首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Stability of gentamycin in solutions at various pH levels was studied. It was shown that in acid media inactivation proceeded according to the equation of the 1st order reaction. Dependence of the inactivation rate constant on the temperature corresponded to Arrenium equation. A polarimetric procedure for determination of gentamycin providing the assay of the antibiotic levels at various purification stages biginning from the eluates after the ion-exchange columns is described. The results obtained with the above procedure were shown to correlate satisfactorily with those of the microbiological analysis.  相似文献   

2.
D Shortle  A K Meeker  E Freire 《Biochemistry》1988,27(13):4761-4768
By use of intrinsic fluorescence to determine the apparent equilibrium constant Kapp as a function of temperature, the midpoint temperature Tm and apparent enthalpy change delta Happ on reversible thermal denaturation have been determined over a range of pH values for wild-type staphylococcal nuclease and six mutant forms. For wild-type nuclease at pH 7.0, a Tm of 53.3 +/- 0.2 degrees C and a delta Happ of 86.8 +/- 1.4 kcal/mol were obtained, in reasonable agreement with values determined calorimetrically, 52.8 degrees C and 96 +/- 2 kcal/mol. The heat capacity change on denaturation delta Cp was estimated at 1.8 kcal/(mol K) versus the calorimetric value of 2.2 kcal/(mol K). When values of delta Happ and delta Sapp for a series of mutant nucleases that exhibit markedly altered denaturation behavior with guanidine hydrochloride and urea were compared at the same temperature, compensating changes in enthalpy and entropy were observed that greatly reduce the overall effect of the mutations on the free energy of denaturation. In addition, a correlation was found between the estimated delta Cp for the mutant proteins and the d(delta Gapp)/dC for guanidine hydrochloride denaturation. It is proposed that both the enthalpy/entropy compensation and this correlation between two seemingly unrelated denaturation parameters are consequences of large changes in the solvation of the denatured state that result from the mutant amino acid substitutions.  相似文献   

3.
The effects of temperature and ionic strength on the association of oxyhemerythrin have been studied. deltaH degrees and deltaS degrees for association at pH 7.0 are -2.6 kcal and +16.5 eu per mol of monomer. These values suggest that solvent adjacent to the surface of the protein undergoes rearrangement on association. Increasing ionic strength is observed to promote dissociation while decreasing the rate of attainment of equilibrium between monomers and octamers. Qualitatively similar results are observed on lowering the pH from 7.0 to 4.8, thereby linking the effects of increasing ionic strength to those of protonation of specific amino acid residues at the subunit contacts of hemerythrin. The apparent enthalpy of ionization of the amino acid residue controlling dissociation at acidic pH was found to be -1.9 to +2.1 kcal/mol. These values are consistent with a carboxyl group.  相似文献   

4.
Stability of rifamycin B in aqueous solutions at various values of pH and temperature was studied. It was shown that inactivation of the antibiotic in neutral and alkaline solutions proceeded according to the first order equation. In acid solutions rifamycin B was oxidized with air oxygen to form rifamycin O.  相似文献   

5.
Formation of the binary complex between the reduced coenzyme nicotinamide adenine dinucleotide (NADH) and pig skeletal muscle lactate dehydrogenase (LDH, EC 1.1.1.27) has been investigated by calorimetric and equilibrium dialysis techniques in 0.2 M potassium phosphate buffer (pH 7.0) at various temperatures. Analysis of thermal titration curves at two temperatures (25 and 31.5 degrees) shows that the experimental enthalpy data can be rationalized assuming four independent and equivalent binding sites for the tetrameric enzyme. Binary complex formation is characterized by a negative temperature coefficient, delta cp, of the binding enthalpy, which amounts to -1300 plus or minus 53 cal/(deg mol of LDH) in the temperature range of 5-31.5 degrees. Despite the slightly smaller standard deviation resulting when polynomial regression analysis of the second degree is applied to the temperature dependence of the enthalpy values, binding enthalpies seem to be adequately represented in the temperature range studied by the equation delta H = -1.3T + 2.3, kcal/mol of LDH, T referring to the temperature in degrees C. By combination of the results obtained from equilibrium dialysis and calorimetric studies a set of apparent thermodynamic parameters for binding of NADH to LDH in 0.2 M potassium phosphate buffer at pH 7 has been established.  相似文献   

