首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wilson's disease is a rare genetic disorder of copper metabolism. The difference in copper tissue accumulation is responsible for the various clinical manifestations of this disorder. If left untreated, Wilson's disease progresses to hepatic failure, severe neurological disability, and even death. Due to the complex clinical picture of Wilson's disease, its diagnosis relies on a high index of suspicion. In our paper, we present endocrine symptoms suggesting the presence of insulinoma and hyperprolactinemia as the initial clinical manifestation of Wilson's disease in a young female. Zinc acetate treatment resulted in the disappearance of hypoglycemia, galactorrhea, and menstrual abnormalities.  相似文献   

2.
Recognition, diagnosis, and management of Wilson's disease   总被引:14,自引:0,他引:14  
Wilson's disease is a relatively rare inherited disorder of copper accumulation and toxicity, caused by a defect in an enzyme that is part of the pathway of biliary excretion of excess copper. Clinically, patients usually present as older children or young adults with hepatic, neurologic, or psychiatric manifestations, or some combination of these. Wilson's disease is unusual among genetic diseases in that it can be very effectively treated. The prevention of severe permanent damage depends upon early recognition and diagnosis by the physician, followed by appropriate anticopper treatment. Anticopper treatments have evolved considerably since the days when the only drug available was penicillamine. Zinc is now the recommended therapy for long-term management of the disease.  相似文献   

3.
Summary Recently, the Wilson's disease locus (WND) has been mapped to the long arm of chromosome 13. We have analyzed segregation of serveral chromosome 13 markers flanking the WND locus and used multipoint linkage analysis to determine the most likely WND genotype of each of 57 unaffected individuals in 5 Wilson's disease families. Approximately 46% of these could be classified as carrier (heterozygote), homozygous normal, or homozygous affected (not yet symptomatic) with a probability of at least 90%, while 77% could be classified with a probability of at least 80%. Our results demonstrate that even though there is a significant decrease on average in serum copper concentration in Wilson's disease heterozygotes compared to normal homozygotes, other sources of variation in serum copper concentration are much greater and preclude use of serum copper to detect heterozygotes for Wilson's disease. Subsequent analyses showed that a familial component, independent of WND genotype, is the major factor accounting for variation in ceruloplasmin levels among unaffected individuals; age is another factor accounting for more variation in copper levels among unaffected individuals than WND genotype.  相似文献   

4.
Progress has been made in establishing the efficacy and safety of oral zinc as a maintenance therapy for Wilson's disease. It is important to develop simple, noninvasive monitoring methods to assure the adequacy of zinc therapy in individual patients. In this paper we report the use of 24-hr urine copper and plasma copper measurements to monitor efficacy of zinc maintenance therapy in 30 Wilson's disease patients. In examples of therapeutic inadequacy such as noncompliance, these values increase. With continued long-term adequate therapy, they remain stable or decrease. These two simple monitoring tools appear to be very useful in monitoring Wilson's disease patients receiving zinc therapy.  相似文献   

5.
Wilson's disease, an autosomal recessive disease of copper accumulation and copper toxicity primarily in the liver and brain, has been the engine that has driven the development of anticopper drugs. Here we first briefly review Wilson's disease, then review the four anticopper drugs used to treat Wilson's disease. We then discuss the results of therapy with anticopper drugs in Wilson's disease, with special emphasis on the newer and better drugs, zinc and tetrathiomolybdate. We then discuss new areas of anticopper therapy, lowering copper availability with tetrathiomolybdate as a therapy in fibrotic, inflammatory, and autoimmune disorders. Many of the cytokines which promote these disorders are copper dependent, and lowering copper availability lessens the activity of these cytokines, favorably influencing a variety of disease processes. Copper in the blood can be thought of as in two pools. One pool is covalently bound in ceruloplasmin, a protein containing six coppers, synthesized by the liver and secreted into the blood. Ceruloplasmin copper accounts for almost 85 to 90% of the blood copper in normal people. This copper is tightly bound and not readily available for cellular uptake and copper toxicity. The other 10-15% of copper is more loosely bound to albumin and other small molecules in the blood, and is readily and freely available to cells and available to cause copper toxicity, if this pool of copper is increased. We call this latter pool of copper "free" copper because of its more ready availability. However, it should be understood that it is not completely free, always being bound to albumin and other molecules. It is this pool of free copper that is greatly expanded in untreated Wilson's patients undergoing copper toxicity.  相似文献   

