首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potassium (K(+)) channel function is fundamental to many physiological processes. However, components and mechanisms regulating the activity of plant K(+) channels remain poorly understood. Here, we show that the calcium (Ca(2+)) sensor CBL4 together with the interacting protein kinase CIPK6 modulates the activity and plasma membrane (PM) targeting of the K(+) channel AKT2 from Arabidopsis thaliana by mediating translocation of AKT2 to the PM in plant cells and enhancing AKT2 activity in oocytes. Accordingly, akt2, cbl4 and cipk6 mutants share similar developmental and delayed flowering phenotypes. Moreover, the isolated regulatory C-terminal domain of CIPK6 is sufficient for mediating CBL4- and Ca(2+)-dependent channel translocation from the endoplasmic reticulum membrane to the PM by a novel targeting pathway that is dependent on dual lipid modifications of CBL4 by myristoylation and palmitoylation. Thus, we describe a critical mechanism of ion-channel regulation where a Ca(2+) sensor modulates K(+) channel activity by promoting a kinase interaction-dependent but phosphorylation-independent translocation of the channel to the PM.  相似文献   

2.
The minK protein induces a slowly activating voltage-dependent potassium current when expressed in Xenopus oocytes. We have used macroscopic minK currents to determine the open channel current-voltage relationship for the channel, and have found that the minK current is inwardly rectifying. The channel passes inward current at least 20fold more readily than outward current. Both rat and human minK exhibit this property. The rectification of minK is similar to that reported for a slow component of the cardiac delayed rectifier, strengthening the hypothesis that minK is responsible for that current.We would like to thank Drs. Steve Goldstein and Chris Miller for the artificial rat minK gene, and Dr. Rick Swanson for the human minK construct. This work was supported by NIH grant GM-48851 to L.K.K.  相似文献   

3.
During the recording of whole cell currents from stably transfected HEK-293 cells, the decline of currents carried by the recombinant human Cav2.3+β3 channel subunits is related to adenosine triphosphate (ATP) depletion after rupture of the cells. It reduces the number of functional channels and leads to a progressive shift of voltage-dependent gating to more negative potentials (Neumaier F., et al., 2018). Both effects can be counteracted by hydrolysable ATP, whose protective action is almost completely prevented by inhibition of serine/threonine but not tyrosine or lipid kinases. These findings indicate that ATP promotes phosphorylation of either the channel or an associated protein, whereas dephosphorylation during cell dialysis results in run-down. Protein phosphorylation is required for Cav2.3 channel function and could directly influence the normal features of current carried by these channels. Therefore, results from in vitro and in vivo phosphorylation of Cav2.3 are summarized to come closer to a functional analysis of structural variations in Cav2.3 splice variants.  相似文献   

4.
5.
Summary The ionic mechanisms underlying inward or anomalous rectification have been studied in the marine hypotrichous ciliate Euplotes vannus. Inward-current pulses of moderate amplitude elicited time-dependent rectification that started from a hyperpolarization peak and was expressed as a depolarizing sag towards rest. Voltage-clamp analysis showed that this depolarization is caused by the activation of a complex inward current that does not inactivate with time. The current is carried by a major Na and a minor K component. The Na-current component has been identified by its concentration-dependent reduction in low extra-cellular Na solutions and the capability of Li2+ as Na substitute to carry the current, though with a slightly reduced amplitude. The K-current component has been isolated from the total current after the replacement of Na2+ within the experimental solution. It was blocked in media that contained 10 mmol/liter TEA, a well-known blocker for K inwardly rectifying currents. TEA was only effective at membrane potentials close to or negative to the potassium equilibrium potential. The inward current was reduced after the injection of the Ca chelator EGTA into the cell. Also the elimination of the ciliary membrane, by deciliating cells with ethanol, reduced the amplitude of the inwardly rectifying currents. Both experiments indicate a regulatory function of Ca22+ in inward rectification.The author is grateful to Harald Mikoleit for technical assistance and preparing the figures and to Prof. W. Lueken for his critical comments. This work was supported by Deutsche Forschungsgemeinschaft, SFB 171, C7.  相似文献   

