首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mouse thymic leukemia (TL) Ag is a nonclassical MHC class I molecule that binds with higher affinity to CD8alphaalpha than CD8alphabeta. The interaction of CD8alphaalpha with TL is important for lymphocyte regulation in the intestine. Therefore, we studied the molecular basis for TL Ag binding to CD8alphaalpha. The stronger affinity of the TL Ag for CD8alphaalpha is largely mediated by three amino acids on exposed loops of the conserved alpha3 domain. Mutant classical class I molecules substituted with TL Ag amino acids at these positions mimic the ability to interact with CD8alphaalpha and modulate lymphocyte function. These data indicate that small changes in the alpha3 domain of class I molecules potentially can have profound physiologic consequences.  相似文献   

2.
The cell surface molecules CD4 and CD8 greatly enhance the sensitivity of T-cell antigen recognition, acting as "co-receptors" by binding to the same major histocompatibility complex (MHC) molecules as the T-cell receptor (TCR). Here we use surface plasmon resonance to study the binding of CD8alphaalpha to class I MHC molecules. CD8alphaalpha bound the classical MHC molecules HLA-A*0201, -A*1101, -B*3501, and -C*0702 with dissociation constants (K(d)) of 90-220 microm, a range of affinities distinctly lower than that of TCR/peptide-MHC interaction. We suggest such affinities apply to most CD8alphaalpha/classical class I MHC interactions and may be optimal for T-cell recognition. In contrast, CD8alphaalpha bound both HLA-A*6801 and B*4801 with a significantly lower affinity (>/=1 mm), consistent with the finding that interactions with these alleles are unable to mediate cell-cell adhesion. Interestingly, CD8alphaalpha bound normally to the nonclassical MHC molecule HLA-G (K(d) approximately 150 microm), but only weakly to the natural killer cell receptor ligand HLA-E (K(d) >/= 1 mm). Site-directed mutagenesis experiments revealed that variation in CD8alphaalpha binding affinity can be explained by amino acid differences within the alpha3 domain. Taken together with crystallographic studies, these results indicate that subtle conformational changes in the solvent exposed alpha3 domain loop (residues 223-229) can account for the differential ability of both classical and nonclassical class I MHC molecules to bind CD8.  相似文献   

3.
The development of TCR alphabeta(+), CD8alphabeta(+) intestinal intraepithelial lymphocytes (IEL) is dependent on MHC class I molecules expressed in the thymus, while some CD8alphaalpha(+) IEL may arise independently of MHC class I. We examined the influence of MHC I allele dosage on the development CD8(+) T cells in RAG 2(-/-) mice expressing the H-2D(b)-restricted transgenic TCR specific for the male, Smcy-derived H-Y Ag (H-Y TCR). IEL in male mice heterozygous for the restricting (H-2D(b)) and nonrestricting (H-2D(d)) MHC class I alleles (MHC F(1)) were composed of a mixture of CD8alphabeta(+) and CD8alphaalpha(+) T cells, while T cells in the spleen were mostly CD8alphabeta(+). This was unlike IEL in male mice homozygous for H-2D(b), which had predominantly CD8alphaalpha(+) IEL and few mostly CD8(-) T cells in the spleen. Our results demonstrate that deletion of CD8alphabeta(+) cells in H-Y TCR male mice is dependent on two copies of H-2D(b), whereas the generation of CD8alphaalpha(+) IEL requires only one copy. The existence of CD8alphabeta(+) and CD8alphaalpha(+) IEL in MHC F(1) mice suggests that their generation is not mutually exclusive in cells with identical TCR. Furthermore, our data imply that the level of the restricting MHC class I allele determines a threshold for conventional CD8alphabeta(+) T cell selection in the thymus of H-Y TCR-transgenic mice, whereas the development of CD8alphaalpha(+) IEL is dependent on, but less sensitive to, this MHC class I allele.  相似文献   

