首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The great adaptability shown by RNA viruses is a consequence of their high mutation rates. The evolution of fitness in a severely debilitated, clonal population of the nonsegmented ribovirus vesicular stomatitis virus (VSV) has been compared under five different demographic regimes, ranging from severe serial bottleneck passages (one virion) to large population passages (105 virions or more) under similar environmental conditions (cell culture type and temperature). No matter how small the bottleneck, the fitness of the evolved populations was always higher than the fitness of the starting population; this result is clearly different from that previously reported for viruses with higher fitness. The reattainment of fitness under a regime of serial population passages showed two main characteristics: (1) the rate of adaptation was higher during early passages; and (2) a maximum fitness value was reached after a large number of passages. The maximum fitness reached by this initially debilitated clone was similar to the fitness of wild-type virus. The practical implications of these findings in the design of vaccines using attenuated viruses are also discussed.  相似文献   

2.

Background

Lethal mutagenesis is a transition towards virus extinction mediated by enhanced mutation rates during viral genome replication, and it is currently under investigation as a potential new antiviral strategy. Viral load and virus fitness are known to influence virus extinction. Here we examine the effect or the multiplicity of infection (MOI) on progeny production of several RNA viruses under enhanced mutagenesis.

Results

The effect of the mutagenic base analogue 5-fluorouracil (FU) on the replication of the arenavirus lymphocytic choriomeningitis virus (LCMV) can result either in inhibition of progeny production and virus extinction in infections carried out at low multiplicity of infection (MOI), or in a moderate titer decrease without extinction at high MOI. The effect of the MOI is similar for LCMV and vesicular stomatitis virus (VSV), but minimal or absent for the picornaviruses foot-and-mouth disease virus (FMDV) and encephalomyocarditis virus (EMCV). The increase in mutation frequency and Shannon entropy (mutant spectrum complexity) as a result of virus passage in the presence of FU was more accentuated at low MOI for LCMV and VSV, and at high MOI for FMDV and EMCV. We present an extension of the lethal defection model that agrees with the experimental results.

Conclusions

(i) Low infecting load favoured the extinction of negative strand viruses, LCMV or VSV, with an increase of mutant spectrum complexity. (ii) This behaviour is not observed in RNA positive strand viruses, FMDV or EMCV. (iii) The accumulation of defector genomes may underlie the MOI-dependent behaviour. (iv) LCMV coinfections are allowed but superinfection is strongly restricted in BHK-21 cells. (v) The dissimilar effects of the MOI on the efficiency of mutagenic-based extinction of different RNA viruses can have implications for the design of antiviral protocols based on lethal mutagenesis, presently under development.  相似文献   

3.
It is unclear how historical adaptation versus maladaptation in a prior environment affects population evolvability in a novel habitat. Prior work showed that vesicular stomatitis virus (VSV) populations evolved at constant 37°C improved in cellular infection at both 29°C and 37°C; in contrast, those evolved under random changing temperatures between 29°C and 37°C failed to improve. Here, we tested whether prior evolution affected the rate of adaptation at the thermal‐niche edge: 40°C. After 40 virus generations in the new environment, we observed that populations historically evolved at random temperatures showed greater adaptability. Deep sequencing revealed that most of the newly evolved mutations were de novo. Also, two novel evolved mutations in the VSV glycoprotein and replicase genes tended to co‐occur in the populations previously evolved at constant 37°C, whereas this parallelism was not seen in populations with prior random temperature evolution. These results suggest that prior adaptation under constant versus random temperatures constrained the mutation landscape that could improve fitness in the novel 40°C environment, perhaps owing to differing epistatic effects of new mutations entering genetic architectures that earlier diverged. We concluded that RNA viruses maladapted to their previous environment could “leapfrog” over counterparts of higher fitness, to achieve faster adaptability in a novel environment.  相似文献   

4.
Life-history theory predicts that traits for survival and reproduction cannot be simultaneously maximized in evolving populations. For this reason, in obligate parasites such as infectious viruses, selection for improved between-host survival during transmission may lead to evolution of decreased within-host reproduction. We tested this idea using experimental evolution of RNA virus populations, passaged under differing transmission times in the laboratory. A single ancestral genotype of vesicular stomatitis virus (VSV), a negative-sense RNA Rhabdovirus, was used to found multiple virus lineages evolved in either ordinary 24-h cell-culture passage, or in delayed passages of 48 h. After 30 passages (120 generations of viral evolution), we observed that delayed transmission selected for improved extracellular survival, which traded-off with lowered viral fecundity (slower exponential population growth and smaller mean plaque size). To further examine the confirmed evolutionary trade-off, we obtained consensus whole-genome sequences of evolved virus populations, to infer phenotype–genotype associations. Results implied that increased virus survival did not occur via convergence; rather, improved virion stability was gained via independent mutations in various VSV structural proteins. Our study suggests that RNA viruses can evolve different molecular solutions for enhanced survival despite their limited genetic architecture, but suffer generalized reproductive trade-offs that limit overall fitness gains.  相似文献   

