首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A. Fischer  M. Kluge 《Planta》1984,160(2):121-128
In the Crassulacean acid metabolism (CAM) plants Kalanchoë tubiflora and Sedum morganianum a shift in the pathways occurs by which external CO2 enters the metabolism during the initial light period (phase II of the diurnal CAM cycle). At the beginning of phase II, CO2 is fixed mainly by the C4 pathway; during late phase II, however, it is fixed mainly via the C3 pathway. The C3 pathway contributes to the phosphoenolpyruvate-carboxylase-mediated CO2 fixation by the provision of three-carbon skeletons. Since the shift in the carbon-flow pathway is delayed after a CO2-free night when malic-acid accumulation in the vacuoles is prevented, it is very likely that the amount of malic acid in the vacuole is integrated in the mechanism which controls CAM during the initial light period. A light-on signal at the beginning of phase II is not required to bring about the shifts in the carbon-flow pathways, as is shown by the reaction of plants to a prolonged dark period. A model of carbon flow during phase II is proposed.Abbreviations CAM Crassulacean acid metabolism - PEP-Case phosphoenolpyruvate carboxylase  相似文献   

2.
L. Pistelli  G. Marigo  E. Ball  U. Lüttge 《Planta》1987,172(4):479-486
The levels of phosphorylated compounds studied during the dark period of Crassulacean acid metabolism (CAM) in Kalanchoë leaves showed increases for ATP and pyrophosphate and decreases for ADP, AMP and phosphenolpyruvate; levels of inorganic phosphate remained constant. Changes in adenylate levels and the correlated nocturnal increase in adenylate-energycharge were closely related to changes in malate levels. The increase in ATP levels was much inhibited in CO2-free air and stimulated after induction of CAM in short-day-treated plants of K. blossfeldiana cv. Tom Thumb. Changes in levels of phosphoenolpyruvate and pyrophosphate were independent of the presence of CO2. The results show the operation of complex regulatory mechanisms in the energy metabolism of CAM plants during nocturnal malic-acid accumulation.Abbreviations CAM Crassulacean acid metabolism - FW fresh weight - OAA oxaloacetic acia - PEP phosphoenol pyruvate - PPi pyrophosphate  相似文献   

3.
Upon transfer from well-watered conditions to total drought, long-day-grown cladodes of Opuntia ficus-indica Mill. shift from full Crassulacean acid metabolism (CAM) to CAM-idling. Experiments using 14C-tracers were conducted in order to characterize the carbon-flow pattern in cladodes under both physiological situations. Tracer was applied by 14CO2 fumigations and NaH14CO3 injections during the day-night cycle. The results showed that behind the closed stomata, mesophyll cells of CAM-idling plants retained their full capacity to metabolize CO2 in light and in darkness. Upon the induction of CAM-idling the level of the capacity of phosphoenolpyruvate carboxylase (EC 4.1.1.31) was maintained. By contrast, malate pools decreased, displaying finally only a small or no day-night oscillation. The capacity of NADP-malic enzyme (EC 1.1.1.40) decreased in parallel with the reduction in malate pools. Differences in the labelling patterns, as influenced by the mode of tracer application, are discussed.Abbreviations CAM Crassulacean acid metabolism - PEP-Case phosphoenolpyruvate carboxylase  相似文献   