6.
The thermal stability of glucose oxidase was studied at temperatures between 50 and 70 degrees C by kinetic and spectroscopic (circular dichroism) methods. The stability of glucose oxidase was shown to depend on the medium pH, protein concentration, and the presence of protectors in the solution. At low protein concentrations (< 15 micrograms/ml) and pH > 5.5, the rate constants kin (s-1) for thermal inactivation of glucose oxidase were high. Circular dichroic spectra suggested an essential role of beta structures in stabilizing the protein globule. At a concentration of 15 micrograms protein/ml, the activation energy Ea of thermal inactivation of glucose oxidase in aqueous solution was estimated at 79.1 kcal/mol. Other thermodynamic activation parameters estimated at 60 degrees C had the following values: delta H = 78.4 kcal/mol, delta G = 25.5 kcal/mol, and delta S = 161.9 entropy units. The thermal inactivation of glucose oxidase was inhibited by KCl, polyethylene glycols, and polyols. Among polyols, the best was sorbitol, which stabilized glucose oxidase without affecting its activity. Ethanol, phenol, and citrate exerted destabilizing effects.  相似文献   

7.
The (Na+ +K+)-activated, Mg2+-dependent ATPase from rabbit kidney outer medulla was prepared in a partially inactivated, soluble form depleted of endogenous phospholipids, using deoxycholate. This preparation was reactivated 10 to 50-fold by sonicated liposomes of phosphatidylserine, but not by non-sonicated phosphatidylserine liposomes or sonicated phosphatidylcholine liposomes. The reconstituted enzyme resembled native membrane preparations of (Na+ +K+)-ATPase in its pH optimum being around 7.0, showing optimal activity at Mg2+:ATP mol ratios of approximately 1 and a Km value for ATP of 0.4 mM. Arrhenius plots of this reactivated activity at a constant pH of 7.0 and an Mg2+: ATP mol ratio of 1:1 showed a discontinuity (sharp change of slope) at 17 degrees C, with activation energy (Ea) values of 13-15 kcal/mol above this temperature and 30-35 kcal below it. A further discontinuity was also found at 8.0 degrees C and the Ea below this was very high (greater than 100 kcal/mol). Increased Mg2+ concentrations at Mg2+:ATP ratios in excess of 1:1 inhibited the (Na+ +K+)-ATPase activity and also abolished the discontinuities in the Arrhenius plots. The addition of cholesterol to phosphatidylserine at a 1:1 mol ratio partially inhibited (Na+ +K+)-ATPase reactivation. Arrhenius plots under these conditions showed a single discontinuity at 20 degrees C and Ea values of 22 and 68 kcal/mol above and below this temperature respectively. The ouabain-insensitive Mg2+-ATPase normally showed a linear Arrhenius plot with an Ea of 8 kcal/mol. The cholesterol-phosphatidylserine mixed liposomes stimulated the Mg2+-ATPase activity, which now also showed a discontinuity at 20 degrees C with, however, an increased value of 14 kcal/mol above this temperature and 6 kcal/mol below. Kinetic studies showed that cholesterol had no significant effect on the Km values for ATP. Since both cholesterol and Mg2+ are known to alter the effects of temperature on the fluidity of phospholipids, the above results are discussed in this context.  相似文献   

8.
A comparison of the temperature profiles of the myofibrillar ATPase in Porcellio spinicornis and Metoponorthus pruinosus showed that Porcellio enzyme had a maximum activity between pH 6.8-7.2 at 9 degrees C, and that from Metoponorthus between pH 7.0-7.4 at 45 degrees C. The energy of activation for Porcellio enzyme was estimated to be 2.964 kcal/mol and that for Metoponorthus enzyme 9.91 X 10(-1) kcal/mol. The significance of these findings in relation to the natural habitats of these two species is discussed.  相似文献   

9.
J R Whitaker  F F Filho  F M Lajolo 《Biochimie》1988,70(9):1153-1161
The amylase inhibitor of black (kidney) beans (Phaseolus vulgaris; MW 53,000) forms a 1:1 stoichiometric complex with porcine pancreatic alpha-amylase (MW 52,000) at pH 5.40. The single sulfhydryl group of the inhibitor and the two sulfhydryl groups of alpha-amylase are not involved in recognition and binding. Chloride ions, required for activity of alpha-amylase at both pH 5.40 and 6.90, are important for inhibitor--enzyme binding at pH 6.90 but not at pH 5.40. Calcium-free alpha-amylase binds with the inhibitor. An increase in the ionic strength of the solvent increases the rate of binding of the inhibitor with alpha-amylase; a decrease in the dielectric constant decreases the rate of binding; and decreasing the temperature increases the dissociation constant, Kd, of the complex. These data support the hypothesis that hydrophobic interaction is of primary importance in complex formation. The activation energy, Ea, for complex formation was found to be 12.4 kcal/mol at pH 5.40 and 24.2 kcal/mol at pH 6.90. In the presence of the poor substrate, p-nitrophenyl-alpha-D-maltoside, the Ea for complex formation was 4.1 kcal/mol at pH 6.90.  相似文献   

