首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The excretion in the bile and urine of intraperitoneally injected (14)C-labelled monoquaternary ammonium or pyridinium cations was measured in bile-duct-cannulated rats (ten compounds) and in guinea pigs and rabbits (six compounds). 2. Seven of these, namely N-methylpyridinium, tetraethylammonium, trimethylphenylammonium, diethylmethylphenylammonium, methylphenyldipropylammonium, dibenzyldimethylammonium and tribenzylmethylammonium, were excreted largely unchanged in the bile and urine. 3. 3-Hydroxyphenyltrimethylammonium, 3-bromo-N-methylpyridinium and cetyltrimethylammonium were metabolized to an appreciable extent in the rat. 4. In intact rats intraperitoneally injected trimethylphenylammonium (mol.wt. 136) was excreted mainly in the urine, dibenzyldimethylammonium (mol.wt. 226) was excreted in roughly equal amounts in the urine and faeces, and tribenzylmethylammonium (mol.wt. 302) was excreted mainly in the faeces. The faecal excretion of these compounds corresponded to their biliary excretion in bile-duct-cannulated rats. About 3-4% of tribenzyl[(14)C]methylammonium was eliminated as (14)CO(2). 5. In rats the extent of biliary excretion of four cations with molecular weights in the range 94-164 was less than 10% of the dose, whereas that of five cations with molecular weights 173-302 was greater than 10%. These results and other data from the literature suggested that the molecular weight needed for the biliary excretion of such cations to an extent of 10% or more of the dose was about 200+/-50. Studies with six cations in guinea pigs and rabbits suggest that this value applies also to these species. 6. The results suggest that the threshold molecular weight for the appreciable (>10%) biliary excretion of monoquaternary cations is different from that for anions (Millburn et al., 1967a; Hirom et al., 1972b). With rats, guinea pigs and rabbits, no significant species difference was noted, whereas with anions there is a marked species difference.  相似文献   

2.
1. The extent of the excretion in the bile and urine of the (14)C-labelled dications, diquat, paraquat, morfamquat, decamethonium and dimethyltubocurarine in bile-duct-cannulated rats, guinea pigs and rabbits was examined. 2. These compounds were excreted unchanged in bile and urine, except diquat, which was metabolized to a significant extent (18% of the dose) in the rabbit only. 3. The extent of the biliary excretion of diquat (mol wt. of ion 184), paraquat (186), decamethonium (258) and morfamquat (469) was less than 10% of the dose in the three species, whereas that of dimethlytubocurarine (653) was greater than 10% in the rat and rabbit but not in the guinea pig. 4. These results together with data from the literature suggest that the molecular weight at which the excretion of dications in the bile exceeds 10% of the dose is in the region of 500-600, which differs from the values for monocations (Hughes et al., 1973) and anions (Millburn et al., 1967; Hirom et al., 1972).  相似文献   

3.
Biliary excretion in foreign compounds. Sulphonamide drugs in the rat   总被引:14,自引:13,他引:1       下载免费PDF全文
1. The extent of biliary excretion in the rat of 15 sulphonamide compounds was studied. 2. Most of the sulphonamides studied, with molecular weights from 172 (sulphanilamide) to 352 (N4-acetylsulphadimethoxine) are poorly excreted in the bile (0–4% of the dose), except sulphapyridine, sulphamethoxypyridazine and sulphadimethoxine. The last three are partly metabolized to glucuronides, whose molecular weights and polarities are such as to allow them to be excreted in the bile in appreciable amounts. 3. Succinylsulphathiazole and phthalylsulphathiazole are polar and have molecular weights (355 and 403) of an appropriate order, and are excreted unchanged in the bile in appreciable amounts. 4. Sulphadimethoxine N1-glucuronide (mol.wt. 487) is extensively excreted in the bile unchanged. 5. The results are examined in the light of the hypotheses put forward in the preceding paper (Millburn, Smith & Williams, 1967).  相似文献   