4.
Thymus leukemia (TL) Ags belong to the family of nonclassical MHC class I Ags and can be recognized by both TCRalphabeta and TCRgammadelta CTL with TL, but not H-2 restriction. We previously reported that the CTL epitope is TAP independent, but the antigenic molecule(s) presented by TL has yet to be determined. In the present study, TL tetramers were prepared with T3(b)-TL and murine beta(2)-microglobulin, not including antigenic peptides, and binding specificity was studied. CTL clones against TL Ags were stained with the T3(b)-TL tetramer, and the binding shown to be CD3 and CD8 dependent. Normal lymphocytes from various origins were also studied. Surprisingly, most CD8(+) intraepithelial lymphocytes derived from the small intestines (iIEL), as well as CD8(+) and CD4(+)CD8(+) thymocytes, were stained, while only very minor populations of CD8(+) cells derived from other peripheral lymphoid tissues, such as spleen and lymph nodes, were positive. The binding of T3(b)-TL tetramers to CD8(+) iIEL and thymocytes was CD8 dependent, but CD3 independent, in contrast to that to TL-restricted CTL. These results altogether showed that TL-restricted CTL can be monitored by CD3-dependent binding of T3(b)-TL tetramers. In addition, CD3-independent T3(b)-TL tetramer binding to iIEL and thymocytes may imply that TL expressed on intestinal epithelium and cortical thymocytes has a physiological function interacting with these tetramer(+)CD8(+) T lymphocytes.  相似文献   

5.
Thymic selection is controlled by the interaction between TCR and MHC/peptide. Strength and quality of the signal determine whether thymocytes are selected or deleted. The factors that contribute to this signal remain poorly defined. Here we show that fetal thymic organ cultures (FTOCs) derived from OT-I transgenic mice (the OT-I TCR is restricted by K(b)-SIINFEKL) on a K(b)D(b-/-) background support positive selection, but only when provided with soluble H-2K(b)-SIINFEKL complexes. Selection of CD8 T cells is independent of the valency of the ligand or its capability to coengage CD8 molecules. Both CD8alphaalpha and CD8alphabeta T cells are selected by H-2K(b)-SIINFEKL, but only CD8alphabeta cells are capable of releasing IFN-gamma in response to the same ligand. The alpha(4)beta(7) integrin is up-regulated on postselection thymocytes from FTOCs. After adoptive transfer, FTOC-derived OT-I CD8 T cells divide in response to the agonist peptide SIINFEKL. These results establish that CD8 T cells responsive to their nominal peptide-Ag can be generated in FTOC supplemented with soluble MHC class I molecules equipped with the same peptide.  相似文献   

6.
Thymic leukemia (TL) is a MHC class Ib molecule that interacts with CD8alphaalpha homodimers. CD8alphaalpha is abundantly expressed by intraepithelial T lymphocytes (IELs) located in close proximity to TL-expressing intestinal epithelial cells. In this study, we show that CD8alphaalpha(+) IELs "snatch" TL from the plasma membrane of TL-expressing cells and express TL in its proper orientation on their own cell surface. TL snatching is enhanced by cross-linking of IEL TCRs in a phosphatidylinositol kinase-dependent manner, and results in overall alterations to the IEL cell surface detected by enhanced binding of peanut agglutinin lectin. Induction of bowel inflammation results in the presence of TL on IELs, probably via in vivo snatching, providing the initial evidence for the interaction of CD8alphaalpha IELs with intestinal cells.  相似文献   