6.
Human placental Choline Acetyltransferase (ChAT) has been shown to be phosphorylated in vitro by kinases present in rat brain. Phosphorylation occurs at a single site with the exclusive phosphoamino acid being serine. ChAT phosphorylation was shown to be calcium, and not cyclic nucleotide, dependent and was inhibited by inhibitors of calcium/calmodulin protein kinases including anti-calmodulin anti-sera. ChAT phosphorylation was stimulated by calmodulin (9 fold) and, to a lesser extent, by phosphatidylserine (4 fold). These results indicate the involvement of a calcium/calmodulin and possibly also a calcium/phosopholipid kinase. This finding was confirmed by demonstrating ChAT phosphorylation using both purified multifunctional calcium/calmodulin protein kinase (CaMK) and calcium/phospholipid protein kinase C (PKC) from rat brain. A stoichiometric incorporation of 0.9 mol phosphate/mol ChAT was achieved by CaMK. Phosphorylated ChAT could be isolated from freshly prepared rat brain synaptosomes. The results obtained with this model system support the hypothesis that in vivo a fraction of ChAT exists phosphorylated.  相似文献   

7.
Acetyl-CoA carboxylases (ACCs) have been highlighted as therapeutic targets for obesity and diabetes, as they play crucial roles in fatty acid metabolism. ACC activity is regulated through the short-term mechanism of inactivation by reversible phosphorylation. Here, we report the crystal structures of the biotin carboxylase (BC) domain of human ACC2 phosphorylated by AMP-activated protein kinase (AMPK). The phosphorylated Ser222 binds to the putative dimer interface of BC, disrupting polymerization and providing the molecular mechanism of inactivation by AMPK. We also determined the structure of the human BC domain in complex with soraphen A, a macrocyclic polyketide natural product. This structure shows that the compound binds to the binding site of phosphorylated Ser222, implying that its inhibition mechanism is the same as that of phosphorylation by AMPK.  相似文献   

8.
TRPV6 (CaT1/ECaC2), a highly Ca(2+)-selective member of the TRP superfamily of cation channels, becomes permeable to monovalent cations in the absence of extracellular divalent cations. The monovalent currents display characteristic voltage-dependent gating and almost absolute inward rectification. Here, we show that these two features are dependent on the voltage-dependent block/unblock of the channel by intracellular Mg(2+). Mg(2+) blocks the channel by binding to a site within the transmembrane electrical field where it interacts with permeant cations. The block is relieved at positive potentials, indicating that under these conditions Mg(2+) is able to permeate the selectivity filter of the channel. Although sizeable outward monovalent currents were recorded in the absence of intracellular Mg(2+), outward conductance is still approximately 10 times lower than inward conductance under symmetric, divalent-free ionic conditions. This Mg(2+)-independent rectification was preserved in inside-out patches and not altered by high intracellular concentrations of spermine, indicating that TRPV6 displays intrinsic rectification. Neutralization of a single aspartate residue within the putative pore loop abolished the Mg(2+) sensitivity of the channel, yielding voltage-independent, moderately inwardly rectifying monovalent currents in the presence of intracellular Mg(2+). The effects of intracellular Mg(2+) on TRPV6 are partially reminiscent of the gating mechanism of inwardly rectifying K(+) channels and may represent a novel regulatory mechanism for TRPV6 function in vivo.  相似文献   

9.
10.
In boar spermatozoa, the capacitating agent bicarbonate has been shown to induce rapid changes both in plasma membrane lipid architecture and in motility; in each case, a PKA-dependent pathway is involved. Early bicarbonate-induced changes in protein phosphorylation were probed using a commercial antibody against the phosphorylated form of the consensus substrate site for cyclic AMP-dependent protein kinase. The antibody detected relatively few bands in sperm extracts, of which only a small number showed incubation-dependent changes. While the quantitative response varied between boar ejaculates, in general terms bicarbonate induced phosphorylation increases in bands of 96, 64, and 59 kDa within 80 sec. The changes reached a maximum after about 160 sec, declined somewhat thereafter, and then increased again slowly as incubation progressed further (up to 21 min). The bicarbonate-induced increases were strongly dependent on the presence of BSA in the incubation medium. They were inhibited by H89 (PKA inhibitor) but not by GF (PKC inhibitor), and were enhanced by papaverine (phosphodiesterase inhibitor) and by calyculin (protein phosphatase inhibitor). The cyclic AMP analogue cBIMPS was able to mimic bicarbonate action though its effect was less dramatic. Stearated Ht31, a permeable inhibitor of PKA's binding to A-kinase anchoring protein, did not affect either the intensity or the specificity of the bicarbonate-induced phosphorylation changes, though it blocked motility entirely. Immunocytochemical studies revealed marked bicarbonate-dependent phosphorylation changes in the post-acrosomal region of the head and in the neck, midpiece, and anterior regions of the tail. Fractionation of stimulated spermatozoa showed that all bands detectable with the antibody were bound to heads and to midpieces and associated large tail fragments; no bands were detected in either small tail or membrane fragments or in the cytoplasmic fraction. Differential extraction of the midpiece/large tail fraction revealed two protein bands with closely similar electrophoretic mobilities to the 96- and 59-kDa phosphorylated bands; MALDI-TOF analyses of these bands revealed both to be members of the Odf2 family.  相似文献   