10.
The cellular autolytic reaction system in Streptococcus faecalis ATCC 9790 was analyzed for relative increases in reaction rates with increasing temperature by determination of Arrhenius activation energies (E). The systems examined were: (i) an isolated wall-enzyme complex in 0.01 M sodium phosphate, pH 6.9; (ii) exponential-phase cells suspended in 0.01 or o.3 M sodium phosphate pH 6.8, or in 0.04 M ammonium acetate, pH 6.8, (iii) growing cultures deprived of glucose or lysine; and (iv) cultures treated in growth media with the nonionic detergent, Triton X-100. For detergent-treated cells, E values were between 23.9 and 27.4 kcal/mol (ca. 100.1 to 174.7 kJ/mol) at concentrations of Triton X-100 between about 0.03 and 0.072 mg/ml. E values dropped sharply to 11.5 to 13.0 kcal/m-l (ca. 48.2 to 54.4 kJ/mol) at Triton X-100 concentrations of 0.12 mg/ml or higher. For the remaining systems, E values ranged from 16 to 20 kcal/mol (ca. 67.0 to 83.7 kJ/mol) (wall lysis, cellular autolysis in 0.01 M sodium phosphate or in 0.04 M ammonium acetate, and autolysis of glucose-starved cells) to 31 to 38 kcal/mol (ca 129.8 to 159.1 kJ/mol) (cellular autolysis in 0.3 M sodium phosphate or autolysis of lysine-starved cells). High concentrations of Triton X-100 appear to lower the E values below the 16 to 20 kcal/mol observed for the autolysis of isolated walls. This effect may be related to disruption by the detergent of a hydrophobic complex regulating cellular autolysis in vivo.  相似文献   

11.
Homonyms, synonyms and mutations of the sequence/structure vocabulary   总被引:3,自引:0,他引:3  
The effect of pH and temperature on the association equilibrium constant (Ka) for bovine basic pancreatic trypsin inhibitor (BPTI, Kunitz inhibitor) binding to human urinary kallikrein and porcine pancreatic beta-kallikreins A and B has been investigated. Ka values decrease with decreasing pH, reflecting the acid-midpoint and pK shifts, upon BPTI binding, of a three-proton co-operative transition, between pH 3 and 5, and of a single ionizable group, between pH 5 and 9. At pH 8, the values of delta H degree (between 7 degrees C and 42 degrees C) and delta S degree (at 21 degrees C) for BPTI binding to the glandular kallikreins considered were determined. In particular, the delta H degree values have been found to be independent of temperature and the following values have been obtained by van't Hoff plots: +1.8 kcal/mol, +2.3 kcal/mol and +2.4 kcal/mol (1 kcal = 4184 J) for the inhibitor binding to human urinary kallikrein and porcine pancreatic beta-kallikreins A and B, respectively. Considering the known molecular structures of free porcine pancreatic beta-kallikrein A and BPTI, and of their complex, the stereochemistry of the enzyme : inhibitor contact regions was analysed for the three serine proteinases, in relation to their respective types of behaviour.  相似文献   

12.
Acid-base properties of amphotericin B, polyenic antibiotic in aqueous solutions was studied. A special procedure provided the use of potentiometric titration for investigation of ionization of the groups of the water-insoluble substance. The ionization constants of the carboxylic and amine groups of the antibiotic were determined at several temperatures. It was found that ionization of the acid group did not depend on the temperature. At the same time the heat effect of the amine group ionization was significant and amounted to about 10 kcal/mole. Thermodynamic analysis of the ionization process of amphotericin B in aqueous solutions was performed. Integral components defining the process energetics were calculated.  相似文献   