7.
CD8 glycoproteins are expressed as either alphaalpha homodimers or alphabeta heterodimers on the surface of T cells. CD8alphabeta is a more efficient coreceptor than the CD8alphaalpha for peptide Ag recognition by TCR. Each CD8 subunit is composed of four structural domains, namely, Ig-like domain, stalk region, transmembrane region, and cytoplasmic domain. In an attempt to understand why CD8alphabeta is a better coreceptor than CD8alphaalpha, we engineered, expressed, and functionally tested a chimeric CD8alpha protein whose stalk region is replaced with that of CD8beta. We found that the beta stalk region enhances the coreceptor function of chimeric CD8alphaalpha to a level similar to that of CD8alphabeta. Surprisingly, the beta stalk region also restored functional activity to an inactive CD8alpha variant, carrying an Ala mutation at Arg(8) (R8A), to a level similar to that of wild-type CD8alphabeta. Using the R8A variant of CD8alpha, a panel of anti-CD8alpha Abs, and three MHC class I (MHCI) variants differing in key residues known to be involved in CD8alpha interaction, we show that the introduction of the CD8beta stalk leads to a different topology of the CD8alpha-MHCI complex without altering the overall structure of the Ig-like domain of CD8alpha or causing the MHCI to employ different residues to interact with the CD8alpha Ig domain. Our results show that the stalk region of CD8beta is capable of fine-tuning the coreceptor function of CD8 proteins as a coreceptor, possibly due to its distinct protein structure, smaller physical size and the unique glycan adducts associated with this region.  相似文献   

8.
为了获得大量可溶性人类白细胞抗原F (Human leukocyte antigen F,HLA-F) 和分化簇8α同二聚体 (Cluster of differentiation 8α homodimers,CD8αα) 蛋白并对它们的相互关系进行研究,通过同义突变的方法改变了HLA-F和CD8αα基因序列N端的大肠杆菌稀有密码子,获得了高效表达的HLA-F和CD8αα包涵体蛋白;所表达的蛋白通过稀释法复性后,分别进行了凝胶过滤层析和离子交换纯化。经凝胶过滤层析和native-PAGE检测,推测HLA-  相似文献   

9.
NK cell recognition of targets is strongly affected by MHC class I specific receptors. The recently published structure of the inhibitory receptor Ly49A in complex with H-2Dd revealed two distinct sites of interaction in the crystal. One of these involves the alpha1, alpha2, alpha3, and beta2-microglobulin (beta2m) domains of the MHC class I complex. The data from the structure, together with discrepancies in earlier studies using MHC class I tetramers, prompted us to study the role of the beta2m subunit in MHC class I-Ly49 interactions. Here we provide, to our knowledge, the first direct evidence that residues in the beta2m subunit affect binding of MHC class I molecules to Ly49 receptors. A change from murine beta2m to human beta2m in three different MHC class I molecules, H-2Db, H-2Kb, and H-2Dd, resulted in a loss of binding to the receptors Ly49A and Ly49C. Analysis of the amino acids involved in the binding of Ly49A to H-2Dd in the published crystal structure, and differing between the mouse and the human beta2m, suggests the cluster formed by residues Lys3, Thr4, Thr28, and Gln29, as a potentially important domain for the Ly49A-H-2Dd interaction. Another possibility is that the change of beta2m indirectly affects the conformation of distal parts of the MHC class I molecule, including the alpha1 and alpha2 domains of the heavy chain.  相似文献   