11.
The contribution of Ca2+ entry through different voltage-activated Ca2+ channel (VACC) subtypes to the phosphorylation of extracellular signal regulated kinase (ERK) was examined in bovine adrenal-medullary chromaffin cells. High K+ depolarization (40 mM, 3 min) induced ERK phosphorylation, an effect that was inhibited by specific mitogen-activated protein kinase kinase inhibitors. By using selective inhibitors, we observed that depolarization-induced ERK phosphorylation completely depended on protein kinase C-alpha (PKC-alpha), but not on Ca2+/calmodulin-dependent protein kinase nor cyclic AMP-dependent protein kinase. Blockade of L-type Ca2+ channels by 3 microm furnidipine, or blockade of N channels by 1 micromomega-conotoxin GVIA reduced ERK phosphorylation by 70%, while the inhibition of P/Q channels by 1 micromomega-agatoxin IVA only caused a 40% reduction. The simultaneous blockade of L and N, or P/Q and N channels completely abolished this response, yet 23% ERK phosphorylation remained when L and P/Q channels were simultaneously blocked. Confocal imaging of cytosolic Ca2+ elevations elicited by 40 mm K+, showed that Ca2+ levels increased throughout the entire cytosol, both in the presence and the absence of Ca2+ channel blockers. Fifty-eight percent of the fluorescence rise depended on Ca2+ entering through N channels. Thus, ERK phosphorylation seems to depend on a critical level of Ca2+ in the cytosol rather than on activation of a given Ca2+ channel subtype.  相似文献   

12.
Rod cyclic nucleotide-gated (CNG) channels are modulated by changes in tyrosine phosphorylation catalyzed by protein tyrosine kinases (PTKs) and phosphatases (PTPs). We used genistein, a PTK inhibitor, to probe the interaction between the channel and PTKs. Previously, we found that in addition to inhibiting tyrosine phosphorylation of the rod CNG channel alpha-subunit (RETalpha), genistein triggers a noncatalytic inhibitory interaction between the PTK and the channel. These studies suggest that PTKs affects RETalpha channels in two ways: (1) by catalyzing phosphorylation of the channel protein, and (2) by allosterically regulating channel activation. Here, we study the mechanism of noncatalytic inhibition. We find that noncatalytic inhibition follows the same activity dependence pattern as catalytic modulation (phosphorylation): the efficacy and apparent affinity of genistein inhibition are much higher for closed than for fully activated channels. Association rates with the genistein-PTK complex were similar for closed and fully activated channels and independent of genistein concentration. Dissociation rates were 100 times slower for closed channels, which is consistent with a much higher affinity for genistein-PTK. Genistein-PTK affects channel gating, but not single channel conductance or the number of active channels. By analyzing single channel gating during genistein-PTK dissociation, we determined the maximal open probability for normal and genistein-PTK-bound channels. genistein-PTK decreases open probability by increasing the free energy required for opening, making opening dramatically less favorable. Ni(2+), which potentiates RETalpha channel gating, partially relieves genistein inhibition, possibly by disrupting the association between the genistein-PTK and the channel. Studies on chimeric channels containing portions of RETalpha, which exhibits genistein inhibition, and the rat olfactory CNG channel alpha-subunit, which does not, reveals that a domain containing S6 and flanking regions is the crucial for genistein inhibition and may constitute the genistein-PTK binding site. Thus, genistein-PTK stabilizes the closed state of the channel by interacting with portions of the channel that participate in gating.  相似文献   