5.
Vesicular stomatitis virus (VSV) populations were repeatedly passaged in L-929 cells treated with alpha interferon (IFN-alpha) at levels of 25 U/ml. This IFN-alpha concentration induced a 99.9% inhibition of viral yield in standard infections. Analysis of viral fitness (overall replicative ability measured in direct competition with a reference wild-type VSV) after 21 passages in IFN-treated cells showed only a limited increase or no increase in fitness, compared with the greater increase upon parallel passage in cells not treated with IFN-alpha. However, this limited increase in fitness was more pronounced when competition assays were carried out with IFN-alpha-treated cells, suggesting the selection of VSV populations with a low level of resistance to IFN-alpha. Thus, despite the extensively documented capacity of VSV to adapt to changing environments, the antiviral state induced by IFN-alpha imposes adaptive constraints on VSV which are not readily overcome.  相似文献   

6.
Virus‐host coevolution has selected for generalized host defense against viruses, exemplified by interferon production/signaling and other innate immune function in eukaryotes such as humans. Although cell‐surface binding primarily limits virus infection success, generalized adaptation to counteract innate immunity across disparate hosts may contribute to RNA virus emergence potential. We examined this idea using vesicular stomatitis virus (VSV) populations previously evolved on strictly immune‐deficient (HeLa) cells, strictly immune competent (MDCK) cells, or on alternating deficient/competent cells. By measuring viral fitness in unselected human cancer cells of differing innate immunity, we confirmed that HeLa‐adapted populations were specialized for innate immune‐deficient hosts, whereas MDCK‐adapted populations were relatively more generalized for fitness on hosts of differing innate immune capacity and of different species origin. We also confirmed that HeLa‐evolved populations maintained fitness in immune‐deficient nonhuman primate cells. These results suggest that innate immunity is more prominent than host species in determining viral fitness at the host‐cell level. Finally, our prediction was inexact that selection on alternating deficient/competent hosts should produce innate viral generalists. Rather, fitness differences among alternating host‐evolved VSV populations indicated variable capacities to evade innate immunity. Our results suggest that the evolutionary history of innate immune selection can affect whether RNA viruses evolve greater host‐breadth.  相似文献   

7.
The relationships among the genomes of various rhabdoviruses belonging to the vesicular stomatitis virus subgroup were analyzed by an oligonucleotide fingerprinting technique. Of 10 vesicular stomatitis viruses, Indiana serotype (VSV Indiana), obtained from various sources, either no, few, or many differences were observed in the oligonucleotide fingerprints of the 42S RNA species extracted from standard B virions. Analyses of the oligonucleotides obtained from RNA extracted from three separate preparations of VSV Indiana defective T particles showed that their RNAs contain fewer oligonucleotides than the corresponding B particle RNA species. The fingerprints of RNA obtained from five VSV New Jersey serotype viruses were easily distinguished from those of the VSV Indiana isolates. Three of the VSV New Jersey RNA fingerprints were similar to each other but quite different from those of the other two viruses. The RNA fingerprints of two Chandipura virus isolates (one obtained from India and one from Nigeria) were also unique, whereas the fingerprint of Cocal virus RNA was unlike that of the serologically related VSV Indiana.  相似文献   

8.
Constant environments are often assumed to favor the evolution of specialization whereas exposure to changing environments may favor the evolution of generalists. Here we explored the phenotypic and molecular changes associated with evolving an RNA virus in constant versus fluctuating temperature environments. We used vesicular stomatitis virus (VSV) to determine whether selection at a constant temperature entails a performance trade‐off at an unselected temperature, whether virus populations evolve to be generalists when selected in deterministically changing temperature environments, and whether selection under stochastically changing temperatures prevents evolved generalization, such as by constraining the ability for viruses to adaptively improve. We observed that all VSV lineages evolved at constant temperatures showed fitness gains in their selected temperature with little evidence for trade‐offs in performance in the unselected environment. Evolution in deterministically and stochastically changing temperatures led to populations with the highest and lowest overall fitness gains, respectively. Sequence analysis revealed little evidence for convergent molecular evolution among lineages within the same treatment. Across all temperature treatments, the majority of genome substitutions occurred in the G (glycoprotein) gene, suggesting that this locus for the cell‐binding protein plays a key role in dictating VSV performance under changing temperature.  相似文献   