10.
The alpha 1 and alpha 2 domains of the class I MHC molecule constitute the putative binding site for processed peptides and the TCR, although the alpha 3 domain has been implicated as a binding site for the CD8 molecule. Species specificity in the binding of CD8 to the alpha 3 domain has been suggested as an explanation for the low xenogeneic T cell response to class I molecules, but results on this point have been conflicting and controversial. We have addressed this issue using CTL lines from HLA-A2.1 transgenic mice that specifically recognize and lyse A2.1-expressing cells infected with influenza A/PR/8 or pulsed with influenza matrix peptide M1(57-68). Species specificity was examined using transfectants that expressed hybrid molecules containing the alpha 1 and alpha 2 domains from HLA-A2.1 and the alpha 3 domain from a murine class I molecule. Lower levels of M1(57-68) peptide were required to sensitize L cell transfectants expressing a chimera that contained an H-2Dd alpha 3 domain than targets expressing the intact A2.1 molecule. However, at high doses of peptide, lysis of these two targets was similar. However, no reproducible difference in sensitization was observed using EL4 or Jurkat transfectants expressing A2.1 or A2.1 chimeric molecules that contained an H-2Kb alpha 3 domain. In all cases, however, lysis of peptide-pulsed A2.1 expressing targets was more sensitive to inhibition with anti-CD8 mAb than lysis of cells expressing these chimeric molecules. Thus, under suboptimal conditions such as low Ag density or in the presence of anti-CD8 mAb, these CTL preferentially recognize class I molecules with a murine alpha 3 domain. This suggests that there is some species specificity in the interaction of CD8 with the alpha 3 domain of the class I molecule. However, CTL recognition was inhibited by point mutations in the alpha 3 domain of HLA-A2.1 that have been shown to inhibit binding of human CD8 and recognition by human CTL, suggesting that murine CD8 interacts to some degree with human alpha 3 domains, and that similar alpha 3 domain residues may be important for murine and human CD8 binding. The relevance of these results to an understanding of low xenogeneic responses is discussed.  相似文献   

11.
CD4 and CD8 T lymphocytes infiltrate the parenchyma of mouse brains several weeks after intracerebral, intraperitoneal, or oral inoculation with the Chandler strain of mouse scrapie, a pattern not seen with inoculation of prion protein knockout (PrP(-/-)) mice. Associated with this cellular infiltration are expression of MHC class I and II molecules and elevation in levels of the T-cell chemokines, especially macrophage inflammatory protein 1beta, IFN-gamma-inducible protein 10, and RANTES. T cells were also found in the central nervous system (CNS) in five of six patients with Creutzfeldt-Jakob disease. T cells harvested from brains and spleens of scrapie-infected mice were analyzed using a newly identified mouse PrP (mPrP) peptide bearing the canonical binding motifs to major histocompatibility complex (MHC) class I H-2(b) or H-2(d) molecules, appropriate MHC class I tetramers made to include these peptides, and CD4 and CD8 T cells stimulated with 15-mer overlapping peptides covering the whole mPrP. Minimal to modest K(b) tetramer binding of mPrP amino acids (aa) 2 to 9, aa 152 to 160, and aa 232 to 241 was observed, but such tetramer-binding lymphocytes as well as CD4 and CD8 lymphocytes incubated with the full repertoire of mPrP peptides failed to synthesize intracellular gamma interferon (IFN-gamma) or tumor necrosis factor alpha (TNF-alpha) cytokines and were unable to lyse PrP(-/-) embryo fibroblasts or macrophages coated with (51)Cr-labeled mPrP peptide. These results suggest that the expression of PrP(sc) in the CNS is associated with release of chemokines and, as shown previously, cytokines that attract and retain PrP-activated T cells and, quite likely, bystander activated T cells that have migrated from the periphery into the CNS. However, these CD4 and CD8 T cells are defective in such an effector function(s) as IFN-gamma and TNF-alpha expression or release or lytic activity.  相似文献   

12.
In an effective immune response, CD8+ T cell recognition of virally derived Ag, bound to MHC class I, results in killing of infected cells. The CD8alphabeta heterodimer acts as a coreceptor with the TCR, to enhance sensitivity of the T cells to peptide/MHC class I, and is two orders of magnitude more efficient as a coreceptor than the CD8alphaalpha. To understand the important interaction between CD8alphabeta and MHC class I, we created a panel of CD8beta mutants and identified mutations in the CDR1, CDR2, and CDR3 loops that decreased binding to MHC class I tetramers as well as mutations that enhanced binding. We tested the coreceptor function of a subset of reducing and enhancing mutants using a T cell hybridoma and found similar reducing and enhancing effects. CD8beta-enhancing mutants could be useful for immunotherapy by transduction into T cells to enhance T cell responses against weak Ags such as those expressed by tumors. We also addressed the question of the orientation of CD8alphabeta with MHC class I using CD8alpha mutants expressed as a heterodimer with wild-type CD8alpha or CD8beta. The partial rescuing of binding with wild-type CD8beta compared with wild-type CD8alpha is consistent with models in which either the topology of CD8alphaalpha and CD8alphabeta binding to MHC class I is different or CD8alphabeta is capable of binding in both the T cell membrane proximal and distal positions.  相似文献   