6.
Copper is an essential trace element that plays a very important role in cell physiology. In humans, disruption of normal copper homeostasis leads to severe disorders, such as Menkes disease and Wilson's disease. Recent genetic, cell biological, and biochemical studies have begun to dissect the molecular mechanisms involved in transmembrane transport and intracellular distribution of copper in mammalian cells. In this review, we summarize the advances that have been made in understanding of structure, function, and regulation of the key human copper transporters, the Menkes disease and Wilson's disease proteins.  相似文献   

7.
The need for agents to lower body copper in Wilson's disease, a disease which results from copper toxicity has been the driving force for the development of the effective anticopper drugs penicillamine, trientine, zinc, and now tetrathiomolybdate (TM). Because of its rapid action, potency, and safety, TM is proving to be a very effective drug for initial treatment of acutely ill Wilson's disease patients. Beyond this, TM has antiangiogenic effects, because many proangiogenic cytokines require normal levels of copper. This has led to use of TM in cancer, where it is generally effective in animal tumor models, and has shown efficacy in preliminary clinical studies. Most recently, it has been found that TM has antifibrotic and antiinflammatory effects through inhibition of profibrotic and proinflammatory cytokines.  相似文献   

8.
Copper is a trace element essential for normal cell homeostasis. The major physiological role of copper is to serve as a cofactor to a number of key metabolic enzymes. In humans, genetic defects of copper distribution, such as Wilson's disease, lead to severe pathologies, including neurodegeneration, liver lesions, and behavior abnormalities. Here, we demonstrate that, in addition to its role as a cofactor, copper can regulate important post-translational events such as protein phosphorylation. Specifically, in human cells copper modulates phosphorylation of a key copper transporter, the Wilson's disease protein (WNDP). Copper-induced phosphorylation of WNDP is rapid, specific, and reversible and correlates with the intracellular location of this copper transporter. WNDP is found to have at least two phosphorylation sites, a basal phosphorylation site and a site modified in response to increased copper concentration. Comparative analysis of WNDP, the WNDP pineal isoform, and WNDP C-terminal truncation mutants revealed that the basal phosphorylation site is located in the C-terminal Ser(796)-Tyr(1384) region of WNDP. The copper-induced phosphorylation appears to require the presence of the functional N-terminal domain of this protein. The novel physiological role of copper as a modulator of protein phosphorylation could be central to understanding how copper transport is regulated in mammalian cells.  相似文献   

9.
There are several known examples of mutations which influence copper homeostasis in humans and animals. Pleiotropic effects are observed when the mutant gene disturbs copper flux. In some cases, the mutation alters the level of a specific copper ligand (enzyme) and the clinical consequences are unique. The two most widely studied genetic maladies in humans are Menkes' and Wilson's diseases. Menkes' disease is an X-linked fatal disorder in which copper accumulates in some organs (intestine and kidney) and is low in others (liver and brain). Wilson's disease is an autosomal recessive disorder in which copper accumulates, if untreated, in liver and subsequently in brain and kidney. Pathophysiological consequences of copper deficiency and toxicity characterize these two disorders. Specific mutations of human cuproenzymes include overproduction of copper-zinc superoxide dismutase in Down's syndrome, absence of tyrosinase in albinism, hereditary mitochondrial myopathy due to reduction in cytochrome c oxidase, and altered lysyl oxidase in X-linked forms of cutis laxa and Ehlers-Danlos syndrome. Mutations altering copper metabolism are also known in animals. Several murine mutants have been studied. The most extensively investigated mutants are the mottled mice, in particular brindled mice, which have a mutation analogous to that of Menkes' disease. Another recently described murine mutation is toxic milk (tx) an autosomal recessive disorder that is characterized by copper accumulation in liver. Two other mutants, crinkled and quaking, were once thought to exhibit abnormal copper metabolism. Recent data has not confirmed this. A mutation in Bedlington terriers has been described which is very similar to Wilson's disease.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Rotilio G  Carrì MT  Rossi L  Ciriolo MR 《IUBMB life》2000,50(4-5):309-314
Copper is an essential trace element, but its redox reactivity leads to risks of damage to cell and tissues. These are well exemplified by several forms of neurodegenerative diseases, either arising as inherited disorders of copper metabolism, such as Menkes' and Wilson's disease, or as conformational diseases such as Alzheimer's disease and prion diseases. This review will cover some aspects of the involvement of copper-mediated oxidative stress in degenerative processes in the central nervous system, with special focus on the familial form of amyotrophic lateral sclerosis (FALS). Furthermore, a possible role of copper reactivity in inducing critical steps in the apoptotic pathways leading to neurodegeneration is envisaged.  相似文献   