4.
P. Rustin  C. Queiroz-Claret 《Planta》1985,164(3):415-422
Kalanchoe blossfeldiana plants grown under long days (16 h light) exhibit a C3-type photosynthetic metabolism. Switching to short days (9 h light) leads to a gradual development of Crassulacean acid metabolism (CAM). Under the latter conditions, dark CO2 fixation produces large amounts of malate. During the first hours of the day, malate is rapidly decarboxylated into pyruvate through the action of a cytosolic NADP+-or a mitochondrial NAD+-dependent malic enzyme. Mitochondria were isolated from leaves of plants grown under long days or after treatment by an increasing number of short days. Tricarboxylic acid cycle intermediates as well as exogenous NADH and NADPH were readily oxidized by mitochondria isolated from the two types of plants. Glycine, known to be oxidized by C3-plant mitochondria, was still oxidized after CAM establishment. The experiments showed a marked parallelism in the increase of CAM level and the increase in substrate-oxidation capacity of the isolated mitochondria, particularly the capacity to oxidize malate in the presence of cyanide. These simultaneous variations in CAM level and in mitochondrial properties indicate that the mitochondrial NAD+-malic enzyme could account at least for a part of the oxidation of malate. The studies of whole-leaf respiration establish that mitochondria are implicated in malate degradation in vivo. Moreover, an increase in cyanide resistance of the leaf respiration has been observed during the first daylight hours, when malate was oxidized to pyruvate by cytosolic and mitochondrial malic enzymes.Abbreviations CAM Crassulacean acid metabolism - MDH malate dehydrogenase - ME malic enzyme  相似文献   

5.
J. Brulfert  D. Guerrier  O. Queiroz 《Planta》1982,154(4):332-338
Measurements of net CO2 exchange, malate accumulation, properties and capacity of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) in leaves of different ages of two short-day dependent Crassulacean acid metabolism (CAM) plants (Kalanchoe blossfeldiana v. Poelln. Tom thumb and K. velutina Welw.) show that, in both species: a) young leaves from plants grown under long days display a CO2 exchange pattern typical of C3 plants; b) leaf aging promotes CAM under long-day conditions; c) short-day treatment induces CAM in young leaves to a higher degree than aging under long days; d) at least in K. blossfeldiana, the PEPC form developed with leaf aging under long days and the enzyme form synthetized de novo in young leaves grown under short days were shown to have similar properties. Short days also promote CAM in older leaves though at a lesser extent than in young leaves: The result is that this photoperiodic treatment increases the general level of CAM performance by the whole plant. The physiological meaning of the control of PEPC capacity by photoperiodism could be to afford a precisely timed seasonal increase in CAM potentiality, enabling the plant to immediately optimize its response to the onset of drought periods.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - PEPC phosphoenolpyruvate carboxylase (EC 4.1.1.31) - LD long day - SD short day  相似文献   

6.
U. Lüttge 《Planta》1986,168(2):287-289
Measurements of water uptake and transpiration, during the dark period of plants having Crassulacean acid metabolism (CAM) allow calculation of leaf-volume changes (V). Nocturnal leaf-volume changes of CAM plants have also been reported in the literature on the basis of waterdisplacement measurements. A third way of estimation is from measurements of turgor changes and cellular water-storage capacity using the pressure probe, cytomorphometry and the Scholander pressure chamber. An extension of the interpretation of results reported in the literature shows that for leaf succulent CAM plants the three different approaches give similar values of V ranging between 2.3 and 10.7% (v/v). It is evident that nocturnal malic-acid accumulation osmotically drives significant water storage in CAM leaf tissue.Abbreviations and symbols Cc water-storage capacity - E transporation (evaporational water loss) - P turgor pressure - U water uptake - V cell volume - cell-wall elastic modulus - osmotic pressure - CAM Crassulacean acid metabolism  相似文献   

7.
Immunotitration of phosphoenolpyruvate carboxylase (EC 4.1.1.31) extracted from leaves of Kalanchoe blossfeldiana v. Poelln. cv. Tom Thumb. It was established that at different times of the day-night cycle the daily rhythm of enzyme capacity does not result from a rhythm in protein synthesis, but rather from changes in the specific activity of the enzyme.Abbreviations CAM Crassulacean acid metabolism - IgG immunoglobulin G - PEP phosphoenolpyruvate To whom correspondence should be addressed  相似文献   