13.
Proper regulation of the cAMP-dependent protein kinase (protein kinase A, PKA) is necessary for cellular homeostasis, and dysregulation of this kinase is crucial in human disease. Mouse embryonic fibroblasts (MEFs) lacking the PKA regulatory subunit Prkar1a show altered cell morphology and enhanced migration. At the molecular level, these cells showed increased phosphorylation of cofilin, a crucial modulator of actin dynamics, and these changes could be mimicked by stimulating the activity of PKA. Previous studies of cofilin have shown that it is phosphorylated primarily by the LIM domain kinases Limk1 and Limk2, which are under the control of the Rho GTPases and their downstream effectors. In Prkar1a−/− MEFs, neither Rho nor Rac was activated; rather, we showed that PKA could directly phosphorylate Limk1 and thus enhance the phosphorylation of cofilin. These data indicate that PKA is crucial in cell morphology and migration through its ability to modulate directly the activity of LIM kinase.  相似文献   

14.
Extracelluar signal-regulated kinase (ERK) pathway activation has been demonstrated following convulsant stimulation; however, little is known about the molecular targets of ERK in seizure models. Recently, it has been shown that ERK phosphorylates Kv4.2 channels leading to down-regulation of channel function, and substantially alters dendritic excitability. In the kainate model of status epilepticus (SE), we investigated whether ERK phosphorylates Kv4.2 and whether the changes in Kv4.2 were evident at a synaptosomal level during SE. Western blotting was performed on rat hippocampal whole cell, membrane, synaptosomal, and surface biotinylated extracts following systemic kainate using an antibody generated against the Kv4.2 ERK sites and for Kv4.2, ERK, and phospho-ERK. ERK activation was associated with an increase in Kv4.2 phosphorylation during behavioral SE. During SE, ERK activation and Kv4.2 phosphorylation were evident at the whole cell and synaptosomal levels. In addition, while whole-cell preparations revealed no alterations in total Kv4.2 levels, a decrease in synaptosomal and surface expression of Kv4.2 was evident after prolonged SE. These results demonstrate ERK pathway coupling to Kv4.2 phosphorylation. The finding of decreased Kv4.2 levels in hippocampal synaptosomes and surface membranes suggest additional mechanisms for decreasing the dendritic A-current, which could lead to altered intrinsic membrane excitability during SE.  相似文献   

15.
Large-conductance Ca(2+)-activated K(+) channels can be activated by membrane voltage in the absence of Ca(2+) binding, indicating that these channels contain an intrinsic voltage sensor. The properties of this voltage sensor and its relationship to channel activation were examined by studying gating charge movement from mSlo Ca(2+)-activated K(+) channels in the virtual absence of Ca(2+) (<1 nM). Charge movement was measured in response to voltage steps or sinusoidal voltage commands. The charge-voltage relationship (Q-V) is shallower and shifted to more negative voltages than the voltage-dependent open probability (G-V). Both ON and OFF gating currents evoked by brief (0.5-ms) voltage pulses appear to decay rapidly (tau(ON) = 60 microseconds at +200 mV, tau(OFF) = 16 microseconds at -80 mV). However, Q(OFF) increases slowly with pulse duration, indicating that a large fraction of ON charge develops with a time course comparable to that of I(K) activation. The slow onset of this gating charge prevents its detection as a component of I(gON), although it represents approximately 40% of the total charge moved at +140 mV. The decay of I(gOFF) is slowed after depolarizations that open mSlo channels. Yet, the majority of open channel charge relaxation is too rapid to be limited by channel closing. These results can be understood in terms of the allosteric voltage-gating scheme developed in the preceding paper (Horrigan, F.T., J. Cui, and R.W. Aldrich. 1999. J. Gen. Physiol. 114:277-304). The model contains five open (O) and five closed (C) states arranged in parallel, and the kinetic and steady-state properties of mSlo gating currents exhibit multiple components associated with C-C, O-O, and C-O transitions.  相似文献   

16.
Summary The voltage-dependent channel formed in planar lipid bilayers by colicin E1, or its channel-forming C-terminal fragments, is susceptible to destruction by the nonspecific protease pepsin under well-defined conditions. In particular, pepsin acts only from thecis side (the side to which colicin has been added) and only upon channels in the closed state. Channels in the open state are refractory to destruction bycis pepsin, and neither open nor closed channels are destroyed bytrans pepsin. Colicin E1 channels are normally turned on bycis positive voltages and turned off bycis negative voltages. For large (>80 mV) positive voltages, however, channels inactivate subsequent to opening. Associated with the inactivated state, some channels become capable of being turned on bycis negative voltages and turned off bycis positive voltages, as if the channel-forming region of the molecule has been translocated across the membrane. Consistent with this interpretation is the ability now oftrans pepsin to destroy these reversed channels when they are closed, but not when they are open, whereascis pepsin has no effect on them in either the open or closed state. Our results indicate that voltage gating of the E1 channel involves translocation of parts of the protein across the membrane, exposing different domains to thecis andtrans solutions in the different channel states.  相似文献   