13.
The CD8 glycoprotein functions as an essential element in the control of T-cell selection, maturation and the TCR-mediated response to peptide antigen. CD8 is expressed as both heterodimeric CD8alphabeta and homodimeric CD8alphaalpha isoforms, which have distinct physiological roles and exhibit tissue-specific expression patterns. CD8alphaalpha has previously been crystallized in complex with class I pMHC and, more recently, with the mouse class Ib thymic leukemia antigen (TL). Here, we present the crystal structure of a soluble form of mouse CD8alphaalpha in complex with rat monoclonal antibody YTS 105.18 Fab fragment at 2.88 A resolution. YTS 105.18, which is commonly used in the blockade of CD8+ T-cell activation in response to peptide antigen, is specific for mouse CD8alpha. The YTS 105.18 Fab is one of only five rat IgG Fab structures to have been reported to date. Analysis of the YTS 105.18 Fab epitope on CD8alpha reveals that this antibody blocks CD8 activity by hydrogen bonding to residues that are critical for interaction with both class I pMHC and TL. Structural comparison of the liganded and unliganded forms of soluble CD8alphaalpha indicates that the mouse CD8alphaalpha immunoglobulin-domain dimer does not undergo significant structural alteration upon interaction either with class I pMHC or TL.  相似文献   

14.
Mouse NK cells express Ly-49 receptors specific for classical MHC class I molecules. Several of the Ly-49 receptors have been characterized in terms of function and ligand specificity. However, the only Ly-49 receptor-ligand interaction previously described in detail is that between Ly-49A and H-2D(d), as studied by point mutations in the ligand and the crystal structure of the co-complex of these molecules. It is not known whether other Ly-49 receptors bind MHC class I in a similar manner as Ly-49A. Here we have studied the effect of mutations in Ly-49C on binding to the MHC class I molecules H-2K(b), H-2D(b), and H-2D(d). The MHC class I molecules were used as soluble tetramers to stain transiently transfected 293T cells expressing the mutated Ly-49C receptors. Three of nine mutations in Ly-49C led to loss of MHC class I binding. The three Ly-49C mutations that affected MHC binding correspond to Ly-49A residues that are in contact or close to H-2D(d) in the co-crystal, demonstrating that MHC class I binding by Ly-49C is dependent on residues in the same area as that used by Ly-49A for ligand contacts.  相似文献   

15.
Lymphocytic choriomeningitis virus infection of H-2(b) mice generates a strong CD8(+) CTL response mainly directed toward three immunodominant epitopes, one of which, gp33, is presented by both H-2D(b) and H-2K(b) MHC class I molecules. This CTL response acts as a selective agent for the emergence of viral escape variants. These variants generate altered peptide ligands (APLs) that, when presented by class I MHC molecules, antagonize CTL recognition and ultimately allow the virus to evade the cellular immune response. The emergence of APLs of the gp33 epitope is particularly advantageous for LCMV, as it allows viral escape in the context of both H-2D(b) and H-2K(b) MHC class I molecules. We have determined crystal structures of three different APLs of gp33 in complex with both H-2D(b) and H-2K(b). Comparison between these APL/MHC structures and those of the index gp33 peptide/MHC reveals the structural basis for three different strategies used by LCMV viral escape mutations: 1) conformational changes in peptide and MHC residues that are potential TCR contacts, 2) impairment of APL binding to the MHC peptide binding cleft, and 3) introduction of subtle changes at the TCR/pMHC interface, such as the removal of a single hydroxyl group.  相似文献   