4.
Excretion of cholate glucuronide   总被引:1,自引:0,他引:1  
[3-3H]Cholic acid glucuronide [7 alpha,12 alpha-dihydroxy-3 alpha-O-(beta-D-glucopyranosyluronate)-5 beta- cholan-24-oate] was synthesized and administered to rats prepared with either an external biliary fistula or a ligated bile duct. When bile fistula animals were given either microgram or milligram amounts of the glucuronide, biliary secretion of label was rapid and efficient: greater than 90% of the administered label was secreted within 60 min and total recovery of label in bile was 98.6 +/- 1.2%. Studies in which [14C]taurocholate was included in the dose indicated that this bile acid was secreted into bile significantly more rapidly than was the glucuronide. In animals with ligated bile ducts, urinary excretion was the major route of elimination: after 20 hr, 83.4 +/- 9.3% of the administered dose had been excreted in urine. Urinary excretion of cholate glucuronide was significantly more rapid than that of taurocholate. Gas-liquid chromatographic analysis of the methyl ester acetate derivatives of labeled compounds isolated from bile and urine by chromatography established that the bulk (greater than 70%) of the administered material was secreted in bile or excreted in urine as the intact cholate glucuronide. From these results, we conclude that the glucuronidation of cholic acid produces a derivative which is rapidly and effectively cleared from the circulation and excreted.  相似文献   

5.
The enterohepatic circulation and metabolism of ethynodiol diacetate (3beta,17beta-diacetoxy-17alpha-ethynyl-estr-4-ene) in baboons were studied following the intravenous injection of this contraceptive steroid labeled with 14C (4-position) and with 3H (in either the 3- or 17-acetoxy moieties). Bile and urine from four baboons with biliary fistulas and urine from four intact baboons were collected for 7 hours. On the average, 40% and 44% of the injected dose were excreted in the bile and urine, respectively. Only 48% was recovered in the urine of intact baboons. Analysis of these excretion rates indicates an insignificant enterohepatic circulation of this compound. The steroid was excreted mostly (over 80%) as a glucosiduronate in urine and bile. Very little excretion of the 3-acetoxy compound was detected in the urine or bile at any time interval. 17-Monoacetoxy compounds, however, were detected both in urine and bile, suggesting a difference in the rate of in vivo hydrolysis of the 17beta- vs. the 3beta-acetate.  相似文献   

6.
1. The extent of the excretion in the bile of the rat of benzene and 21 of its simple derivatives was studied. 2. Some 16 compounds of molecular weight less than 200, and including neutral molecules (benzene and toluene), aromatic acids, aromatic amines and phenols, were injected in solution intraperitoneally into biliary-cannulated rats. Metabolites in the bile were identified and estimated. The extent of biliary excretion of these compounds was low, i.e. 0–10% of the dose in 24hr., and most appeared in the bile mainly as conjugates. 3. The biliary excretion of six conjugates of molecular weight less than 300, including three glycine conjugates, one sulphate conjugate, one glucuronic acid conjugate and two acetyl derivatives, was low (less than 3% of the dose). 4. It is concluded that simple benzene derivatives of molecular weight less than about 300 are poorly excreted in rat bile.  相似文献   

7.
1. The extent of biliary excretion of biphenyl, tetralin, stilboestrol and phenolphthalein was studied in the rat. 2. Biphenyl and its 4-hydroxy and 4,4′-dihydroxy derivatives are extensively excreted in the bile as glucuronides in amounts increasing in order of molecular weight. 3. Stilboestrol and its glucuronide are excreted almost quantitatively in the bile mainly as the monoglucuronide, as are also phenolphthalein and its glucuronide. 4. Tetralin is excreted to the extent of about 13% of the dose, mainly as ac-tetralyl glucuronides. 5. The results and those of Abou-El-Makarem, Millburn, Smith & Williams (1967) are discussed and it is concluded that the extent of biliary excretion of foreign compounds in rats depends on their molecular weight and their possessing a strongly polar anionic group. There appears to be a minimum value of this molecular weight below which little biliary excretion (i.e. not more than 5–10% of the dose) occurs. There is some latitude in the choice of this molecular weight, which is about 325±50. The necessary molecular weight and polar group can be acquired by metabolism. Above this minimum value biliary excretion increases with molecular weight. It is suggested that the mechanism of the biliary excretion of foreign compounds may be similar to that of conjugated bile acids, which are highly polar and whose molecular weights exceed 400.  相似文献   

