccinia viruses which expressed the mutant P1 precursors. The recombinant vaccinia virus-expressed mutant P1 polyproteins were analyzed for proteolytic processing defects in cells coinfected with a recombinant vaccinia virus (VVP3) that expresses the poliovirus 3CD protease and for processing and assembly defects by using a trans complementation system in which P1-expressing recombinant vaccinia viruses provide capsid precursor to a defective poliovirus genome that does not express functional capsid proteins (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 67:3684-3690, 1993). The QV-substituted precursors were proteolytically processed at the altered sites both in cells coinfected with VVP3 and in cells coinfected with defective poliovirus, although the kinetics of cleavage at the altered sites were slower than those of cleavage at the wild-type QG site in the precursor. Completely processed capsid proteins VP0, VP3, and VP1 derived from the mutant precursor containing a valine at the amino terminus of VP3 (VP3-G001V) were unstable and failed to assemble stable subviral structures in cells coinfected with defective poliovirus. In contrast, capsid proteins derived from the P1 precursor with a valine substitution at the amino terminus of VP1 (VP1-G001V) assembled empty capsid particles but were deficient in assembling RNA-containing virions. The assembly characteristics of the VP1-G001V mutant were compared with those of a previously described VP3-VP1 cleavage site mutant (K. Kirkegaard and B. Nelsen, J. Virol. 64:185-194, 1990) which contained a deletion of the first four amino-terminal residues of VP1 (VP1-delta 1-4) and which was reconstructed for our studies into the recombinant vaccinia virus system. Complete proteolytic processing of the VP1-delta 1-4 precursor also occurred more slowly than complete cleavage of the wild-type precursor, and formation of virions was delayed; however, capsid proteins derived from the VP1-G001V mutant assembled RNA-containing virions less efficiently than those derived from the VP1-delta 1-4 precursor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Assembly of many spherical virus capsids is guided by an internal scaffolding protein or group of proteins that are often cleaved and eliminated in connection with maturation and incorporation of the genome. In cytomegalovirus there are at least two proteins that contribute to this scaffolding function; one is the maturational protease precursor (pUL80a), and the other is the assembly protein precursor (pUL80.5) encoded by a shorter genetic element within UL80a. Yeast GAL4 two-hybrid assays established that both proteins contain a carboxyl-conserved domain that is required for their interaction with the major capsid protein (pUL86) and an amino-conserved domain (ACD) that is required for their self-interaction and for their interaction with each other. In the work reported here, we demonstrate that when the ACD is deleted (deltaACD) or disrupted by a point mutation (L47A), the bacterially expressed mutant protein sediments as a monomer during rate-velocity centrifugation, whereas the wild-type protein sediments mainly as oligomers. We also show that the L47A mutation reduces the production of infectious virus by at least 90%, results in the formation of irregular nuclear capsids, gives rise to tube-like structures in the nucleus that resemble the capsid core in cross-section and contain UL80 proteins, slows nuclear translocation of the major capsid protein, and may slow cleavage by the maturational protease. We provide physical corroboration that mutating the ACD disrupts self-interaction of the UL80 proteins and biological support for the proposal that the ACD has a critical role in capsid assembly and production of infectious virus.  相似文献   

19.
Endoproteolytic cleavage of the glycoprotein precursor to the mature SU and TM proteins is an essential step in the maturation of retroviral glycoproteins. Cleavage of the precursor polyprotein occurs at a conserved, basic tetrapeptide sequence and is carried out by a cellular protease. The glycoprotein of the human immunodeficiency virus type 1 contains two potential cleavage sequences immediately preceding the N terminus of the TM protein. To determine the functional significance of these two potential cleavage sites, a series of mutations has been constructed in each site individually, as well as in combinations that altered both sites simultaneously. A majority of the mutations in either potential cleavage site continued to allow efficient cleavage when present alone but abrogated cleavage of the precursor when combined. Despite being transported efficiently to the cell surface, these cleavage-defective glycoproteins were unable to initiate cell-cell fusion and viruses containing them were not infectious. Viruses that contained glycoproteins with a single mutation, and that retained the ability to be processed, were capable of mediating a productive infection, although infectivity was impaired in several of these mutants. Protein analyses indicated that uncleaved glycoprotein precursors were inefficiently incorporated into virions, suggesting that cleavage of the glycoprotein may be a prerequisite to incorporation into virions. The substitution of a glutamic acid residue for a highly conserved lysine residue in the primary cleavage site (residue 510) had no effect on glycoprotein cleavage or function, even though it removed the only dibasic amino acid pair in this site. Peptide sequencing of the N terminus of gp41 produced from this mutant glycoprotein demonstrated that cleavage continued to take place at this site. These results, demonstrating that normal cleavage of the human immunodeficiency virus type 1 glycoprotein can occur when no dibasic sequence is present at the cleavage site, raise questions about the specificity of the cellular protease that mediates this cleavage and suggest that cleavage of the glycoprotein is required for efficient incorporation of the glycoprotein into virions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号