首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The effect of nicotinamide on unscheduled DNA synthesis was studied in resting human lymphocytes. In cells treated with UV irradiation or with MNNG, nicotinamide caused a two-fold stimulation of unscheduled DNA synthesis and retarded the rate of NAD+ lowering caused by these treatments. Nicotinamide also reduced the burst of poly(ADP-ribose) synthesis caused by MNNG treat-ment. Thus under conditions that it enhances unscheduled DNA synthesis, nicotinamide causes marked effects on the metabolism of NAD+ and poly(ADP-ribose). The effect of nicotinamide on unscheduled DNA synthesis was shown to be independent of protein or polyamine synthesis.  相似文献   

2.
NAD+ levels in resting human lymphocytes obtained from 20 donors were found to be 69.9 ± 21.7 pmols/106 cells. After 3 days of phytohemagglutinin (PHA) stimulation the NAD+ levels rose to 452 ± 198 pmols/106 cells. NADH, NADP+ and NADPH also increased in mitogen-stimulated lymphocytes, but the major portion of the increase in total pyridine nucleotide pools was accounted for by the increase in NAD+. When PHA-stimulated lymphocytes were incubated in nicotinamide-deficient growth medium, there was no significant increase in their total pyridine nucleotide pools; however, the ratios of oxidized to reduced pyridine nucleotides changed in a similar fashion to cells grown in medium containing nicotinamide. When lymphocytes in nicotinamide-deficient medium were stimulated with PHA they increased their levels of DNA synthesis and cell replication in a similar fashion to cells growing in nicotinamide-supplemented media. Human lymphocytes were able to synthesize pyridine nucleotides from nicotinamide or nicotinic acid; however, in the absence of a preformed pyridine ring they did not efficiently use tryptophan for the synthesis of NAD. Uptake of [carbonyl-14C]nicotinamide and conversion to NAD was markedly increased in PHA-stimulated lymphocytes; these cells also showed a marked increase in activity of the enzyme adenosine-triphosphate-nicotinamide mononucleotide (ATP-NMN) adenylyl transferase.  相似文献   

3.
Mouse lymphocytes have been shown to contain DNA strand breaks that were repaired within 2h of onset of culture with mitogen. Inhibitors of ADP ribosylation prevented this repair and blocked cell proliferation. The mitogen concanavalin A caused the internal concentration of NAD+, the substrate of the ADP ribose polymerase, to rise to about double that of resting cells within 45 min of stimulation. Addition of 300 μm nicotinamide to the culture in absence of mitogen also resulted in a similar increase in internal [NAD+], resulting in increased ADP ribosylation activity (measured in permeabilized cells) and in joining of DNA strand breaks; however, none of the subsequent events of lymphocyte activation such as blast transformation and DNA synthesis occurred. These findings indicate that (1) cellular [NAD+] is a rate limiting factor in repair of DNA strand breaks in resting lymphocytes and (2) this repair is necessary but not sufficient for lymphocyte proliferation.  相似文献   

4.
5.
Metabolism and immune responses have been shown to be closely linked and as our understanding increases, so do the intricacies of the level of linkage. NAD+ has previously been shown to regulate tumour necrosis factor-α (TNF-α) synthesis and TNF-α has been shown to regulate NAD+ homoeostasis providing a link between a pro-inflammatory response and redox status. In the present study, we have used THP-1 differentiation into pro- (M1-like) and anti- (M2-like) inflammatory macrophage subset models to investigate this link further. Pro- and anti-inflammatory macrophages showed different resting NAD+ levels and expression levels of NAD+ homoeostasis enzymes. Challenge with bacterial lipopolysaccharide, a pro-inflammatory stimulus for macrophages, caused a large, biphasic and transient increase in NAD+ levels in pro- but not anti-inflammatory macrophages that were correlated with TNF-α release and inhibition of certain NAD+ synthesis pathways blocked TNF-α release. Lipopolysaccharide stimulation also caused changes in mRNA levels of some NAD+ homoeostasis enzymes in M1-like cells. Surprisingly, despite M2-like cells not releasing TNF-α or changing NAD+ levels in response to lipopolysaccharide, they showed similar mRNA changes compared with M1-like cells. These data further strengthen the link between pro-inflammatory responses in macrophages and NAD+. The agonist-induced rise in NAD+ shows striking parallels to well-known second messengers and raises the possibility that NAD+ is acting in a similar manner in this model.  相似文献   