8.
Short-term measurements of instantaneous carbon-isotope discrimination have been determined from mass-spectrometric analyses of CO2 collected online during gas exchange for the epiphytic bromeliad Tillandsia utriculata L. Using this technique, the isotopic signature of CO2 exchange for each phase of Crassulacean acid metabolism (CAM) has been characterised. During night-time fixation of CO2 (Phase I), discrimination () ranged from 4.4 to 6.6, equivalent to an effective carbon-isotope ratio (13C) of –12.3 to –14.5 versus Pee Dee Belemnite (PDB). These values reflected the gross photosynthetic balance between net CO2 uptake and refixation of respiratory CO2, characteristic of CAM in the Bromeliaceae. When for the relative proportion of external (p a ) and internal (p i) CO2 is taken into account, calculated p i/p a decreased during the later part of the dark period from 0.68 to 0.48. Measurements of during Phase II, early in the light period, showed the transition between C4 and C3 pathways, with carboxylation being increasingly dominated by ribulose bisphosphate carboxylase (Rubisco) as increased from 10.5 to 21.2 During decarboxylation in the light period (Phase III), CO2 leaked out of the leaf and the inherent discrimination of Rubisco was expressed. The value of calculated from on-line measurements (64.4) showed that the CO2 lost was considerably enriched in 13C, and this was confirmed by direct analysis of the CO2 diffusing out into a CO2-free atmosphere ( 13C = + 51.6 versus PDB). Instantaneous discrimination was characteristic of the C3 pathway during Phase IV (late in the light period), but a reduction in showed an increasing contribution from phosphoenolpyruvate carboxylase. The results from this non-invasive technique confirm the observations that double carboxylation involving both phosphoenolpyruvate carboxylase and Rubisco occurs during the transient phases of CAM (II and IV) in the light period.Abbreviations and Symbols CAM Crassulacean acid metabolism - H+ (dawn-dusk) variation in titratable acidity - 13C carbonisotope ratio of plant organic material, relative to Pee Dee Belemnite (vs. PDB) - discrimination against 13CO2, - p i, p a internal, external partial pressures of CO2 - Rubisco ribulose1,5-bisphosphate carboxylase - PAR photosynthetically active radiation - PEPCase phosphoenolpyruvate carboxylase We are grateful for financial support in respect of research grants (GR3/5360, GR3/6419) and a studentship awarded by the Natural Environment Research Council, UK.  相似文献   

9.
The maximum extractable activities of twenty-one photosynthetic and glycolytic enzymes were measured in mature leaves of Mesembryanthemum crystallinum plants, grown under a 12 h light 12 h dark photoperiod, exhibiting photosynthetic characteristics of either a C3 or a Crassulacean acid metabolism (CAM) plant. Following the change from C3 photosynthesis to CAM in response to an increase in the salinity of in the rooting medium from 100 mM to 400 mM NaCl, the activity of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) increased about 45-fold and the activities of NADP malic enzyme (EC 1.1.1.40) and NAD malic enzyme (EC 1.1.1.38) increased about 4- to 10-fold. Pyruvate, Pi dikinase (EC 2.7.9.1) was not detected in the non-CAM tissue but was present in the CAM tissue; PEP carboxykinase (EC 4.1.1.32) was detected in neither tissue. The induction of CAM was also accompanied by large increases in the activities of the glycolytic enzymes enolase (EC 4.2.1.11), phosphoglyceromutase (EC 2.7.5.3), phosphoglycerate kinase (EC 2.7.2.3), NAD glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12), and glucosephosphate isomerase (EC 2.6.1.2). There were 1.5- to 2-fold increases in the activities of NAD malate dehydrogenase (EC 1.1.1.37), alanine and aspartate aminotransferases (EC 2.6.1.2 and 2.6.1.1 respectively) and NADP glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13). The activities of ribulose-1,5-bisphosphate (RuBP) carboxylase (EC 4.1.1.39), fructose-1,6-bisphosphatase (EC 3.1.3.11), phosphofructokinase (EC 2.7.1.11), hexokinase (EC 2.7.1.2) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49) remained relatively constant. NADP malate dehydrogenase (EC 1.1.1.82) activity exhibited two pH optima in the non-CAM tissue, one at pH 6.0 and a second at pH 8.0. The activity at pH 8.0 increased as CAM was induced. With the exceptions of hexokinase and glucose-6-phosphate dehydrogenase, the activities of all enzymes examined in extracts from M. crystallinum exhibiting CAM were equal to, or greater than, those required to sustain the maximum rates of carbon flow during acidification and deacidification observed in vivo. There was no day-night variation in the maximum extractable activities of phosphoenolpyruvate carboxylase, NADP malic enzyme, NAD malic enzyme, fructose-1,6-bisphosphatase and NADP malate dehydrogenase in leaves of M. crystallinum undergoing CAM.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - RuBP ribulose-1,5-bisphosphate  相似文献   