11.
Copper-transporting ATPase ATP7B is essential for normal distribution of copper in human cells. Mutations in the ATP7B gene lead to copper accumulation in a number of tissues and to a severe multisystem disorder, known as Wilson's disease. Primary sequence analysis suggests that the copper-transporting ATPase ATP7B or the Wilson's disease protein (WNDP) belongs to the large family of cation-transporting P-type ATPases, however, the detailed characterization of its enzymatic properties has been lacking. Here, we developed a baculovirus-mediated expression system for WNDP, which permits direct and quantitative analysis of catalytic properties of this protein. Using this system, we provide experimental evidence that WNDP has functional properties characteristic of a P-type ATPase. It forms a phosphorylated intermediate, which is sensitive to hydroxylamine, basic pH, and treatments with ATP or ADP. ATP stimulates phosphorylation with an apparent K(m) of 0.95 +/- 0.25 microm; ADP promotes dephosphorylation with an apparent K(m) of 3.2 +/- 0.7 microm. Replacement of Asp(1027) with Ala in a conserved sequence motif DKTG abolishes phosphorylation in agreement with the proposed role of this residue as an acceptor of phosphate during the catalytic cycle. Catalytic phosphorylation of WNDP is inhibited by the copper chelator bathocuproine; copper reactivates the bathocuproine-treated WNDP in a specific and cooperative fashion confirming that copper is required for formation of the acylphosphate intermediate. These studies establish the key catalytic properties of the ATP7B copper-transporting ATPase and provide a foundation for quantitative analysis of its function in normal and diseased cells.  相似文献   

12.
The Wilson's disease protein (WNDP) is a copper-transporting ATPase regulating distribution of copper in the liver. Mutations in WNDP lead to a severe metabolic disorder, Wilson's disease. The function of WNDP depends on Atox1, a cytosolic metallochaperone that delivers copper to WNDP. We demonstrate that the metal-binding site 2 (MBS2) in the N-terminal domain of WNDP (N-WNDP) plays an important role in this process. The transfer of one copper from Atox1 to N-WNDP results in selective protection of the metal-coordinating cysteines in MBS2 against labeling with a cysteine-directed probe. Such selectivity is not observed when free copper is added to N-WNDP. Similarly, site-directed mutagenesis of MBS2 eliminates stimulation of the catalytic activity of WNDP by the copper-Atox1 complex but not by free copper. The Atox1 preference toward MBS2 is likely due to specific protein-protein interactions and is not due to unique surface exposure of the metal-coordinating residues or higher copper binding affinity of MBS2 compared with other sites. Competition experiments using a copper chelator revealed that MBS2 retained copper much better than Atox1, and this may facilitate the metal transfer process. X-ray absorption spectroscopy of the isolated recombinant MBS2 demonstrated that this sub-domain coordinates copper with a linear biscysteinate geometry, very similar to that of Atox1. Therefore, non-coordinating residues in the vicinity of the metal-binding sites are responsible for the difference in the copper binding properties of MBS2 and Atox1. The intramolecular changes that accompany transfer of a single copper to N-WNDP are discussed.  相似文献   