13.
The exchange kinetics of the slowest exchanging BPTI beta-sheet protons are complex compared to model peptides; the activation energy, E alpha, and the pH dependence are temperature dependent. We have measured the exchange kinetics in the range pH 1--11, 33--71 degrees C, particularly the temperature dependence. The data are fit to a model in which exchange of each proton is determined by two discrete dynamical processes, one with E alpha approximately 65 kcal/mol and less than first order dependence on catalyst ion, and one with E alpha 20--30 kcal/mol and approaching first order in catalyst ion. The low activation energy process is the mechanism of interest in the native conformation of globular proteins and involves low energy, small amplitude fluctuations; the high activation energy process involves major unfolding. The model is simple, has a precedent in the hydrogen exchange literature, and explains quantitatively the complex feature of the exchange kinetics of single protons in BPTI, including the following. For the slowest exchanging protons, in the range 36 degrees--68 degrees C, E alpha is approximately 65 kcal/mol at pH approximately 4, 20--30 kcal/mol at pH greater than 10, and rises to approximately 65 kcal/mol with increasing temperature at pH 6--10; the Arrhenius plots converge around 70 degrees C; the pH of minimum rate, pHmin, is greater than 1 pH unit higher at 68 degrees C than for model compounds; and at high pH, the pH-rate profiles shift to steeper slope; the exchange rates around pHmin are correlated to the thermal unfolding temperature in BPTI derivatives (Wagner and Wüthrich, 1979, J. Mol. Biol. 130:31). For the more rapidly exchanging protons in BPTI the model accounts for the observation of normal pHmin and E alpha of 20--30 kcal/mol at all pH's. The important results of our analysis are (a) rates for exchange from the folded state of proteins are not correlated to thermal lability, as proposed by Wuthrich et al. (1979, J. Mol. Biol. 134:75); (b) the unfolding rate for the BPTI cooperative thermal transition is equal to the observed exchange rates of the slowest exchanging protons between pH 8.4--9.6, 51 degrees C; (c) the rates for exchange of single protons from folded BPTI are consistent with our previous hydrogen-tritium exchange results and with a penetration model of the dynamic processes limiting hydrogen exchange.  相似文献   

14.
The heat of formation of the chymotrypsin-phenylethane boronic acid complex has been observed calorimetrically from pH 4 to 8 at 25 degrees C and is found to be pH-dependent, changing from near -6 kcal/mol at pH 4 to -13 kcal/mol at pH 8. The heat of formation of the chymotrypsin-indole complex is a nearly constant -6 kcal/mol over most of the same pH range. alpha-Chymotrypsin has been purified by pH gradient elution from an immobilized lima bean inhibitor column. Solutions of the enzyme up to 400 microM, prepared in this manner, have a zero heat of dilution from pH 5 to 8 in 0.1 M KCl, with or without added 0.05 M Tris, N-(tris[hydroxy-methyl]methyl-2-amino) ethanesulfonic acid, 4-morpholineethanesulfonic acid, or acetate buffers. Binding of phenylethane boronic acid causes a pH-dependent decrease in proton binding to chymotrypsin; the decrease in proton binding evoked by formation of the indole complex is much less, with a much smaller pH dependence. The calorimetric and proton-binding results are applied to a model for boronic acid binding (Hanai, K. (1976) J. Biochem. (Tokyo) 79, 107-116). We conclude that the thermodynamics of formation of the trigonal boronic acid complex are quite similar to those for the formation of the noncovalent complex formed by indole and related ligands. The trigonal-tetrahedral tautomerism in the boronic acid-chymotrypsin complex is characterized by thermodynamic changes similar to those accompanying the binding of virtual substrates to chymotrypsin.  相似文献   