16.
A few cases have been described of antigenic determinants that are broadly presented by multiple class II MHC molecules, especially murine I-E or human DR, in which polymorphism is limited to the beta chain, and the alpha chain is conserved. However, no similar cases have been studied for presentation by class I MHC molecules. Because both domains of the MHC peptide binding site are polymorphic in class I molecules, exploring permissiveness in class I presentation would be of interest, and also such broadly presented antigenic determinants would clearly be useful for vaccine development. We had defined an immunodominant determinant, P18, of the HIV-1 gp160 envelope protein recognized by human and murine CTL. To determine the range of class I MHC molecules that could present this peptide and to determine whether two HIV-1 gp160 Th cell determinants, T1 and HP53, could also be presented by class I MHC molecules, we attempted to generate CTL specific for these three peptides in 10 strains of B10 congenic mice, representing 10 MHC types, and BALB/c mice. P18 was presented by at least four different class I MHC molecules from independent haplotypes (H-2d, p, u, and q to CD8+ CTL. In H-2d and H-2q the presentation was mapped to the D-end class I molecule, and for Dd, a requirement for both the alpha 1 and alpha 2 domains of Dd, not Ld, was found. HP53 was also presented by the same four different class I MHC molecules to CD8+ CTL although at higher concentrations. T1 was presented by class I molecules in three different strains of distinct MHC types (B10.M, H-2f; B10.A, H-2a; and B10, H-2b) to CTL. The CTL specific for P18 and HP53 were shown to be CD8+ and CD4- and to kill targets expressing endogenously synthesized whole gp160 as well as targets pulsed with the corresponding peptide. To compare the site within each peptide presented by the different class I molecules, we used overlapping and substituted peptides and found that the critical regions of each peptide are the similar for all four MHC molecules. Thus, antigenic sites are broadly or permissively presented by class I MHC molecules even without a nonpolymorphic domain as found in DR and I-E, and these sequences may be of broad usefulness in a synthetic vaccine.  相似文献   

17.
beta(2)-Microglobulin (beta(2)m) is non-covalently linked to the major histocompatibility complex (MHC) class I heavy chain and interacts with CD8 and Ly49 receptors. Murine MHC class I heavy chains can bind human beta(2)m (hbeta(2)m) and peptide, and such hybrid molecules are often used in structural and functional studies. The replacement of mouse beta(2)m (mbeta(2)m) with hbeta(2)m has several functional consequences for MHC class I complex stability and specificity, but the structural basis for this is presently unknown. To investigate the impact of species-specific beta(2)m subunits on MHC class I conformation, we provide a crystallographic comparison of H-2D(b) in complex with LCMV-derived gp33 peptide and either hbeta(2)m or mbeta(2)m. The conformation of the gp33 peptide is not affected by the beta(2)m species. Comparison of the interface between beta(2)m and the alpha(1)alpha(2) domains of the heavy chain in these two crystal structures reveals a marked increase in both polarity and number of hydrogen bonds between hbeta(2)m and the alpha(1)alpha(2) domains of H-2D(b). We propose that the positioning of two hydrogen bond rich regions at the hbeta(2)m/alpha(1)alpha(2) interface plays a central role in the increased overall stability and peptide exchange capacity in the H-2D(b)/hbeta(2)m complex. These two regions act as bridges, holding and stabilizing the underside of the alpha(1) and alpha(2) helices, enabling a prolonged peptide-receptive conformation of the peptide binding cleft. Furthermore, analysis of H-2D(b) in complex with either mbeta(2)m or hbeta(2)m provides a structural explanation for the differential binding of H-2D(b)/hbeta(2)m to both Ly49A and Ly49C. Our comparative structural study emphasizes the importance of beta(2)m residues at positions 3, 6 and 29 for binding to Ly49A and suggests that sterical hindrance by residue K6 on hbeta(2)m impairs the recognition of Ly49C by H-2D(b)/gp33/hbeta(2)m. Finally, comparison of the two H-2D(b) crystal structures implies that the beta(2)m species may affect the strength of TCR recognition by affecting CD8 binding.  相似文献   

