首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
New insights into the evolution of metazoan tyrosinase gene family   总被引:1,自引:0,他引:1  
Tyrosinases, widely distributed among animals, plants and fungi, are involved in the biosynthesis of melanin, a pigment that has been exploited, in the course of evolution, to serve different functions. We conducted a deep evolutionary analysis of tyrosinase family amongst metazoa, thanks to the availability of new sequenced genomes, assessing that tyrosinases (tyr) represent a distinctive feature of all the organisms included in our study and, interestingly, they show an independent expansion in most of the analyzed phyla. Tyrosinase-related proteins (tyrp), which derive from tyr but show distinct key residues in the catalytic domain, constitute an invention of chordate lineage. In addition we here reported a detailed study of the expression territories of the ascidian Ciona intestinalis tyr and tyrps. Furthermore, we put efforts in the identification of the regulatory sequences responsible for their expression in pigment cell lineage. Collectively, the results reported here enlarge our knowledge about the tyrosinase gene family as valuable resource for understanding the genetic components involved in pigment cells evolution and development.  相似文献   

3.
Homeodomain leucine zipper I (HD-ZIP I) genes were used to increase the plasticity of plants by mediating external signals and regulating growth in response to environmental conditions. The way genomic histories drove the evolution of the HD-ZIP I family in legume species was described; HD-ZIP I genes were searched in Lotus japonicus, Medicago truncatula, Cajanus cajan and Phaseolus vulgaris, and then divided into five clades through phylogenetic analysis. Microsynteny analysis was made based on genomic segments containing the HD-ZIP I genes. Some pairs turned out to conform with syntenic genome regions, while others corresponded to those that were inverted, expanded, or contracted after the divergence of legumes. Besides, we dated their duplications by Ks analysis and demonstrated that all the blocks were formed after the monocot–dicot split; we observed Ka/Ks ratios representing strong purifying selections in the four legume species which might have been followed by gene loss and rearrangement.  相似文献   

4.

Background

Obtaining a draft genome sequence of the zebra finch (Taeniopygia guttata), the second bird genome to be sequenced, provides the necessary resource for whole-genome comparative analysis of gene sequence evolution in a non-mammalian vertebrate lineage. To analyze basic molecular evolutionary processes during avian evolution, and to contrast these with the situation in mammals, we aligned the protein-coding sequences of 8,384 1:1 orthologs of chicken, zebra finch, a lizard and three mammalian species.

Results

We found clear differences in the substitution rate at fourfold degenerate sites, being lowest in the ancestral bird lineage, intermediate in the chicken lineage and highest in the zebra finch lineage, possibly reflecting differences in generation time. We identified positively selected and/or rapidly evolving genes in avian lineages and found an over-representation of several functional classes, including anion transporter activity, calcium ion binding, cell adhesion and microtubule cytoskeleton.

Conclusions

Focusing specifically on genes of neurological interest and genes differentially expressed in the unique vocal control nuclei of the songbird brain, we find a number of positively selected genes, including synaptic receptors. We found no evidence that selection for beneficial alleles is more efficient in regions of high recombination; in fact, there was a weak yet significant negative correlation between ω and recombination rate, which is in the direction predicted by the Hill-Robertson effect if slightly deleterious mutations contribute to protein evolution. These findings set the stage for studies of functional genetics of avian genes.  相似文献   

5.
This paper is a response to Pecinka A, Fang W, Rehmsmeier M, Levy AA, Mittelsten Scheid, O: Polyploidization increases meiotic recombination frequency in Arabidopsis. BMC Biology 2011, 9:24. See research article at http://www.biomedcentral.com/1741-7007/9/24  相似文献   

6.