15.
Difference spectroscopy was used to determine the equilibrium constants and thermodynamic parameters for the monomer-dimer association of bovine and porcine insulin and bovine proinsulin at pH 2.0 and 7.0. At pH 2 delta G degree 25, delta S degree, and delta H degree for dimerization of bovine insulin were found to be -6.6 kcal/mol, -18 cal/mol-deg, and -12 kcal/mol, respectively. Porcine insulin behaved similarly to bovine insulin in its dimerization properties in that delta G degree 25, delta S degree, and delta H degree were found to be -6.8 kcal/mol, -14 cal/mol-deg, and -11 kcal/mol, respectively. At pH 7 delta G degree 25, delta S degree, and delta H degree for dimerization of bovine insulin were found to be -7.2 kcal/mol, -16 cal/mol/deg, and -12 kcal/mol, respectively. At pH 7.0 delta G degree 25, delta S degree, and delta H degree for dimerization of porcine insulin were -6.7 kcal/mol, -11.6 cal/mol-deg, and -10 kcal/mol, respectively. The similarity in the thermodynamic parameters of both insulin species at the different pH's suggests that there are minimal structural changes at the monomer-monomer contact site over this pH range. The dimerization of both insulin species is under enthalpic control. This may suggest that the formation of the insulin dimer is not driven by hydrophobic bonding but, rather, is driven by the formation between subunits of four hydrogen bonds in an apolar environment. At pH 2 delta G degree 25, delta S degree, and delta H degree for dimerization of bovine proinsulin were found to be -5.3 kcal/mol, -26 cal/mol-deg, and -13 kcal/mol, respectively. At pH 7 delta G degree 25, delta S degree, and delta H degree for dimerization of proinsulin were -5.9 kcal/mol, -4.2 cal/mol-deg, and -7.2 kcal/mol, respectively. Although the presence of the C-peptide on proinsulin does not drastically affect the overall free energy change of dimer formation (as compared to insulin), the other thermodynamic parameters are rather drastically altered. This may be because of electrostatic interactions of groups on the C-peptide with groups on the B-chain which are near the subunit contact site in the insulin dimer.  相似文献   

16.
The thermodynamics of zinc hematoporphyrin (ZnHP) dimerization and ZnHP-membrane binding were studied. The dimerization equilibrium was determined over the temperature range 19-40 degrees C, using fluorometric techniques. The dimerization constant obtained at 37 degrees C (neutral pH in phosphate-buffered saline) is 4.6 (+/- 0.6) X 10(4) M-1. The dimerization was found to decrease with temperature over the range 19-36 degrees C, the data allowing the extraction of the following thermodynamic parameters for the temperature range 19-31 degrees C: delta G0 = -9.3 kcal/mol, delta H0 = -7.4 kcal/mol, delta S0 = -6.4 eu. For temperatures above 36 degrees C the dimerization was found to be temperature independent, giving the following parameters: delta G0 = -6.6 kcal/mol, delta H0 = 0 kcal/mol, delta S0 = 21.2 eu. On the basis of the data the case is made for the existence of two types of ZnHP dimers, differing in the location of the fifth Zn2+ ligand and in the nature of the contribution of the solvent to the dimerization. For the membrane binding, large unilamellar liposomes served to model biological membranes. The binding of ZnHP to the liposomes was found to be similar, quantitatively, to the corresponding metal-free molecule, namely, fitting a case of one type of site and giving a binding constant of 1600 +/- 160 M (neutral pH and 37 degrees C) which is independent of the length of the porphyrin-liposome.  相似文献   

17.
The chromatin modification is regulated by the histone acetyltransferase (HAT) and histone deacetyltransferase (HDAC) enzymes; abnormal function of these enzymes leads to several malignant diseases. The inhibition of these enzymes using natural ligand molecules is an emerging technique to cure these diseases. The in vitro analysis of natural molecules, venenatine, spinosine, palmatine and taxodione are giving the best inhibition rate against p300 HAT enzyme. However, the detailed understanding of binding and the stability of these molecules with p300 HAT is not yet known. The aim of the present study is focused to determine the binding strength of the molecules from molecular dynamics simulation analysis. The docking analysis confirms that, the venenatine (−6.97 kcal/mol - conformer 8), spinosine (−6.52 kcal/mol conformer −10), palmatine (−5.72 kcal/mol conformer-3) and taxodione (−4.99 kcal/mol conformer-4) molecules form strong hydrogen bonding interactions with the key amino acid residues (Arg1410, Thr1411 and Trp1466) present in the active site of p300. In the molecular dynamics (MD) simulation, the spinosine retain these key interactions with the active site amino acid residues (Arg1410, Thr1411, and Trp1466) than venenatine and are stable throughout the simulation. The RMSD value of spinosine (0.5 to 1.3 Å) and venenatine (0.3 to 1.3 Å) are almost equal during the MD simulation. However, during the MD simulation, the intermolecular interaction between venenatine and the active site amino acid residues (Arg1410, Thr1411, and Trp1466) decreased on comparing with the spinosine-p300 interaction. The binding free energy of the spinosine (−15.30 kcal/mol) is relatively higher than the venenatine (−11.8 kcal/mol); this increment is attributed to the strong hydrogen bonding interactions of spinosine molecule with the active site amino acid residues of p300.  相似文献   