10.
Tonoplast vesicles were isolated from Kalanchoe daigremontiana Hamet et Pierrer de la Bâthie and Mesembryanthemum crystallinum L., exhibiting constitutive and inducible crassulacean acid metabolism (CAM), respectively. Membrane-bound proteins were detergent-solubilized with 2% of Triton X-100. During CAM induction in M. crystallinum, ATPase activity increases four-fold, whereas pyrophosphatase activity decreases somewhat. With all plants, ATPase and pyrophosphatase could be separated by size-exclusion chromatography (SEC, Sephacryl S 400), and the ATPase was further purified by diethylaminoethyl-ion-exchange chromatography. Sodium-dodecyl-sulfate electrophoresis of the SEC fractions from K. daigremontiana containing maximum ATPase activity separates several protein bands, indicating subunits of 72, 56, 48, 42, 28, and 16 kDa. Purified ATPase from M. crystallinum in the C3 and CAM states shows a somewhat different protein pattern. With M. crystallinum, an increase in ATP-hydrolysis and changes in the subunit composition of the native enzyme indicate that the change from the C3 to the CAM state is accompanied by de-novo synthesis and by structural changes of the tonoplast ATPase.Abbreviations CAM Crassulacean acid metabolism - DTT dithiothreitol - kDa kilodalton - PAGE polyacrylamide gel electrophoresis - PPiase pyrophosphatase - SEC size exclusion chromatography - SDS sodium dodecyl sulfate - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

11.
Summary The performance of crassulacean acid metabolism (CAM) by dicotyledonous trees of the genusClusia sampled at three sites in the state of Falcon in northern Venezuela is characterized.Clusia leaves have a somewhat succulent appearance. Unlike leaves of many other CAM plants, which are uniformly built up of very large isodiametric cells, there are distinct layers of palisade and spongy mesophyll, with individual cells being smaller. There is no specialized water storage tissue. 13C values indicate thatC. multiflora in the elfin-cloud forest on top of Cerro Santa Ana, at 800 m altitude, performs C3 photosynthesis (13 –27.1). However,C. rosea in the tall cloud forest on Cerro Santa Ana (600m altitude), andC. rosea andC. alata in the dry forest on Serrania San Luis (900 m altitude) perform CAM (13C –14.1 to –19.2). InC. alta andC. rosea there were large day-night changes in the levels of malic and citric acids ranging from 63 to 240 mmol 1–1 for malid acid and from 35 to 112 mmol 1–1 for citric acid. The sum of the changes in malate and citrate levels accounts for the changes of titratable protons measured. With a day-night change of titratable protons of 768 mmol 1–1 in one of the analyses,C. rosea showed the highest value yet encountered in a CAM plant. Oscillations of free sugars (fructose, glucose, sucrose) and of starch were also analysed in the CAM performingClusia species. Carbon skeletons of the precursors involved in nocturnal malate and citrate synthesis largely derive from free sugars and not from polyglucan. Unlike some other CAM plants, there is no clear and quantitative correlation between day-night changes of organic acid levels and cell sap osmolality.Dedicated to Professor Dr. Otto L. Lange on the occasion of his 60th birthday.  相似文献   

12.
Klaus Winter 《Planta》1987,172(1):88-90
Leaves of the Crassulacean acid metabolism plant Kalanchoe daigremontiana Hamet et Perr., about 3.3 mm thick, showed higher rates of net CO2 exchange through the lower than through the upper surface during day and night, although the lower surface received only a small fraction of the light which was incident on the upper surface. Nocturnal acidification was more pronounced in cells from the lower than from the upper portion of leaves. The lower activity of the exposed side of these long-lived succulent leaves may be related to the potentially adverse effects of excessive light.Abbreviations CAM Crassulacean acid metabolism - PFD photon flux density (400–700 nm)  相似文献   