Background  

Exploring metabolic evolution is a way to understand metabolic complexity. The substrate transport of mitochondrial carrier family (MCF) influences direct metabolic activities, making it possible to understand indirectly metabolic evolution from the evolution of substrate transport of MCF. However, the evolutionary study of substrate transport of MCF does not mean that all the concrete structures of mitochondrial carriers (MCs) must first be gained.  相似文献   

7.
Metazoan genomes are being sequenced at an increasingly rapid rate. For each new genome, the number of protein-coding genes it encodes and the amount of functional DNA it contains are known only inaccurately. Nevertheless, there have been considerable recent advances in identifying protein-coding and non-coding sequences that have remained constrained in diverse species. However, these approaches struggle to pinpoint genomic sequences that are functional in some species but that are absent or not functional in others. Yet it is here, encoded in lineage-specific and functional sequence, that we expect physiological differences between species to be most concentrated.  相似文献   

8.
9.
Hahn MW  Han MV  Han SG 《PLoS genetics》2007,3(11):e197
Comparison of whole genomes has revealed large and frequent changes in the size of gene families. These changes occur because of high rates of both gene gain (via duplication) and loss (via deletion or pseudogenization), as well as the evolution of entirely new genes. Here we use the genomes of 12 fully sequenced Drosophila species to study the gain and loss of genes at unprecedented resolution. We find large numbers of both gains and losses, with over 40% of all gene families differing in size among the Drosophila. Approximately 17 genes are estimated to be duplicated and fixed in a genome every million years, a rate on par with that previously found in both yeast and mammals. We find many instances of extreme expansions or contractions in the size of gene families, including the expansion of several sex- and spermatogenesis-related families in D. melanogaster that also evolve under positive selection at the nucleotide level. Newly evolved gene families in our dataset are associated with a class of testes-expressed genes known to have evolved de novo in a number of cases. Gene family comparisons also allow us to identify a number of annotated D. melanogaster genes that are unlikely to encode functional proteins, as well as to identify dozens of previously unannotated D. melanogaster genes with conserved homologs in the other Drosophila. Taken together, our results demonstrate that the apparent stasis in total gene number among species has masked rapid turnover in individual gene gain and loss. It is likely that this genomic revolving door has played a large role in shaping the morphological, physiological, and metabolic differences among species.  相似文献   

10.
11.

Background  

Cell-to-cell communication is a key process in multicellular organisms. In multicellular animals, scaffolding proteins belonging to the family of membrane-associated guanylate kinases (MAGUK) are involved in the regulation and formation of cell junctions. These MAGUK proteins were believed to be exclusive to Metazoa. However, a MAGUK gene was recently identified in an EST survey of Capsaspora owczarzaki, an unicellular organism that branches off near the metazoan clade. To further investigate the evolutionary history of MAGUK, we have undertook a broader search for this gene family using available genomic sequences of different opisthokont taxa.  相似文献   

12.
A substantial fraction of the genome of most eukaryotes, including those of metazoan parasites, is predicted to comprise repetitive sequences. Mobile genetic elements (MGEs) will make up much of these repetitive sequences, particularly the interspersed sequences. This article reviews information on MGEs that have colonized the genomes of metazoan parasites (i.e. parasites of parasites). Helminth and mosquito genomes, in particular, are compared with those of better-understood model organisms. MGEs from the genomes of metazoan parasites can be expected to have practical uses in transgenesis and epidemiological studies.  相似文献   

13.
Steele RE  Stover NA  Sakaguchi M 《Gene》1999,239(1):91-97
Syk family protein-tyrosine kinases are essential components of immunoreceptor signaling in mammalian lymphocytes. The absence of Syk genes from the Caenorhabditis elegans genome suggests that this kinase family is of recent evolutionary origin. Surprisingly, we have found that Hydra vulgaris, a member of the early diverging animal phylum Cnidaria, contains a gene encoding a Syk kinase. Phylogenetic analysis indicates that a single Syk family gene was present in animals prior to the gene duplication that gave rise to Syk and ZAP-70, the two mammalian Syk family genes. C. elegans also lacks a Shark protein-tyrosine kinase gene, which we show is a member of a sister group to the Syk family. We conclude that both Syk and Shark genes were lost from the genome of an ancestor of C. elegans. This natural gene knockout result indicates that neither Syk nor Shark kinases are essential for processes held in common between the nematode and other metazoans. The Hydra Syk gene is expressed in epithelial cells, a site consistent with a role for Hydra Syk in recognition of foreign cells.  相似文献   

