首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutants defective in the conversion of arginine to putrescine were found by screening clones from mutagenized cultures for inability to produce urea during growth in arginine-supplemented media. Two partially blocked mutants were isolated; one was deficient in arginine decarboxylase and the other was deficient in agmatine ureohydrolase. As predicted from the pattern of putrescine synthesis in Escherichia coli, these mutants were conditionally putrescine-deficient. When grown in either minimal or ornithine-supplemented media, conditions which lead to preferential utilization of the ornithine to putrescine pathway, the mutants had normal intracellular polyamine levels. However, when the mutants were placed in arginine-supplemented media, the level of intracellular putrescine was lowered markedly. Under conditions where intracellular putrescine was 1% of normal, the doubling time of the mutants was increased approximately 10%. The putrescine-deficient mutants had wild-type morphology, normal levels of protein and ribonucleic acid (RNA), and stringent amino acid control of RNA synthesis.  相似文献   

2.
A mutant of Escherichia coli is described which is defective in the conversion of arginine to putrescine. The activity of the enzyme agmatine ureohydrolase is greatly reduced, whereas the activity of the other two enzymes of the pathway, the constitutive arginine decarboxylase and the inducible arginine decarboxylase, are within the normal range. The growth behavior of the mutant reflects the enzymatic block. It grows well in the absence of arginine, but only poorly in the presence of arginine. Under the former conditions, putrescine can be formed from ornithine as well as arginine, whereas under the latter conditions, because of feedback control, it can be formed only from arginine.  相似文献   

3.
Prior to sowing, seeds of bean (Phaseolus vulgaris L.) were treated with 4 mM arginine or 0.1% urea, as nitrogen source. The seeds were then subjected to salinity stress. Arginine and urea treatments stimulated germination of both unstressed and salinity-stressed seeds. It was interesting to observe that the increased germination percentage in response to arginine and urea treatments was associated with increased content of polyamines, particularly putrescine (Put), spermidine (Spd) and spermine (Spm). Growth of the seedlings was also improved by application of arginine and urea, which was also associated with increased content of the polyamines Spd and Spm, while the Put content decreased. Total soluble sugars were much accumulated in response to arginine and urea treatments under salinity stress for cellular osmoregulation. The ratio of K+/Na+ increased in the leaves by application of arginine and urea, indicating a more alleviation to the adverse effects of salinity stress. Changes in proteinogenic amino acids were also investigated.  相似文献   

4.
Some cultures of Escherichia coli BGA8, a mutant unable to synthesize putrescine, showed a change of behaviour and could grow almost equally well in either the absence or the presence of polyamines after repeated periods of polyamine starvation. Experiments in vivo with radioactive precursors showed that the bacteria which evaded the polyamine requirement had recovered their ability to synthesize putrescine from glucose or glutamic acid, but not from ornithine or arginine. These results are in agreement with the fact that the polyamine-independent cells were still deficient in the enzymes ornithine decarboxylase and agmatinase. Our findings seem to indicate the existence of a new pathway synthesize putrescine which does not involve ornithine or arginine as intermediates.  相似文献   

5.
The metabolism of polyamines (putrescine, spermidine, and spermine) has become the target of genetic manipulation because of their significance in plant development and possibly stress tolerance. We studied the polyamine metabolism in non-transgenic (NT) and transgenic cells of poplar (Populus nigra x maximowiczii) expressing a mouse Orn decarboxylase (odc) cDNA. The transgenic cells showed elevated levels of mouse ODC enzyme activity, severalfold higher amounts of putrescine, a small increase in spermidine, and a small reduction in spermine as compared with NT cells. The conversion of labeled ornithine (Orn) into putrescine was significantly higher in the transgenic than the NT cells. Whereas exogenously supplied Orn caused an increase in cellular putrescine in both cell lines, arginine at high concentrations was inhibitory to putrescine accumulation. The addition of urea and glutamine had no effect on polyamines in either of the cell lines. Inhibition of glutamine synthetase by methionine sulfoximine led to a substantial reduction in putrescine and spermidine in both cell lines. The results show that: (a) Transgenic expression of a heterologous odc gene can be used to modulate putrescine metabolism in plant cells, (b) accumulation of putrescine in high amounts does not affect the native arginine decarboxylase activity, (c) Orn biosynthesis occurs primarily from glutamine/glutamate and not from catabolic breakdown of arginine, (d) Orn biosynthesis may become a limiting factor for putrescine production in the odc transgenic cells, and (e) assimilation of nitrogen into glutamine keeps pace with an increased demand for its use for putrescine production.  相似文献   