18.
The effect of pH and temperature on the apparent association equilibrium constant (Ka) for the binding of the recombinant proteinase inhibitor eglin c from leech Hirudo medicinalis to human leukocyte elastase (EC 3.4.21.37), bovine alpha-chymotrypsin (EC 3.4.21.1) and subtilisin Carlsberg (EC 3.4.21.14) has been investigated. On lowering the pH from 9.5 to 4.5, values of Ka for eglin c binding to the serine proteinases considered decrease thus reflecting the acid-pK shift of the invariant histidyl catalytic residue (His57 in human leukocyte elastase and bovine alpha-chymotrypsin, and His64 in subtilisin Carlsberg) from congruent to 6.9, in the free enzymes, to congruent to 5.1, in the enzyme:inhibitor adducts. At pH 8.0, values of the apparent thermodynamic parameters for eglin c binding are: human leukocyte elastase - Ka = 1.0 x 10(10) M-1, delta G phi = -13.4 kcal/mol, delta H phi = +1.8 kcal/mol, and delta S phi = +52 entropy units; bovine alpha-chymotrypsin -Ka = 5.0 x 10(9) M-1, delta G phi = -13.0 kcal/mol, delta H phi = +2.0 kcal/mol, and delta S phi = +51 entropy units; and subtilisin Carlsberg - Ka = 6.6 x 10(9) M-1, delta G phi = -13.1 kcal/mol, delta H phi = +2.0 kcal/mol, and delta S phi = +51 entropy units (values of Ka, delta G phi and delta S phi were obtained at 21 degrees C; values of delta H phi were temperature independent over the range explored, i.e. between 10 degrees C and 40 degrees C; 1 kcal = 4184J).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Glutamate dehydrogenase from Candida utilis undergoes a reversible conformational transition between an active and an inactive state at low pH AND low temperature. This conformational transition can also be followed by fluorescence measurements. The temperature-dependent equilibrium between the active and the inactive state is characterized by a transition temperature of 10.7 degrees C and a delta H value of 148 kcal/mol (620 kJ/mol). The temperature dependence of the enzymic activity above 15 degrees C yields an activation energy of 15 kcal/mol (63 kJ/mol), a larger value than that for the beef liver enzyme (9 kcal/mol; 38 kJ/mol). In contrast to the yeast enzyme the Arrhenius plot is linear and, therefore, the beef liver enzyme is not transformed into an inactive conformation at low temperatures. Sedimentation analysis shows that the inactivation of the Candida utilis enzyme is not caused by change in the quaternary structure. The pH dependence of the conformational transition at low pH measured by fluorescence change is characterized by a pK value of 7.01 for the enzyme in the absence and of 6.89 for the enzyme in the presence of 2-oxoglutarate with a Hill coefficient of 3.4 in both cases. Similar results are found when the pH dependence of the enzymic activity is analyzed. With the beef liver enzyme the same pK value is obtained but with a Hill coefficient of 1 indicating cooperativity only in the case of the Candida utilis enzyme. The best fit of the pH dependence of the rate constants of the fluorescence changes was obtained with pK values of 7.45 and 6.45 for the active and the inactive state respectively. In this model the lowest time constant which is obtained at the pH of the equilibrium was found to be 0.05 s-1. Preincubation experiments with the substrate 2-oxoglutarate but not with the coenzyme shift the equilibrium to the active conformation. The coenzyme obviously reduces the rate constant of the conformational transition. The sedimentation coefficient (SO20, w) and the molecular weight were found to be 11.0 S and 276 000, respectively. The enzyme molecule is built up by six polypeptide chains each having a molecular weight of 47 000.  相似文献   

20.
Summary Xylanase from Scytalidium thermophilum was immobilized on Eudragit L-100, a pH sensitive copolymer of methacrylic acid and methyl methacrylate. The enzyme was non-covalently immobilized and the system expressed 70% xylanase activity. The immobilized preparation had broader optimum temperature of activity between 55 and 65 °C as compared to 65 °C in case of free enzyme and broader optimum pH between 6.0 and 7.0 as compared to 6.5 in case of free enzyme. Immobilization increased the t1/2 of enzyme at 60 °C from 15 to 30 min with a stabilization factor of 2. The Km and Vmax values for the immobilized and free xylanase were 0.5% xylan and 0.89 μmol/ml/min and 0.35% xylan and 1.01 μmol/ml/min respectively. An Arrhenius plot showed an increased value of activation energy for immobilized xylanase (227 kcal/mol) as compared to free xylanase (210 kcal/mol) confirming the higher temperature stability of the free enzyme. Enzymatic saccharification of xylan was also improved by xylanase immobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号