13.
Wilson's disease protein (WNDP) is a product of a gene ATP7B that is mutated in patients with Wilson's disease, a severe genetic disorder with hepatic and neurological manifestations caused by accumulation of copper in the liver and brain. In a cell, WNDP transports copper across various cell membranes using energy of ATP-hydrolysis. Copper regulates WNDP at several levels, modulating its catalytic activity, posttranslational modification, and intracellular localization. This review summarizes recent studies on enzymatic function and copper-dependent regulation of WNDP. Specifically, we describe the molecular architecture and major biochemical properties of WNDP, discuss advantages of the recently developed functional expression of WNDP in insect cells, and summarize the results of the ligand-binding studies and molecular modeling experiments for the ATP-binding domain of WNDP. In addition, we speculate on how copper binding may regulate the activity and intracellular distribution of WNDP, and what role the human copper chaperone Atox1 may play in these processes.  相似文献   

14.
Copper imbalance and oxidative stress in neurodegeneration   总被引:3,自引:0,他引:3  
Much experimental evidence demonstrates that the increased production of free radicals and oxidative damage due to alterations in copper homeostasis (because of either deficit or excess or aberrant coordination of the metal) are involved in the neurodegenerative processes occurring in many disorders of the central nervous system. This review outlines the systems that are involved in copper homeostasis and in the control of copper redox reactivity. The mechanisms underlying neurodegeneration in the acknowledged genetic disturbances of copper homeostasis, namely Menkes' and Wilson's diseases, and the involvement of copper in the aetiology of the major neurodegenerative disease of the aging brain, Alzheimer's disease, will be described, with particular focus on oxidative stress.  相似文献   

15.
A rapid microwave method is described for staining copper in liver. This procedure was compared with a conventional method for copper. To this end, liver sections obtained from patients affected by several liver diseases associated with copper overload, were stained both with the standard rubeanic acid method for copper and with our modification of the same method, incorporating microwave treatment. Liver sections from a normal human newborn were used as a positive control. In Wilson's disease in the cirrhotic stage, copper was detected by the conventional method solely in periportal cells; following the microwave treatment, we were able to demonstrate copper in the whole lobule. In alcoholic cirrhosis, rubeanic acid stained copper only in a few periportal cells, while, by our modified method, copper was detected in almost all periportal hepatocytes. In chronic biliary tract disease, and in the newborn liver, copper was demonstrated in a few periportal cells by both the two histochemical procedures. In conclusion, although copper was detected by both procedures, a different degree of positivity was sometimes observed by using microwaves. Moreover, the microwave-treated sections showed more contrast and less artifacts. From a practical point of view, for the simplicity of employment and, above all, for its quickness (10 min), we suggest the use of our method in all conditions where copper overload is suspected.  相似文献   

16.
Wilson’s disease, a genetic copper-overload condition, is currently treated with zinc because of the ability of zinc to induce metallothionein. We are interested in nonmetal chemicals that may alter intestinal copper metabolism and thus help to alleviate copper toxicity. Previously, we have shown that quercetin, a dietary flavonoid, can chelate copper. This study further examined the interaction of quercetin and copper in intestinal epithelial cells. We found that quercetin enhanced metallothoinein induction by copper and the effect was dose dependent. Quercetin also exerted a cumulative effect after repeated exposure. Repeated low-dose treatment (3–10 μM) of cells with quercetin can lead to the same effect on metallothoinein as one higher concentration treatment (100 μM). This property of quercetin is distinct from its chemical interaction with copper, but both can contribute to a reduction of copper toxicity. Among other flavonoids tested, two other copper chelators, catechin and rutin, did not increase copper induction of metallothionein, whereas genistein, an isoflavone that does not interact with copper chemically, increased copper induction of metallothionein. The effect of quercetin on copper metabolism is unique. Quercetin decreased zinc-stimulated metallothionein expression and had no effect on the cadmium induction of metallothionein. The clinical application of our observation needs to be explored.  相似文献   