14.
Cnidarian milestones in metazoan evolution   总被引:1,自引:0,他引:1  
Cnidarians display most of the characters considered as milestonesof metazoan evolution. Whereas a tissue-level organization wasprobably already present in the multicellular common ancestorof all animals, the Urmetazoa, the emergence of important animalfeatures such as bilateral symmetry, triploblasty, a polarizednervous system, sense organs (eyes, statocysts), and a (chitinousor calcium-based) continuous skeleton can be traced back beforethe divergence between cnidarians and bilaterians. Modularityand metamery might be also regarded as two faces of the samemedal, likely involving conserved molecular mechanisms rulinganimal body architectures through regional specification ofiterated units. Available evidence indicates that the commonancestor of cnidarians and bilaterians, the UrEumetazoa, wasa surprisingly complex animal with nerve cell differentiation.We suggest that paedomorphic events in descendants of this ancestorled to the array of diversity seen in the main extant animalphyla. The use of molecular analyses and identifying the geneticdeterminants of anatomical organizations can provide an integrativetest of hypotheses of homologies and independent evidence ofthe evolutionary relationships among extant taxa.  相似文献   

15.
Molecular evolution of the synapsin gene family   总被引:4,自引:0,他引:4  
Synapsins, a family of synaptic vesicle proteins, play a crucial role in the regulation of neurotransmission and synaptogenesis. They have been identified in a variety of invertebrate and vertebrate species, including human, rat (Rattus norvegicus), cow (Bos taurus), longfin squid (Loligo pealei), and fruit fly (Drosophila melanogaster). Here, synapsins were cloned from three additional species: frog (Xenopus laevis), lamprey (Lampetra fluviatilis), and nematode (Caenorhabditis elegans). Synapsin protein sequences from all these species were then used to explore the molecular phylogeny of these important neuronal phosphoproteins. The ancestral condition of a single synapsin gene probably gave rise to the vertebrate synapsin gene family comprised of at least three synapsin genes (I, II, and III) in higher vertebrates. Synapsins possess multiple domains, which have evolved at different rates throughout evolution. In invertebrate synapsins, the most conserved domains are C and E. During the evolution of vertebrates, at least two gene duplication events are hypothesized to have given rise to the synapsin gene family. This was accompanied by the emergence of an additional conserved domain, termed A. J. Exp. Zool. ( Mol. Dev. Evol. ) 285:360-377, 1999.  相似文献   

16.
Cyanobacteria are the oldest life form making important contributions to global CO2 fixation on the Earth. Phycobilisomes (PBSs) are the major light harvesting systems of most cyanobacteria species. Recent availability of the whole genome database of cyanobacteria provides us a global and further view on the complex structural PBSs. A PBSs linker family is crucial in structure and function of major light-harvesting PBSs complexes. Linker polypeptides are considered to have the same ancestor with other phycobiliproteins (PBPs), and might have been diverged and evolved under particularly selective forces together. In this paper, a total of 192 putative linkers including 167 putative PBSs-associated linker genes and 25 Ferredoxin-NADP oxidoreductase (FNR) genes were detected through whole genome analysis of all 25 cyanobacterial genomes (20 finished and 5 in draft state). We compared the PBSs linker family of cyanobacteria in terms of gene structure, chromosome location, conservation domain, and polymorphic variants, and discussed the features and functions of the PBSs linker family. Most of PBSs-associated linkers in PBSs linker family are assembled into gene clusters with PBPs. A phylogenetic analysis based on protein data demonstrates a possibility of six classes of the linker family in cyanobacteria. Emergence, divergence, and disappearance of PBSs linkers among cyanobacterial species were due to speciation, gene duplication, gene transfer, or gene loss, and acclimation to various environmental selective pressures especially light.  相似文献   

17.
Ravisankar V  Singh TP  Manoj N 《Gene》2011,482(1-2):43-50
The epidermal growth factor-Cripto-1/FRL-1/Cryptic (EGF-CFC) proteins, characterized by the highly conserved EGF and CFC domains, are extracellular membrane associated growth factor-like glycoproteins. These proteins are essential components of the Nodal signaling pathway during early vertebrate embryogenesis. Homologs of the EGF-CFC family have also been implicated in tumorigenesis in humans. Yet, little is known about the mode of molecular evolution in this family. Here we investigate the origin, extent of conservation and evolutionary relationships of EGF-CFC proteins across the metazoa. The results suggest that the first appearance of the EGF-CFC gene occurred in the ancestor of the deuterostomes. Phylogenetic analysis supports the classification of the family into distinct subfamilies that appear to have evolved through lineage-specific duplication and divergence. Site-specific analyses of evolutionary rate shifts between the two major mammalian paralogous subfamilies, Cripto and Cryptic, reveal critical amino acid sites that may account for the observed functional divergence. Furthermore, estimates of functional divergence suggest that rapid change of evolutionary rates at sites located mainly in the CFC domain may contribute towards distinct functional properties of the two paralogs.  相似文献   