17.
Inwardly rectifying potassium channel 2.3 (Kir2.3) is specifically targeted on the basolateral membranes of epithelial and neuronal cells, and it thus plays an important role in maintaining potassium homeostasis. Tax-interacting protein-1 (TIP-1), an atypical PDZ-domain-containing protein, binds to Kir2.3 with a high affinity, causing the intracellular accumulation of Kir2.3 in cultured epithelial cells. However, the molecular basis of the TIP-1/Kir2.3 interaction is still poorly understood. Here, we present the crystal structure of TIP-1 in complex with the C-terminal Kir2.3-peptide (residues 436-445) to reveal the molecular details of the interaction between them. Moreover, isothermal titration calorimetry experiments show that the C-terminal Kir2.3-peptide binds much more strongly to TIP-1 than to mammalian Lin-7, indicating that TIP-1 can compete with mammalian Lin-7 to uncouple Kir2.3 from its basolateral membrane anchoring complex. We further show that the phosphorylation/dephosphorylation of Ser443 within the C-terminal Kir2.3 PDZ-binding motif RRESAI dynamically regulates the Kir2.3/TIP-1 association in heterologous HEK293T cells. These data suggest that TIP-1 may act as an important regulator for the endocytic pathway of Kir2.3.  相似文献   

18.
Myelin basic protein, an 80-kilodalton (kDa) protein in rat oligodendrocytes, and an 80-kDa basic protein in neuroblastoma x neonatal Chinese hamster brain explant hybrids were phosphorylated extensively when the cells were treated with either phorbol esters (TPA) or diacylglycerols (e.g., oleyoyl-acetylglycerol). TPA-stimulated phosphorylation was inhibited by pre-incubation with 50 microM psychosine (galactosyl-sphingosine), confirming that it is mediated through the phospholipid-dependent protein kinase C (PK-C). Surprisingly, phosphorylation of these proteins was inhibited by incubation of cells with agents which result in activation of cyclic-AMP-dependent protein kinase (dibutyryl cyclic AMP or forskolin). In contrast, phosphorylation of other nonbasic proteins, for example, the oligodendrocyte-specific 2',3'-cyclic nucleotide phosphohydrolase, was stimulated under these conditions (Vartanian et al.: Proceedings of the National Academy of Sciences of the United States of America 85:939, 1988). The possible role of cyclic AMP in activating specific phosphatases or restricting the availability of diacylglycerol for PK-C activation is discussed.  相似文献   

19.
The effects of transient cerebral ischemia on phosphorylation of the NR1 subunit of the NMDA receptor by protein kinase C (PKC) and protein kinase A (PKA) were investigated. Adult rats received 15 min of cerebral ischemia followed by various times of recovery. Phosphorylation was examined by immunoblotting hippocampal homogenates with antibodies that recognized NR1 phosphorylated on the PKC phosphorylation sites Ser890 and Ser896, the PKA phosphorylation site Ser897, or dually phosphorylated on Ser896 and Ser897. The phosphorylation of all sites examined increased following ischemia. The increase in phosphorylation by PKC was greater than by PKA. The ischemia-induced increase in phosphorylation was predominantly associated with the population of NR1 that was insoluble in 1% deoxycholate. Enhanced phosphorylation of NR1 by PKC and PKA may contribute to alterations in NMDA receptor function in the postischemic brain.  相似文献   

20.
cDNAs encoding aquaporins PIP1;1, PIP2;1, and TIP1;1 were isolated from Mimosa pudica (Mp) cDNA library. MpPIP1;1 exhibited no water channel activity; however, it facilitated the water channel activity of MpPIP2;1 in a phosphorylation-dependent manner. Mutagenesis analysis revealed that Ser-131 of MpPIP1;1 was phosphorylated by PKA and that cooperative regulation of the water channel activity of MpPIP2;1 was regulated by phosphorylation of Ser-131 of MpPIP1;1. Immunoprecipitation analysis revealed that MpPIP1;1 binds directly to MpPIP2;1 in a phosphorylation-independent manner, suggesting that phosphorylation of Ser-131 of MpPIP1;1 is involved in regulation of the structure of the channel complex with MpMIP2;1 and thereby affects water channel activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号