6.
Abstract

In the twentieth century, NAD+ research generated multiple discoveries. Identification of the important role of NAD+ as a cofactor in cellular respiration and energy production was followed by discoveries of numerous NAD+ biosynthesis pathways. In recent years, NAD+ has been shown to play a unique role in DNA repair and protein deacetylation. As discussed in this review, there are close interactions between oxidative stress and immune activation, energy metabolism, and cell viability in neurodegenerative disorders and ageing. Profound interactions with regard to oxidative stress and NAD+ have been highlighted in the present work. This review emphasizes the pivotal role of NAD+ in the regulation of DNA repair, stress resistance, and cell death, suggesting that NAD+ synthesis through the kynurenine pathway and/or salvage pathway is an attractive target for therapeutic intervention in age-associated degenerative disorders. NAD+ precursors have been shown to slow down ageing and extend lifespan in yeasts, and protect severed axons from degeneration in animal models neurodegenerative diseases.  相似文献   

7.
Human cultured cells are widely used for the investigation of respiratory chain disorders. Oxidative properties are generally investigated by means of polarographic studies carried out on detergent-permeabilized cells. By studying the oxidative properties of Epstein-Barr virus-transformed B lymphocytes, we found that the respiration was significantly decreased after 3–4 days of cell culture. Simultaneously, we observed that NAD+-dependent oxidations (malate, glutamate, pyruvate) became dependent upon the addition of exogenous NAD+. The effect of NAD+ was shown to be related to an influx of catalytic amount of NAD+ into the mitochondrial matrix. A full ability to oxidize NAD+-dependent substrates was restored less than 2 h after a change of the culture medium.These observations suggested: (a) the occurrence of fluxes of catalytic amounts of NAD+ through the mitochondrial inner membrane in human cells; (b) an early control of mitochondrial metabolism by matrix NAD+ content in cells grown under limiting growth conditions; (c) the possible confusion between complex I deficiency and a decrease content of matrix NAD+ when using human cultured cells. (Mol Cell Biochem 115–119, 1997)  相似文献   

8.
9.
10.
The activities of nuclear enzymes involved in NAD+ metabolism in Saccharomyces cerevisiae strain 913a-1 and its mutant 110 previously selected as an NAD+ producer were investigated. The presence of extracellular nicotinamide increased the total NAD+ pool in the cells and increased [3H]nicotinic acid incorporation; however, NAD+ concentration in isolated nuclei decreased slightly. The stimulating effect of nicotinamide on intracellular synthesis of NAD+ correlated with increases in ADP-ribosyl transferase, NAD+-pyrophosphorylase, and NAD+ ase activities.  相似文献   

11.
NAD+ metabolism plays key roles not only in energy production but also in diverse cellular physiology. Aberrant NAD+ metabolism is considered a hallmark of cancer. Recently, the tumor suppressor p53, a major player in cancer signaling pathways, has been implicated as an important regulator of cellular metabolism. This notion led us to examine whether p53 can regulate NAD+ biosynthesis in the cell. Our search resulted in the identification of nicotinamide mononucleotide adenylyltransferase 2 (NMNAT-2), a NAD+ synthetase, as a novel downstream target gene of p53. We show that NMNAT-2 expression is induced upon DNA damage in a p53-dependent manner. Two putative p53 binding sites were identified within the human NMNAT-2 gene, and both were found to be functional in a p53-dependent manner. Furthermore, knockdown of NMNAT-2 significantly reduces cellular NAD+ levels and protects cells from p53-dependent cell death upon DNA damage, suggesting an important functional role of NMNAT-2 in p53-mediated signaling. Our demonstration that p53 modulates cellular NAD+ synthesis is congruent with p53’s emerging role as a key regulator of metabolism and related cell fate.  相似文献   

12.
The stimulation of protein synthesis by NAD+ in rabbit reticulocyte lysates has been reported. [Lennon M. B., Wu, J., and Suhadolnik, R. J., (1976) Biochem. Biophys. Res. Commun. 72, 530–538]. NAD+ can replace the creatine phosphate-creatine phosphokinase (CPCPK) energy regenerating system normally used in in vitro protein synthesizing systems. The replacement of CPCPK by NAD+ is optimal at 37 °C. A significant lag in the rate of protein synthesis with NAD+ is observed with decreasing temperatures. Analysis of the adenylate energy charge with NAD+ shows an initial rapid decrease. This decrease in the energy charge recovers with increasing NAD+ concentrations. The energy level correlates with the rates of incorporation of d,l-[4,5-3H(N)]leucine into protein. ATP production via NAD+ pyrophosphorylase or oxidative phosphorylation does not explain the stimulation by NAD+. Rather, the stimulation is correlated with the activation of glycolysis. Glycolysis is not active in lysate preparations because NAD+ is absent. Additional possible roles of NAD+ in protein synthesis are discussed.  相似文献   