8.
1. The biliary excretion of injected [14C]aniline, [14C]benzoic acid, 4-amino-hippuric acid and 4-acetamidohippuric acid in six or eight species of animal (rat, dog, hen, cat, rabbit, guinea pig, rhesus monkey and sheep) was studied. 2. These compounds, with molecular weights in the range 93–236, are poorly excreted in the bile in all the species examined and, in effect, there is little significant species difference in the extent of their biliary excretion. 3. Compounds of higher molecular weight (355–495) were also studied, namely succinylsulphathiazole, [14C]stilboestrol glucuronide, sulphadimethoxine N1-glucuronide and phenolphthalein glucuronide. 4. With these compounds a clear species difference in the extent of biliary excretion was found, the rat, dog and hen being good excretors, the rabbit, guinea pig and monkey poor excretors, and the cat and sheep taking an intermediary position. 5. There was a general trend for biliary excretion to be higher in all species when the compounds were of higher molecular weight. 6. These results are discussed in their relation to species differences in drug metabolism.  相似文献   

9.
In most mammalian species, inorganic arsenicals are extensively biotransformed and excreted both in unchanged form and as metabolites. In the bile of rats receiving arsenate (AsV) or arsenite (AsIII) we have identified monomethylarsonous acid (MMAsIII), purportedly the most toxic metabolite of inorganic arsenic. As rats are not commonly accepted for studying arsenic metabolism, we carried out a comparative investigation on the excretion of AsV, AsIII and their metabolites in five animal species in order to determine whether they also form MMAsIII from AsV and AsIII. Anaesthetised bile duct-cannulated rats, mice, hamsters, rabbits, and guinea pigs were injected with AsV or AsIII (50 micromol/kg, i.v.) and their bile and urine was collected for 2 h. Arsenic in bile and urine was speciated by HPLC-hydride generation-atomic fluorescence spectrometry and the excretion rates of AsV, AsIII, monomethylarsonic acid (MMAsV), MMAsIII and dimethylarsinic acid (DMAsV) were quantified. All species injected with AsV excreted arsenic preferentially into urine, whereas all animals receiving AsIII, except rabbits, delivered more arsenic into bile than urine. Bile contained almost exclusively trivalent arsenic (i.e. AsIII and/or MMAsIII), whereas AsV, AsIII and DMAsV appeared in urine. Except for guinea pigs, which do not methylate arsenic, the other species formed MMAsIII and excreted it into bile. Having excreted as much as 8% of the dose of AsIII or AsV in 2 h as MMAsIII, rats were by far the most efficient producers of this supertoxic metabolite. Thus, although the rat is not a good model for studying long-term arsenic disposition, this species appears especially valuable in studies on AsIII methyltransferase and in vivo formation of MMAsIII.  相似文献   

10.
The metabolic fate of chlormadinone acetate (17alpha-acetoxy-6-chloro-4, 6-pregnadiene-3, 20-dione; CAP) was studied in intact and biliary fistula baboons. The steroid was labeled with 3H at position 1 and with 14C at the carboxyl moiety of the 17alpha-acetate, thus affording the opportunity to ascertain the loss of the 17alpha-acetoxy group and the fate of both labels. The averages of the radioactivity excreted, given as percentages of the amounts injected, and the standard deviations were as follows: In the urine of intact animals after 6 hours, 5.7 +/- 0.2% and 5.5 +/- 0.7% of the 3H and 14C were recovered, respectively. After 6 days, there was 17.5% of the 3H and 16.2% of the 14C in the urine plus 15.3% of the 3H and 16.4% of the 14C in the feces. In baboons with biliary fistulas, the total radioactivity excreted was 7.8 +/- 0.7% of the 3H and 11.6% of the 14C in the urine, and 30.9 +/- 4.4% of the 3H and 30.7% of the 14C in the bile after 6 hours. Glucosiduronates were the predominant conjugates in the urine and bile. The similarity in the urinary excretion of radioactivity in the first 6 hours in intact and biliary fistula animals, the relatively low excretion of radioactivity in the bile and after 6 days in the urine, and the low fecal excretion suggest that the metabolites of CAP are not involved in an extensive enterohepatic circulation in the baboon. Deacetylation of the 17alpha-acetate in CAP was detected in the early collection periods of the urine and bile and constituted a very small percentage of the injected compound. No significant oxygenation of CAP at position 1 was detected. The metabolism of CAP is discussed and compared to our previously reported data on the metabolism of progesterone, ethynodiol diacetate and medroxyprogesterone acetate and the data on other progestogens reported in the literature. It appears that the excretion of CAP is significantly slower in the baboon than that of the other progestogens. The amounts of glucosiduronates of CAP and/or its metabolites formed in vivo are less than those formed with the other progestogens. Also, the extent of deacetylation of the 17alpha-acetate of CAP is much less than that of the 3beta-acetate of ethynodiol diacetate.  相似文献   