18.
The generation of knockout mice demonstrated that noncytotoxic CD4(+), but not cytotoxic CD8(+), T cells were essential for the rejection of skin or organ allografts. Earlier we reported that allograftinduced macrophages (AIM) in mice lysed allografts with H-2 haplotype specificity, implying screening of grafts by AIM. Here, we isolated a cDNA clone encoding a novel receptor on AIM (H-2D(b)) for an allogeneic major histocompatibility complex (MHC) class I molecule, H-2D(d), by using H-2D(d) tetramer and a monoclonal antibody (mAb; R15) specific for AIM. The cDNA (1,181-bp) encoded a 342-amino acid polypeptide with a calculated molecular mass of 45 kDa and was found to be expressed on AIM, but not on resident macrophages or other cells, infiltrating into the rejection site. HEK293T cells transfected with this cDNA reacted with R15 mAb and H-2D(d), but not H-2L(d), H-2K(d), H-2D(b), H-2K(b), H-2D(k), or H-2K(k), molecules; and the H-2D(d) binding was suppressed by the addition of R15 or anti-H-2D(d) mAb. AIM yielded a specific saturation isotherm in the presence of increasing concentrations of H-2D(d), but not H-2D(b) or H-2D(k), molecules. The dissociation constant of AIM toward H-2D(d) tetramers was 1.9 x 10(-9) M ; and the binding was completely inhibited by the addition of R15 or anti-H-2D(d) mAb. These results reveal that a novel receptor for an allogeneic H-2D(d) molecule was induced on effector macrophages responsible for allograft (H-2(d)) rejection in H-2(b) mice.  相似文献   

19.
Subtle differences oppose CD4+ to CD8+ T cell physiologies that lead to different arrays of effector functions. Interestingly, this dichotomy has also unexpected practical consequences such as the inefficacy of many MHC class II tetramers in detecting specific CD4+ T cells. As a mean to study the CD4+ anti-OVA response in H-2(d) and H-2(b) genetic backgrounds, we developed I-A(d)- and I-A(b)-OVA recombinant MHC monomers and tetramers. We were able to show that in this particular system, despite normal biological activity, MHC class II tetramers failed to stain specific T cells. This failure was shown to be associated with a lack of cooperation between binding sites within the tetramer as measured by surface plasmon resonance. This limited cooperativeness translated into a low "functional avidity" and very transient binding of the tetramers to T cells. To overcome this biophysical barrier, recombinant artificial APC that display MHC molecules in a lipid bilayer were developed. The plasticity and size of the MHC-bearing fluorescent liposomes allowed binding to Ag-specific T cells and the detection of low numbers of anti-OVA T cells following immunization. The same liposomes were able, at 37 degrees C, to induce the full reorganization of the T cell signaling molecules and the formation of an immunological synapse. Artificial APC will allow T cell detection and the dissection of the molecular events of T cell activation and will help us understand the fundamental differences between CD4+ and CD8+ T cells.  相似文献   

20.
The nonclassical class I molecule, thymic leukemia (TL), has been shown to be expressed on intestinal epithelial cells and to interact with CD8(+) intraepithelial T lymphocytes. We generated recombinant soluble TL (T18(d)) H chains in bacteria as inclusion bodies and refolded them with beta(2)-microglobulin in the presence or absence of a random peptide library. Using a mAb, HD168, that recognizes a conformational epitope on native TL molecules, we observed that protein folds efficiently in the absence of peptide. Circular dichroism analysis demonstrated that TL molecules have structural features similar to classical class I molecules. Moreover, thermal denaturation experiments indicated that the melting temperature for peptide-free TL is similar to values reported previously for conventional class I-peptide complexes. Our results also show that CD8alphaalpha binding is not dependent on either TL-associated peptide or TL glycosylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号