13.
Poly(ADP-ribose) polymerases or PARPs are a family of NAD+-dependent enzymes that modify themselves and other substrate proteins with ADP-ribose polymers. The founding member PARP1 is localized predominantly in the nucleus and is activated by binding to DNA lesions. Excessive PARP1 activation following genotoxin treatment causes NAD+ depletion and cell death, whereas pharmacological PARP1 inhibition protects cells from genotoxicity. This study investigates whether cellular viability and NAD+ metabolism are regulated by tankyrase-1, a PARP member localized predominantly in the cytosol. Using a tetracycline-sensitive promoter to regulate tankyrase-1 expression in Madin–Darby canine kidney (MDCK) cells, we found that a 40-fold induction of tankyrase-1 (from 1500 to 60,000 copies per cell) lowers steady-state NAD+ levels but does not affect basal cellular viability. Moreover, the induction confers protection against the oxidative agent H2O2 and the alkylating agent MNNG, genotoxins that kill cells by activating PARP1. The cytoprotective effect of tankyrase-1 is not due to enhanced scavenging of oxidants or altered expression of Mcl-1, an anti-apoptotic molecule previously shown to be down-regulated by tankyrase-1 in CHO cells. Instead, tankyrase-1 appears to protect cells by preventing genotoxins from activating PARP1-mediated reactions such as PARP1 automodification and NAD+ consumption. Our findings therefore indicate a cytoprotective function of tankyrase-1 mediated through altered NAD+ homeostasis and inhibition of PARP1 function.  相似文献   

14.
AMPK activation is beneficial for cellular homeostasis and senescence prevention. However, the molecular events involved in AMPK activation are not well defined. In this study, we addressed the mechanism underlying the protective effect of AMPK on oxidative stress‐induced senescence. The results showed that AMPK was inactivated in senescent cells. However, pharmacological activation of AMPK by metformin and berberine significantly prevented the development of senescence and, accordingly, inhibition of AMPK by Compound C was accelerated. Importantly, AMPK activation prevented hydrogen peroxide‐induced impairment of the autophagic flux in senescent cells, evidenced by the decreased p62 degradation, GFP‐RFP‐LC3 cancellation, and activity of lysosomal hydrolases. We also found that AMPK activation restored the NAD+ levels in the senescent cells via a mechanism involving mostly the salvage pathway for NAD+ synthesis. In addition, the mechanistic relationship of autophagic flux and NAD+ synthesis and the involvement of mTOR and Sirt1 activities were assessed. In summary, our results suggest that AMPK prevents oxidative stress‐induced senescence by improving autophagic flux and NAD+ homeostasis. This study provides a new insight for exploring the mechanisms of aging, autophagy and NAD+ homeostasis, and it is also valuable in the development of innovative strategies to combat aging.  相似文献   

15.
The mitochondrial NAD pool is particularly important for the maintenance of vital cellular functions. Although at least in some fungi and plants, mitochondrial NAD is imported from the cytosol by carrier proteins, in mammals, the mechanism of how this organellar pool is generated has remained obscure. A transporter mediating NAD import into mammalian mitochondria has not been identified. In contrast, human recombinant NMNAT3 localizes to the mitochondrial matrix and is able to catalyze NAD+ biosynthesis in vitro. However, whether the endogenous NMNAT3 protein is functionally effective at generating NAD+ in mitochondria of intact human cells still remains to be demonstrated. To modulate mitochondrial NAD+ content, we have expressed plant and yeast mitochondrial NAD+ carriers in human cells and observed a profound increase in mitochondrial NAD+. None of the closest human homologs of these carriers had any detectable effect on mitochondrial NAD+ content. Surprisingly, constitutive redistribution of NAD+ from the cytosol to the mitochondria by stable expression of the Arabidopsis thaliana mitochondrial NAD+ transporter NDT2 in HEK293 cells resulted in dramatic growth retardation and a metabolic shift from oxidative phosphorylation to glycolysis, despite the elevated mitochondrial NAD+ levels. These results suggest that a mitochondrial NAD+ transporter, similar to the known one from A. thaliana, is likely absent and could even be harmful in human cells. We provide further support for the alternative possibility, namely intramitochondrial NAD+ synthesis, by demonstrating the presence of endogenous NMNAT3 in the mitochondria of human cells.  相似文献   