13.
Endogenous free-running regular circadian oscillations of net CO2 exchange in the crassulacean-acidmetabolism (CAM) plant Kalanchoë daigremontiana Hamet et Perrier de la Bâthie under constant external conditions in continuous light have been shown to change to irregular non-predictable (chaotic) time behaviour as irradiance or temperature are raised above a critical level. A model of CAM has been constructed with pools of major metabolites of varying concentrations, flows of metabolites leading to exchange between pools, metabolite transformations determined by chemical reactions, and feedback regulations. The model is described by a system of coupled non-linear differential equations. It shows stable rhythmicity in normal dark-light cycles and in continuous light and, like the K. daigremontiana leaves in the experiments, a change to chaos as irradiance is increased. The maintenance of endogenous oscillations in the model is brought about by a hysteresis switch or beat oscillator between two stable oscillation modes. In CAM these stable modes are vacuolar malate accumulation and remobilization. The model shows that the physical nature of the beat oscillator in the leaves can be explained by the balance between active and passive transport at the tonoplast.Abbreviations CAM crassulacean acid metabolism - D dark period - DL 12:12 h dark-light rhythm - L light period - LL constant illumination - PPFD photosynthetic photon flux density - TL leaf temperature It is a great pleasure to thank Dr. G.-H. Vieweg, (Roßdorf, FRG) for his long-lasting efforts to have the phytotron in Darmstadt erected and for his persistent involvement during the various phases of planning and building. This made the present experiments possible. Dr. D. Kramer is thanked for all the time he spends to maintain functioning of the facility. Dr. P. Keller and Ms. Erika Ball assisted with the gas-exchange technology and helped with the surveillance of the long-running experiments, and Ms. Erika Ball performed all the integrations. Ms. Doris Schäfer is thanked for drawing the gas-exchange curves for publication. We are also most grateful to Professor Chr. Giersch and Professor M. Kluge (both Institut für Botanik, Technische Hochschule Darmstadt, FRG) for valuable discussions.  相似文献   

14.
15.
16.
Klaus Winter 《Planta》1982,154(4):298-308
Properties of phosphoenolpyruvate (PEP) carboxylase, obtained from leaves of Mesembryanthemum crystallinum L. performing Crassulacean acid metabolism (CAM), were determined at frequent time points during a 12-h light/12-h dark cycle. Leaf extracts were rapidly desalted and PEP carboxylase activity as a function of PEP concentration, malate concentration, and pH was measured within 2 min after homogenization of the tissue. Maximum velocity of PEP carboxylase was similar in the light and dark at pH 7.5 and pH 8.0. However, PEP carboxylase had as much as a 12-fold lower K m for PEP and as much as a 20-fold higher K i for malate during the dark than during the light periods, the magnitude of these differences being dependent on the assay pH. Assuming that enzyme properties immediately after isolation reflect the approximate state of the enzyme in vivo, these differences in enzyme properties reduce the potential for CO2 fixation via PEP carboxylase in the light. A small decrease in cytoplasmic pH in the light would greatly magnify the above differences in day/night properties of PEP carboxylase, because the sensitivity of PEP carboxylase to inhibition by malate increased with decreasing pH. Properties of PEP carboxylase were also studied in plants exposed to short-term perturbations of the normal 12-h light/12-h dark cycle (e.g., prolonged light period, prolonged dark period). Under all light/dark regimes, there was a close correlation between change in properties of PEP carboxylase and changes of the tissue from acidification to deacidification, and vice versa. Changes in properties of PEP carboxylase were not merely light/dark phenomena because they were also observed in plants exposed to continuous light or dark. the data indicate that, during CAM, PEP carboxylase exists in two stages which differ in their capacity for net malate synthesis. The physiologically-active state is distinguished by a low K m for PEP and a high K i for malate and favors malate synthesis. The physiologically-inactive state has a high K m for PEP and a low K i for malate and exists during periods of deacidification and other periods lacking synthesis of malic acid.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - PEPC PEP carboxylase - RuBP ribulose 1,5-bisphosphate - RH relative humidity  相似文献   