17.
Behavioral functions of Wistar and Long-Evans Cinnamon (LEC) rats, Wilson's disease animal model, were compared by measuring the open-field, acoustic startle reflex and prepulse inhibition (PPI), and shuttle-box avoidance learning tests with or without oral supplementation with copper or D-penicillamine, copper chelator. All of the LEC rats, irrespective of the treatment, exhibited higher locomotor activity, a decreased habituation to startle response or a lower PPI, compared with Wistar rats. The copper content of all brain regions examined, except for the medulla oblongata of LEC rats, was significantly lower than those in Wistar rats. Besides, in the region of the striatum and the nucleus accumbens of the LEC rats, lower content of norepinephrine, and higher content of dopamine and serotonin were observed compared with Wistar rats. Although copper supplementation did not affect the brain copper content, it reduced the PPI in both Wistar and LEC rats. In contrast, D-penicillamine supplementation decreased both the brain copper content and locomotor activity, and enhanced the startle amplitude only in Wistar rats. These findings suggest that an imbalance in copper homeostasis affects monoamine metabolism and behavioral functions.  相似文献   

18.
Wilson's disease is a genetic disorder characterized by the accumulation of copper in the body due to a defect of biliary copper excretion. However, the mechanism of biliary copper excretion has not been fully clarified. We examined the effect of copper on the intracellular localization of the Wilson disease gene product (ATP7B) and green fluorescent protein (GFP)-tagged ATP7B in a human hepatoma cell line (Huh7). The intracellular organelles were visualized by fluorescence microscopy. GFP-ATP7B colocalized with late endosome markers, but not with endoplasmic reticulum, Golgi, or lysosome markers in both the steady and copper-loaded states. ATP7B mainly localized at the perinuclear regions in both states. These results suggest that the main localization of ATP7B is in the late endosomes in both the steady and copper-loaded states. ATP7B seems to translocate copper from the cytosol to the late endosomal lumen, thus participating in biliary copper excretion via lysosomes.  相似文献   

19.
Complex formation between D-penicillamine (Pen) and copper(II) ions has been studied under simulated physiological conditions in both the presence and absence of the blood plasma constituents albumin, alanine, histidine, and zinc(II). Chromatographic and uv/vis and electron spin resonance (esr) spectroscopic methods were used. The major species formed, at neutral pH and 0.15 mol dm-3 NaCl, is the violet species which is shown to have the same stoichiometry as the recently reported solid-state complex, i.e., [Cu8I Cu6II (Pen)12 Cl] 5-. The rate of formation of this species (MVC) is shown to be dependent on the Cu concentration, Cu:Pen ratio, relative Cl- ion concentration, pH, and temperature. Formation is inhibited by the presence of O2 and biological chelates. At the concentration levels found in blood plasma it is unlikely that the MVC ion has any significance in the therapeutic action of penicillamine in the treatment of Wilson's disease. Reexamination of the aqueous Cu-albumin-pen system reinforces earlier findings that pen is unable to mobilize Cu that is bound to albumin. Significant binding of pen to the protein is observed is not related to any protein-bound copper ions. Evidence that ternary complexes of the type amino acid-Cu-Pen can form in blood plasma is presented. These are unlikely, however, to be physiologically significant and the copper depletion induced by Pen in Wilson's disease cases must be elsewhere than in the blood plasma compartment.  相似文献   

20.
The involvement of body copper metabolism in the development of Alzheimer's disease (AD) - the most common form of dementia - is a deeply investigated issue in recent years. Copper is essential for life, but in excess it can be toxic. Recently, it has been hypothesized that copper toxicity may be a contributory factor in the etiology of the neurodegenerative disease AD. Studies on copper evaluation in AD vs. healthy controls collected in the latest 30 years and merged in a meta-analysis demonstrate that serum copper is slightly increased in AD. A specific form of copper, the copper non-bound to ceruloplasmin, or 'free' copper, seems to best characterize this increase in copper in AD patients. Clinical studies from us and other groups have demonstrated that free copper is associated with the typical deficits of AD, incipient AD and mild cognitive impairment, and specific cerebrospinal markers. Moreover, very recent data addressing molecular processes underlying copper dysfunction in AD have indicated that genetic variations of K832R and R952K Single Nucleotide Polymorphisms (SNPs) of the Wilson's disease gene ATP7B are associated also with sporadic AD. Specifically, ATP7B encodes for the protein ATPase 7B which controls free copper status in the body, and both R allele in K832R and K allele in R952K ATP7B SNPs are associated with an increased risk of having AD. Even though copper dysfunction cannot be assumed as a determinant of the disease, its causative, rather than associated, role in AD pathology as risk factor can be claimed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号