18.
Ankyrins are membrane adaptor molecules that play important roles in coupling integral membrane proteins to the spectrin-based cytoskeleton network. Human mutations of ankyrin genes lead to severe genetic diseases such as fatal cardiac arrhythmias and hereditary spherocytosis. To elucidate the evolutionary history of ankyrins, we have identified novel ankyrin sequences in insect, fish, frog, chicken, dog, and chimpanzee genomes and explored the phylogenetic relationships of the ankyrin gene family. Our data demonstrate that duplication of ankyrin genes occurred at two different stages. The first duplication resulted from an independent evolution event specific in Arthropoda after its divergence from Chordata. Following the separation from Urochordata, expansion of ankyrins in vertebrates involved ancestral genome duplications. We did not find evidence of coordinated arrangements of gene families of ankyrin-associated membrane proteins on paralogous chromosomes. In addition, evolution of the 24 ANK-repeats strikingly correlated with the exon boundary sites of ankyrin genes, which might have occurred before its duplication in vertebrates. Such correlation is speculated to bring functional diversity and complexity. Moreover, based on the phylogenetic analysis of the ANK-repeat domain, we put forward a novel model for the putative primordial ankyrin that contains the fourth six-ANK-repeat subdomain and the spectrin-binding domain. These findings will provide guides for future studies concerning structure, function, evolutionary origins of ankyrins, and possibly other cytoskeletal proteins.  相似文献   

19.
Molecular evolution of flavonoid dioxygenases in the family Apiaceae   总被引:4,自引:0,他引:4  
Plant species of the family Apiaceae are known to accumulate flavonoids mainly in the form of flavones and flavonols. Three 2-oxoglutarate-dependent dioxygenases, flavone synthase or flavanone 3 beta-hydroxylase and flavonol synthase are involved in the biosynthesis of these secondary metabolites. The corresponding genes were cloned recently from parsley (Petroselinum crispum) leaves. Flavone synthase I appears to be confined to the Apiaceae, and the unique occurrence as well as its high sequence similarity to flavanone 3beta-hydroxylase laid the basis for evolutionary studies. In order to examine the relationship of these two enzymes throughout the Apiaceae, RT-PCR based cloning and functional identification of flavone synthases I or flavanone 3beta-hydroxylases were accomplished from Ammi majus, Anethum graveolens, Apium graveolens, Pimpinella anisum, Conium maculatum and Daucus carota, yielding three additional synthase and three additional hydroxylase cDNAs. Molecular and phylogenetic analyses of these sequences were compatible with the phylogeny based on morphological characteristics and suggested that flavone synthase I most likely resulted from gene duplication of flavanone 3beta-hydroxylase, and functional diversification at some point during the development of the apiaceae subfamilies. Furthermore, the genomic sequences from Petroselinum crispum and Daucus carota revealed two introns in each of the synthases and a lack of introns in the hydroxylases. These results might be explained by intron losses from the hydroxylases occurring at a later stage of evolution.  相似文献   

20.
诸奇赟  刘洋  朱乃硕 《遗传》2007,29(5):559-564
GAGE基因通常表达于睾丸组织和部分恶性肿瘤组织中, 被认为可能是理想的癌症诊断的标记和治疗的靶位。我们对GAGE基因家族作了生物信息学分析, 发现它们在X染色体上串联成簇排列, 为灵长类所独有, 各拷贝序列趋异度很低。在人类有15个以上的拷贝, 在黑猩猩和猕猴分别有3个和4个。对GAGE基因家族构建进化树, 并估算了复制事件发生的时间, 结果显示在近400万年内陆续发生。用两种方法计算了GAGE各拷贝间的Ka/Ks值, 结果为显著大于1, 表明该基因家族受到正选择作用。这些结果提示该基因可能与灵长类的特征有关, 其在进化上的地位和在配子发育和肿瘤发生中承担的功能值得深入研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号