17.
The studies described in the paper were conducted with tissue slices of Crassulacean acid metabolism (CAM) plants floating in isotonic buffer. In a first series of experiments, temperature effects on the efflux of [14C]malate and14CO2 were studied. An increase of temperature increased the efflux from the tissue in a non-linear manner. The efflux was markedly influenced also by the temperatures applied during the pretreatment. The rates of label export in response to the temperature and the relative contributions of14CO2 and [14C]malate to the label export were different in the two studied CAM plants (Kalanchoë daigremontiana, Sempervivum montanum). In further experiments, temperature response of the labelling patterns produced by14CO2 fixation and light and darkness were studied. In tissue which had accumulated malate (acidified state) an increase of temperature decreased the rates of dark CO2 fixation whilst the rates of CO2 fixation in light remained largely unaffected. An increase of temperature shifted the labelling patterns from a C4-type (malate being the mainly labelled compound) into a C3-type (label in carbohydrates). No such shift in the labelling patterns could be observed in the tissue which had depleted the previously stored malate (deacidified state). The results indicate that in the acidified tissue the increase of temperature increases the efflux of malate from the vacuole by changing the properties of the tonoplast. It is assumed that the increased export of malic acid lowers the in-vivo activity of phosphoenol pyruvate carboxylase by feedback inhibition.Abbreviations CAM Crassulacean acid metabolism - FW fresh weight - PEPCase phosphoenolpyruvate carboxylase Dedicated to Professor O.L. Lange, Würzburg, on the occasion of his 60th birthday  相似文献   

18.
Tonoplast vesicles were prepared from leaf mesophyll homogenates of the crassulacean-acid-metabolism plant Kalanchoë daigremontiana Hamet et Perrier de la Bâthie to study the effects of anions on ATP- and inorganic-pyrophosphate (PPi)-dependent H+ transport. In the presence of gramicidin, substrate hydrolysis by the tonoplast ATPase was characteristically stimulated by chloride and inhibited by nitrate, but was unaffected by malate and a wide range of other organic-acid anions; the PPiase was anion-insensitive. Malate was more effective than chloride both in stimulating ATP- and PPi-dependent vesicle acidification (measured as quinacrine-fluorescence quenching) and in dissipating a pre-existing inside-positive membrane potential (measured as oxonol-V-fluorescence quenching), indicating that malate was more readily transported across the tonoplast. Certain other four-carbon dicarboxylates also supported high rates of vesicle acidification, their order of effectiveness being fumarate malate -succinate > oxalacetate - tartrate; the five-carbon dicarboxylates 2-oxoglutarate and glutarate were also transported, although at lower rates. Experiments with non-naturally occurring anions indicated that the malate transporter was not stereospecific, but that it required the trans-carboxyl configuration for transport. Shorter-chain or longer-chain dicarboxylates were not transported, and neither were monocarboxylates, the amino-acid anions aspartate and glutamate, nor the tricarboxylate isocitrate. The non-permeant anions maleate and tartronate appeared to be competitive inhibitors of malate transport but did not affect chloride transport, indicating that malate and chloride influx at the tonoplast might be mediated by separate transporters.Abbreviations BTP 1,3-bis-[tris(hydroxymethyl)methylamino]-propane - CAM crassulacean acid metabolism - oxonol V bis(3-phenyl-5-oxoisoxazol-4-yl)pentamethine oxonol - pH transmembrane pH difference - PPi inorganic pyrophosphate - PPiase inorganic pyrophosphatase - quinacrine 6-chloro-9-{[4-(diethylamino)-1-methylbutyl]amino}-2-methoxyacridine dihydrochloride - transmembrane electrical potential difference  相似文献   