9.
10.
Defective interfering virus particles modulate virulence.   总被引:4,自引:4,他引:0       下载免费PDF全文
To determine whether defective interfering (DI) particles modulate virulence by initiating a cyclic pattern of virus growth in vivo, adult mice were infected with vesicular stomatitis virus (VSV), both with and without DI particles. A total of 184 mice divided into groups were inoculated intranasally. A majority of mice inoculated only with standard VSV developed paralysis, most of them between days 7 and 9. The addition of DI particles altered the development of paralysis in several ways. When there was significant protection, a few still became paralyzed on days 7 and 9. When overall mortality was unaffected or even slightly increased, the majority of mice became paralyzed between days 7 and 9 as well. Protection could not be predicted based on a single ratio of standard VSV to DI particles or on the absolute amount of DI particles inoculated. Infectious virus recovered from mouse brains at the time of paralysis and incipient death showed considerable variation, although the titer in a majority of the animals was between 10(5) and 10(7) PFU/ml. When the brains of these paralyzed mice were examined for hybridizable VSV RNA, the detection of standard VSV RNA correlated well with infectivity. The amount of DI RNA in the coinfected mice was more variable and independent of the amount of 40S RNA, although DI RNA was usually found when standard RNA was present. Survivors examined between days 14 and 21 did not contain infectious virus or any detectable viral RNA in their brains. Because these results were consistent with the hypothesis of viral cycling in vivo, rather than a gradual accumulation of total infectious virus, mice were coinfected with 10(8) PFU of standard VSV and 10(5) PFU equivalents of DI particles and sacrificed daily thereafter, irrespective of whether they developed paralysis. Infectivity measurements indicated a reproducible cycling pattern of VSV in the mouse brains with a periodicity of about 5 days. This cycling and the detection of DI RNA in brains several days after intranasal inoculation suggest that there is a dynamic continuous interaction between standard VSV and its DI particle beyond the initial site of replication as the virus population spreads into the host animal. Such cycling of virus production before the full development of specific immune responses from the host may have important implications for viral diagnostics and disease transmission.  相似文献   

11.
Analyses of prototype vesicular stomatitis (VSV, Indiana serotype) mRNA-32P-labeled viral RNA duplexes have established the assignments of 65 of the 72 large oligonucleotides that are recovered by two-dimensional electrophoresis of RNase T1 digests of the viral RNA. Fifty of the oligonucleotides are recovered in the L RNA duplex, four each in the N, M, and NS duplexes, and three in the G RNA duplex. Studies of three small defective-particle RNA species indicate that they have only L gene oligonucleotides in addition to three of the seven unassigned oligonucleotides. Some L gene ordering of oligonucleotides can be postulated from the defective-particle RNA sequence analyses. Analyses of naturally occurring alternate isolates of VSV Indiana have established that by comparison to the prototype virus strain, the alternate isolates minimally have genome sequence differences in L, G, N, NS and/or unassigned regions of the genome. Changes in the genome have also been induced by vitro high-level mutagenesis of the prototype virus.  相似文献   

12.
Experimental evolution has been used for various biotechnological applications including protein and microbial cell engineering, but less commonly in the field of oncolytic virotherapy. Here, we sought to adapt a rapidly evolving RNA virus to cells deficient for the tumor suppressor gene p53, a hallmark of cancer cells. To achieve this goal, we established four independent evolution lines of the vesicular stomatitis virus (VSV) in p53-knockout mouse embryonic fibroblasts (p53−/− MEFs) under conditions favoring the action of natural selection. We found that some evolved viruses showed increased fitness and cytotoxicity in p53−/− cells but not in isogenic p53+/+ cells, indicating gene-specific adaptation. However, full-length sequencing revealed no obvious or previously described genetic changes associated with oncolytic activity. Half-maximal effective dose (EC50) assays in mouse p53-positive colon cancer (CT26) and p53-deficient breast cancer (4T1) cells indicated that the evolved viruses were more effective against 4T1 cells than the parental virus or a reference oncolytic VSV (MΔ51), but showed no increased efficacy against CT26 cells. In vivo assays using 4T1 syngeneic tumor models showed that one of the evolved lines significantly delayed tumor growth compared to mice treated with the parental virus or untreated controls, and was able to induce transient tumor suppression. Our results show that RNA viruses can be specifically adapted typical cancer features such as p53 inactivation, and illustrate the usefulness of experimental evolution for oncolytic virotherapy.  相似文献   