11.
The metabolic fate and mode of excretion of cyclohexylphenyl 4-[35S]sulphate were studied in the guinea pig. Up to 54.8% of the dose appeared in the bile, the majority as unchanged ester. Substantial amounts of hydroxylated cyclohexylphenyl 4-[35S]sulphate were also excreted in the bile together with minor amounts of the corresponding glucuronic acid conjugate. When isolated guinea-pig livers were perfused with cyclohexylphenyl 4-[35S]sulphate the biliary components were the same as those in the intact animal, although the relative concentration of the hydroxylated derivative was significantly greater. When the hydroxylated derivative was re-injected into guinea pigs it was excreted almost entirely unchanged in the bile. However, in the rat, it was excreted in the bile as a glucuronic acid conjugate. These findings are discussed in relation to studies carried out in the rat [Hearse, Powell, Olavesen & Dodgson (1969) Biochem. Pharmacol. 18, 181--195] and to differences in enzyme activities in rat and guinea-pig liver. The results are also discussed in terms of the molecular-weight threshold for the excretion of anions in guinea-pig bile.  相似文献   

12.
In the present study HD-03, a herbal formulation was investigated for its anti-cholestatic activity in TAA-induced cholestasis in anaesthetized guinea pigs. Administration of TAA at a dose of 100 mg/kg body wt significantly reduced the bile flow, bile acid and bile salt excretion. Pretreatment with HD-03 at a dose of 750 mg/kg body wt per orally for 15 days in guinea pigs significantly prevented thioacetamide-induced changes in bile flow, bile acids and bile salts excretion. Thus, HD-03 can serve as a potent choleretic and anti-cholestatic agent.  相似文献   

13.
Metabolism of cysteinyl leukotrienes in monkey and man   总被引:1,自引:0,他引:1  
The proinflammatory cysteinyl leukotrienes are inactivated in primates by (a) intravascular degradation, (b) hepatic and renal uptake from the blood circulation, (c) intracellular metabolism of leukotriene E4 (LTE4), and (d) biliary and renal excretion of LTC4 degradation products. We have analyzed cysteinyl leukotriene metabolites excreted into bile and urine of the monkey Macaca fascicularis and of man. In both species, hepatobiliary leukotriene elimination predominated over renal excretion. In a representative healthy human subject at least 25% of the administered radioactivity were recovered from bile and 20% from urine within 24 h. In monkey and man intravenous administration of 14,15-3H2-labeled LTC4 resulted in the biliary and urinary excretion of labeled LTE4, omega-hydroxy-LTE4, omega-carboxy-LTE4, omega-carboxy-dinor-LTE4, and omega-carboxy-tetranor-dihydro-LTE4. Small amounts of N-acetyl-LTE4 were detected in human urine only. Oxidative metabolism of LTE4 proceeded more rapidly in the monkey resulting in the formation of higher relative amounts of omega-oxidized leukotrienes in this species as compared to man. [3H]H2O amounted to less than 2% of the administered dose in monkey and human bile and urine samples. Incubation of isolated human hepatocytes with [3H2]LTC4, [3H2]LTD4, and [3H2]LTE4 showed that only [3H2]LTE4 underwent intracellular oxidative metabolism resulting in the formation of omega- and beta-oxidation products. N-Acetylated LTE4 derivatives were not detected as products formed by human hepatocytes. By a combination of reversed-phase high-performance liquid chromatography and radioimmunoassay, endogenous LTE4 and N-acetyl-LTE4 were detected in human urine in concentrations of 220 +/- 40 and 24 +/- 3 pM, corresponding to 12 +/- 1 and 1.5 +/- 0.2 nmol/mol creatinine, respectively (mean +/- SEM; n = 10). Endogenous LTD4 and LTE4 were detected in human bile (n = 3) in concentrations between 0.2-0.9 nM. Our results demonstrate that LTD4 and LTE4 are major LTC4 metabolites in human bile and/or urine and may serve as index metabolites for the measurement of endogenously generated cysteinyl leukotrienes. Moreover, omega-oxidation and subsequent beta-oxidation from the omega-end contribute to the metabolic degradation of LTE4 not only in monkey but also in man.  相似文献   