16.
Regulation of neutrophil apoptosis plays a critical role in the inflammatory response. Inflammation has previously been shown to increase levels of extracellular β-nicotinamide adenine dinucleotide (NAD+). The present study demonstrates that extracellular NAD+ at concentrations found in the inflamed tissues profoundly delays spontaneous apoptosis of human neutrophils as was evidenced by inhibition of phosphatidylserine (PS) exposure, DNA fragmentation and caspase-3 activation. The effect was abrogated by NF157, an antagonist of P2Y11 receptor, and was pertussis toxin-insensitive. The NAD+-mediated delay of neutrophil apoptosis was reversed by 2′,5′-dideoxyadenosine, an inhibitor of adenylyl cyclase, and Rp-8-Br-cAMPS, an inhibitor of type I cAMP-dependent protein kinase A (PKA). Blocking of NAD+-induced influx of extracellular Ca2+ with EGTA did not abolish the pro-survival effect of NAD+. Extracellular NAD+ inhibited proteasome-dependent degradation of Mcl-1 upstream of caspase activation and, furthermore, suppressed Bax translocation to the mitochondria and attenuated both dissipation of mitochondrial transmembrane potential (ΔΨm) and cytochrome c release from the mitochondria into the cytosol. Finally, we found that extracellular NAD+ inhibited spontaneous activation of caspase-9, but not caspase-8, and the pro-survival effect of extracellular NAD+ was abrogated by the inhibitor of caspase-9, but not by the inhibitor of caspase-8. Together, these results demonstrate that extracellular NAD+ inhibits neutrophil apoptosis via P2Y11 receptor and cAMP/PKA pathway by regulating Mcl-1 level, Bax targeting to the mitochondria and mitochondrial apoptotic pathway. Thus, extracellular NAD+ acts as a neutrophil survival factor that can contribute to prolonged neutrophil lifespan in inflammatory response.  相似文献   

17.
18.
Nicotinamide adenine dinucleotide (NAD+) is an essential coenzyme involved in numerous physiological processes. As an attractive product in the industrial field, NAD+ also plays an important role in oxidoreductase-catalyzed reactions, drug synthesis, and the treatment of diseases, such as dementia, diabetes, and vascular dysfunction. Currently, although the biotechnology to construct NAD+-overproducing strains has been developed, limited regulation and low productivity still hamper its use on large scales. Here, we describe multi-strategy metabolic engineering to address the NAD+-production bottleneck in E. coli. First, blocking the degradation pathway of NAD(H) increased the accumulation of NAD+ by 39%. Second, key enzymes involved in the Preiss-Handler pathway of NAD+ synthesis were overexpressed and led to a 221% increase in the NAD+ concentration. Third, the PRPP synthesis module and Preiss-Handler pathway were combined to strengthen the precursors supply, which resulted in enhancement of NAD+ content by 520%. Fourth, increasing the ATP content led to an increase in the concentration of NAD+ by 170%. Finally, with the combination of all above strategies, a strain with a high yield of NAD+ was constructed, with the intracellular NAD+ concentration reaching 26.9 μmol/g DCW, which was 834% that of the parent strain. This study presents an efficient design of an NAD+-producing strain through global regulation metabolic engineering.  相似文献   

19.
Mitochondria plays a key role in regulating cell death process under stress conditions and it has been indicated that NAMPT overexpression promotes cell survival under genotoxic stress by maintaining mitochondrial NAD+ level. NAMPT is a rate-limiting enzyme for NAD+ production in mammalian cells and it was suggested that NAMPT and NMNAT3 are responsible for mitochondrial NAD+ production to maintain mitochondrial NAD+ pool. However, subsequent studies suggested mitochondrial may lack the NAMPT-NMANT3 pathway to maintain NAD+ level. Therefore, how NAMPT overexpression rescues mitochondrial NAD+ content to promote cell survival in response to genotoxic stress remains elusive. Here, we show that NAMPT promotes cell survival under oxidative stress via both SIRT1 dependent p53-CD38 pathway and SIRT1 independent NRF2-PPARα/AMPKα pathway, and the NRF2-PPARα/AMPKα pathway plays a more profound role in facilitating cell survival than the SIRT1-p53-CD38 pathway does. Mitochondrial content and membrane potential were significantly reduced in response to H2O2 treatment, whereas activated NRF2-PPARα/AMPKα pathway by NAMPT overexpression rescued the mitochondrial membrane potential and content, suggesting that maintained mitochondrial content and integrity by NAMPT overexpression might be one of the key mechanisms to maintain mitochondrial NAD+ level and subsequently dictate cell survival under oxidative stress. Our results indicated that NRF2 is a novel down-stream target of NAMPT, which mediates anti-apoptosis function of NAMPT via maintaining mitochondrial content and membrane potential.  相似文献   

20.
Summary Tissue levels of NAD+ appear to be regulated primarily by the concentration of extracellular nicotinamide, which in turn is controlled by the liver in a hormone-sensitive manner. Hepatic regulation involves the conversion of excess serum nicotinamide to Storage NAD+ and inactive excretory products, and the replenishment of serum nicotinamide by the hydrolysis of Storage NAD+. Tryptophan and nicotinic acid contribute to Storage NAD+, and thus are additional sources of nicotinamide. In response to administered nicotinamide, there is a preferential utilization of ATP and PRPP (5-phosphorylribose-1-pyrophosphate) for the biosynthesis of NAD+. This biosynthetic priority, whose purpose appears to be the conservation of intracellular nicotinamide, may explain why nicotinamide inhibits RNA and DNA synthesis in regenerating tissues and why elevated nicotinamide levels are toxic to growing animals and to mammalian cells in culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号