13.
Vesicular stomatitis virus has been a preferred system to study evolution for several decades. New approaches to antiviral treatment, such as lethal mutagenesis, stem from investigations done with VSV. Recent work has shed new light in the way we view neutrality, a fundamental concept to understand the evolutionary history of RNA viruses.  相似文献   

14.
The evolution of vesicular stomatitis virus (VSV) in a constant environment, consisting of either mammalian or insect cells, has been compared to the evolution of the same viral population in changing environments consisting in alternating passages in mammalian and insect cells. Fitness increases were observed in all cases. An initial fitness loss of VSV passaged in insect cells was noted when fitness was measured in BHK-21 cells, but this effect could be attributed to a difference of temperature during VSV replication at 37 degrees C in BHK-21 cells. Sequencing of nucleotides 1-4717 at the 3' end of the VSV genome (N, P, M and G genes) showed that at passage 80 the number of mutations accumulated during alternated passages (seven mutations) is similar or larger than that observed in populations evolving in a constant environment (two to four mutations). Our results indicate that insect and mammalian cells can constitute similar environments for viral replication. Thus, the slow rates of evolution observed in natural populations of arboviruses are not necessarily due to the need for the virus to compromise between adaptation to both arthropod and vertebrate cell types.  相似文献   

15.
16.
17.
Tumor hypoxia presents an obstacle to the effectiveness of most antitumor therapies, including treatment with oncolytic viruses. In particular, an oncolytic virus must be resistant to the inhibition of DNA, RNA, and protein synthesis that occurs during hypoxic stress. Here we show that vesicular stomatitis virus (VSV), an oncolytic RNA virus, is capable of replication under hypoxic conditions. In cells undergoing hypoxic stress, VSV infection produced larger amounts of mRNA than under normoxic conditions. However, translation of these mRNAs was reduced at earlier times postinfection in hypoxia-adapted cells than in normoxic cells. At later times postinfection, VSV overcame a hypoxia-associated increase in alpha subunit of eukaryotic initiation factor 2 (eIF-2alpha) phosphorylation and initial suppression of viral protein synthesis in hypoxic cells to produce large amounts of viral protein. VSV infection caused the dephosphorylation of the translation initiation factor eIF-4E and inhibited host translation similarly under both normoxic and hypoxic conditions. VSV produced progeny virus to similar levels in hypoxic and normoxic cells and showed the ability to expand from an initial infection of 1% of hypoxic cells to spread through an entire population. In all cases, virus infection induced classical cytopathic effects and apoptotic cell death. When VSV was used to treat tumors established in nude mice, we found VSV replication in hypoxic areas of these tumors. This occurred whether the virus was administered intratumorally or intravenously. These results show for the first time that VSV has an inherent capacity for infecting and killing hypoxic cancer cells. This ability could represent a critical advantage over existing therapies in treating established tumors.  相似文献   

18.
We describe a sensitive, internally controlled method for comparing the genetic adaptability and relative fitness of virus populations in constant or changing host environments. Certain monoclonal antibody-resistant mutants of vesicular stomatitis virus can compete equally during serial passages in mixtures with the parental wild-type clone from which they were derived. These genetically marked "surrogate wild-type" neutral mutants, when mixed with wild-type virus, allow reliable measurement of changes in virus fitness and of virus adaptation to different host environments. Quantitative fitness vector plots demonstrate graphically that even clones of an RNA virus are composed of complex variant populations (quasispecies). Variants of greater fitness (competitive replication ability) were selected within very few passages of virus clones in new host cells or animals. Even clones which were well adapted to BHK21 cells gained further fitness during repeated passages in BHK21 cells.  相似文献   

19.
20.
RNA was isolated from polyribosomes of vesicular stomatitis virus (VSV)-infected cells and tested for its ability to direct protein synthesis in extracts of animal and plant cells. In cell-free, non-preincubated extracts of rabbit reticulocytes, the 28S VSV RNA stimulated synthesis of a protein the size of the vesicular stomatitis virus L protein whereas the 13 to 15S RNA directed synthesis of the VSV M, N, NS, and possibly G proteins. In wheat germ extracts, 13 to 15S RNA also directed synthesis of the N, NS, M, and possibly G proteins. Analysis of extracts labeled with formyl [(35)S]methionine showed that the 28S RNA directed the initiation of synthesis of one protein, whereas the 13 to 15S RNA directed initiation of at least four proteins. It is concluded that the 28S RNA encodes only the L protein, whereas the 13 to 15S RNA is a mixture of species, presumably monocistronic, which code for the four other known vesicular stomatitis virus proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号