14.
The present study was undertaken to determine whether the use of pentobarbital as an anesthetic reduces the biliary excretion of acidic drugs in rats. The drug chosen for the experiment was succinylsulfathiazole, a compound excreted unmetabolized in the bile. Animals anesthetized with urethane excreted 22.1% of the dose in the bile as compared to only 8.4% for the same time period in pentobarbital anesthetized animals. The choice of anesthetic did not affec the bile flow but did influence the bile/liver concentration gradient of succinylsulfathiazole, with the pentobarbital treated rats demonstrating a significantly lower value. Despite the higher biliary excretion of succinylsulfathiazole in the urethane treated rats, the total amount in the bile plus urine was 60% of the dose in the urethane anesthetized animals as compared with 62% in the pentobarbital treated rats. These results suggest that pentobarbital reduced the hepatic transport of succiylsulfathiazole into the bile. The question whether urethane is a preferred anesthetic for biliary excretion studies warrants further investigation.  相似文献   

15.
The fate of cyclamate in man and other species   总被引:2,自引:2,他引:0  
1. (14)C-labelled cyclamate has been administered to guinea pigs, rabbits, rats and humans. When given orally to these species on a cyclamate-free diet, cyclamate is excreted unchanged. In guinea pigs some 65% of a single dose is excreted in the urine and 30% in the faeces, the corresponding values for rats being 40 and 50%, for man, 30-50% and 40-60%, and for rabbits, 90 and 5%, the excretion being over a period of 2-3 days. 2. Cyclamate appears to be readily absorbed by rabbits but less readily by guinea pigs, rats and humans. 3. If these animals, including man, are placed on a diet containing cyclamate they develop the ability to convert orally administered cyclamate into cyclohexylamine and consequently into the metabolites of the latter. The extent to which this ability develops is variable, the development occurring more readily in rats than in rabbits or guinea pigs. In three human subjects, one developed the ability quite markedly in 10 days whereas two others did not in 30 days. Removal of the cyclamate from the diet caused a diminution in the ability to convert cyclamate into the amine. 4. In rats that had developed the ability to metabolize orally administered cyclamate, intraperitoneally injected cyclamate was not metabolized and was excreted unchanged in the urine. The biliary excretion of injected cyclamate in rats was very small, i.e. about 0.3% of the dose. 5. The ability of animals to convert cyclamate into cyclohexylamine appears to depend upon a continuous intake of cyclamate and on some factor in the gastrointestinal tract, probably the gut flora.  相似文献   

16.
1. The biliary and urinary excretion of (+)-[U-(14)C]catechin was studied in normal male rats after a single injection of the flavonoid. 2. In rats large amounts of radioactivity (33.6-44.3% of the dose in 24h) were excreted in the bile as two glucuronide conjugates [one of which was a (+)-catechin conjugate] and three other unconjugated metabolites. 3. Excretion of radioactivity in the urine when the bile duct was not cannulated amounted to 44.5% of the dose. 4. In both the urine and bile the new metabolites showed maximum excretion in the (1/2)-1(1/2)h after intravenous injection of [(14)C]catechin. 5. The metabolites m-hydroxyphenylpropionic acid, p-hydroxyphenylpropionic acid, delta-(3-hydroxyphenyl)-gamma-valerolactone and delta-(3,4-dihydroxyphenyl)-gamma-valerolactione originate from the action of the intestinal micro-organisms on the biliary-excreted metabolites of (+)-catechin. These phenolic acid and lactone metabolites are then reabsorped and excreted in the urine. 6. It is proposed that, depending on the route of administration of (+)-catechin, there exists an alternative pathway, involving biliary excretion, for the metabolism of (+)-catechin.  相似文献   

17.
ICP-MS, HPLC-ICP-MS and HPLC-ICP-MS/ESI-MS have been applied to determine the disposition and metabolic fate of 2-, 3- and 4-iodobenzoic acids following intraperitoneal administration at 50 mg kg(-1) to male bile duct cannulated rats. Quantitative excretion balance studies based on the determination of the total iodine content of urine and bile showed that all three iodobenzoic acids were rapidly excreted. Recoveries ranging from 95 to 105% of the administered doses were achieved within 24 h of administration. Metabolite profiles for urine and bile showed extensive metabolism with unchanged iodobenzoic acids forming a minor part of the total. A combination of alkaline hydrolysis and MS enabled the identification of the major metabolites of all three iodobenzoic acids as glycine and ester glucuronide conjugates with very little if any of the parent compounds excreted unchanged.  相似文献   