19.
In the succulent leaves of Aloe arborescens Mill diurnal oscillations of the malic acid content, being indicative of Crassulacean Acid Metabolism (CAM), were exhibited only by the green mesophyll. In contrast, the malic acid level of the central chloroplast-free water-storing tissue remained constant throughout the day-night cycle. Apart from malate, the green tissue contained high amounts of isocitrat which was lacking in the water tissue. There was no significant transfer from the green mesophyll to the water tissue of 14C fixed originally via dark 14CO2 fixation in the mesophyll. Both isolated mesophyll and water tissue were capable of dark CO2 fixation yielding mainly malate as the first stable product. Both tissues have phosphoenolpyruvate carboxylase. However, the enzymes derived from the both sources could be distinguished by their molecular weights and by their kinetic properties, suggesting different phosphoenolpyruvate carboxylase proteins. The conclusion drawn from the experiments is that in a. arborescens the CAM cycle proceeds exclusively in the green mesophyll and that the water tissue, though capable of malate synthesis via -carboxylation of phosphoenolpyruvate, behaves as an independent metabolic system where CAM is lacking. This view is supported by the finding that the cell walls bordering the green mesophyll from the water tissue lack plasmodesmata, hence conveniant pathways of metabolite transport.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - PEP-C phosphoenolpyruvate carboxylase  相似文献   

20.
The classical induction of Crassulacean acid metabolism (CAM) in Mesembryanthemum crystallinum L. by water stress is observed within one week when fourto five-week-old plants (grown under a 16/8 h photoperiod at ca. 600 mol quanta · m–2 · s–1) are irrigated with 350 mM NaCl. The induction of CAM was evaluated by measuring phosphoenolpyruvate carboxylase (PEPCase, EC 4.1.1.31) and NADP-malic enzyme (NADP-ME, EC 4.1.1.82) activities and nocturnal increases in malate content and titratable acidity of leaf extracts, and the daily pattern of CO2 exchange and stomatal conductance during the 7-d induction period. Three growth regulators, abscisic acid (ABA), farnesol (an antitranspirant and analog of ABA), and benzylaminopurine (BAP), were found to substitute for NaCl for induction of CAM when fed to plants in nutrient media. Daily irrigation with solutions containing micromolar levels (optimum ca. 10 micromolar) of these growth regulators led to the induction of CAM similar to that by high salt. Application of the growth regulators, like NaCl, caused large increases in the activity of NADP-ME and the activity and level of PEPCase, which are components of the biochemical machinery required for CAM. Western immunoblotting showed that the increased activity of PEPCase on addition of ABA, farnesol and BAP was mainly due to increased levels of the CAM-specific isoforms. Also, dehydration of cut leaves over 8.5 h under light resulted in a severalfold increase in PEPCase activity. An equivalent increase in PEPCase activity in excised leaves was also obtained by feeding 150 mM NaCl, or micromolar levels of ABA or BAP via the petiole, which supports results obtained by feeding the growth regulators to roots. However, the increase in PEPCase activity was inhibited by feeding high levels of BAP to cut leaves prior to dehydration, indicating a more complex response to the cytokinin. Abscisic acid may have a role in induction of CAM in M. crystallinum under natural conditions as there is previous evidence that induction by NaCl causes an increase in the content of ABA, but not cytokinins, in leaves of this species.Abbreviations ABA abscisic acid - BAP 6-benzylaminopurine - CAM Crassulacean acid metabolism - Chl chlorophyll - 2,4D 2,4-dichlorophenoxyacetic acid - NADP-ME NADP-malic enzyme - PEPCase phosphoenolpyruvate carboxylase Methyl jasmonate was generously provided by Dr. Vincent Franceschi (Botany Department, Washington State University). The anti-maize leaf PEPCase was kindly supplied by Dr. Tatsuo Sugiyama (Department of Agricultural Chemistry, Nagoya University, Japan) and the anti-Flaveria trinervia leaf PEPCase was kindly supplied by Dr. Samuel Sun (Department of Plant Molecular Physiology, University of Hawaii, Honulu). This work was funded in part by U.S. Department of Agriculture Competitive Grant 90-37280-5706 and an equipment grant (DMB 8515521) from the National Science Foundation. Ziyu Dai was supported in part by Guangxi Agricultural College and Ministry of Agriculture of the People's Republic of China  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号