18.
Species differences in the metabolism of sulphadimethoxine   总被引:5,自引:4,他引:1  
1. The fate of sulphadimethoxine (2,4-dimethoxy-6-sulphanilamidopyrimidine) was studied in man, rhesus monkey, dog, rat, guinea pig and rabbit. 2. About 20–46% of the dose (0·1g./kg.) of the drug is excreted in the urine in 24hr. in these species, except the rat, in which only 13% is excreted. 3. In man and the monkey sulphadimethoxine N1-glucuronide is the major metabolite in the urine. In the rabbit and guinea pig N4-acetylsulphadimethoxine is the main metabolite. In the dog the drug is excreted mainly unchanged. In the rat equal amounts of the unchanged drug and its N4-acetyl derivative are the main products. 4. Small amounts of sulphadimethoxine N4-glucuronide are found in the urine of all the species. Sulphadimethoxine N1-glucuronide occurs in small amounts in the urine of rat, dog and guinea pig; none is found in rabbit urine. 5. Sulphadimethoxine N4-sulphate was synthesized and found to occur in small amounts in rat urine. 6. Monkey liver homogenates fortified with UDP-glucuronic acid are able to synthesize sulphadimethoxine N1-glucuronide with the drug as substrate. Rat liver has also this ability to a slight extent, but rabbit liver is unable to do so. 7. Sulphadimethoxine N4-glucuronide is formed spontaneously when the drug is added to human urine. 8. The biliary excretion of the drug and its metabolites was examined in rats. The drug is excreted in rat bile mainly as the N1-glucuronide. The N1- and N4-glucuronides administered as such are extensively excreted in the bile by rats.  相似文献   

19.
1. The metabolism of sulphadimethoxine (2,4-dimethoxy-6-sulphanilamidopyrimidine) was examined in nine species of primates and nine species of non-primates. 2. The main metabolite of the drug in the urine in man, rhesus monkey, baboon, squirrel monkey, capuchin, bushbaby, slow loris and tree shrew was sulphadimethoxine N(1)-glucuronide. In the green monkey, although the main metabolite was N(4)-acetylsulphadimethoxine, the N(1)-glucuronide was also a major metabolite. 3. In the dog, rat, mouse, guinea pig, Indian fruit bat and hen the N(1)-glucuronide was a minor metabolite in the urine, whereas in the cat, ferret and rabbit this glucuronide was not found in the urine. 4. All the species examined except the dog excreted some N(4)-acetylsulphadimethoxine, which was the major metabolite in the green monkey, rabbit and guinea pig. 5. In the tree shrew, a doubtful primate, N(1)-glucuronide formation was similar to that in the other primates. 6. It is suggested that the slow excretion of the drug by the rat may be due partly to strong binding of the drug to tissue proteins and that the strength of binding may vary with species. 7. In the rat the amount of N(1)-glucuronide found in the urine is not a true indication of the extent of this conjugation since much more of the conjugate was found in the bile (7% of the dose) than in the urine (1%). In the rabbit, no N(1)-glucuronide was found in the bile or urine, but a small amount of sulphadimethoxine N(4)-glucuronide was found in the bile of the rat (0.5% of dose) and rabbit (0.8%).  相似文献   

20.
The recovery of radioactivity in the urine of guineapigs following a bolus intravenous dose of chromatographically pure 14C-Ntau-methylhistidine was measured in order to test whether the excretion of Ntau-methylhistidine (Ntau-MH) is a valid index of myofibrillar protein breakdown in these animals. Four male and four female guineapigs were dosed and after 7 days, 91.65+/-2.82% and 3.58+/-0.91% of injected radioactivity was recovered in the excreta and tissues, respectively. The average total recovery of 95.2+/-3.0% was not significantly different from 100%. Male guineapigs excreted the radioactivity more slowly than females (70% of the dose excreted within 74 h vs 39 h, respectively) but cumulative excretion at 7 days was the same for each sex. Chromatographic analysis of the urine showed almost all of the radioactivity to be associated with a single peak corresponding to Ntau-MH, indicating a lack of significant metabolism. These data show that although the clearance of 14C-Ntau-MH is slower than in rats or humans the urinary excretion of Ntau-MH is a valid index for myofibrillar protein degradation in the guineapig.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号