6.
The growth rate of several polyamine-deficient mutants of Escherichia coli was very low in minimal medium and increased markedly upon the addition of putrescine, spermidine, arginine, citrulline, or argininosuccinic acid. The endogenous content of polyamines was not significantly altered by the supplementation of polyamine-starved cultures with arginine or its precursors. In contrast, these compounds as well as putrescine or spermidine caused a 40-fold reduction in intracellular ornithine levels when added to polyamine-depleted bacteria. In vivo experiments with radioactive glutamic acid as a precursor and in vitro assays of the related enzymes showed that the decrease in ornithine levels was due to the inhibition of its biosynthesis rather than to an increase in its conversion to citrulline or delta 1-pyrroline-5-carboxylic acid and proline. High endogenous concentrations of ornithine were toxic for the E. coli strains tested. The described results indicate that the stimulatory effect of putrescine and spermidine on the growth of certain polyamine-starved bacteria may be partially due to the control of ornithine biosynthesis by polyamines.  相似文献   

7.
The presence of arginase in rat fibrosarcoma not synthesizing urea, suggested that this enzyme may have additional functions. Ornithine carbamoyl transferase, a key enzyme of the urea cycle was absent in this tissue, when compared to normal tissues, lower amount of ornithine was found in the fibrosarcoma, but this tumour contained a higher level of proline. The radioactivity present in L-[U-14C] arginine was incorporated into putrescine, spermidine, spermine, proline glutamate and glutamine suggesting that arginine was a possible precursor and that arginase may have a role in the synthesis of these metabolites.  相似文献   

8.
Polyamines are important regulators of basal cellular functions but also subserve highly specific tasks in the mammalian brain. With this respect, polyamines and the synthesizing and degrading enzymes are clearly differentially distributed in neurons versus glial cells and also in different brain areas. The synthesis of the diamine putrescine may be driven via two different pathways. In the “classical” pathway urea and carbon dioxide are removed from arginine by arginase and ornithine decarboxylase. The alternative pathway, first removing carbon dioxide by arginine decarboxlyase and then urea by agmatinase, may serve the same purpose. Furthermore, the intermediate product of the alternative pathway, agmatine, is an endogenous ligand for imidazoline receptors and may serve as a neurotransmitter. In order to evaluate and compare the expression patterns of the two gate keeper enzymes arginase and arginine decarboxylase, we generated polyclonal, monospecific antibodies against arginase-1 and arginine decarboxylase. Using these tools, we immunocytochemically screened the rat brain and compared the expression patterns of both enzymes in several brain areas on the regional, cellular and subcellular level. In contrast to other enzymes of the polyamine pathway, arginine decarboxylase and arginase are both constitutively and widely expressed in rat brain neurons. In cerebral cortex and hippocampus, principal neurons and putative interneurons were clearly labeled for both enzymes. Labeling, however, was strikingly different in these neurons with respect to the subcellular localization of the enzymes. While with antibodies against arginine decarboxylase the immunosignal was distributed throughout the cytoplasm, arginase-like immunoreactivity was preferentially localized to Golgi stacks. Given the apparent congruence of arginase and arginine decarboxylase distribution with respect to certain cell populations, it seems likely that the synthesis of agmatine rather than putrescine may be the main purpose of the alternative pathway of polyamine synthesis, while the classical pathway supplies putrescine and spermidine/spermine in these neurons.  相似文献   

9.
The cellular accumulations of polyamines and ribonucleic acid (RNA) were compared in the polyauxotrophic mutants of Escherichia coli strain 15 TAU and E. coli K-12 RC(re1) met(-) leu(-). Putrescine, spermidine, and their monoacetyl derivatives were the main polyamines in both strains, when grown in glucose-mineral medium. No significant degradation of either (14)C-putrescine or (14)C-spermidine was found in growing cultures of strain 15 TAU, which requires thymine, arginine, and uracil for growth. Experiments with this organism showed that in a variety of different incubation conditions, which included normal growth, amino acid starvation, inhibition by chloramphenicol or streptomycin, or thymine deprivation, a close correlation was seen between the intracellular accumulation of unconjugated spermidine and RNA. In the presence of arginine, the antibiotics stimulated the production of putrescine and spermidine per unit of bacterial mass. Deprivation of arginine also resulted in an increase in the production of putrescine per unit of bacterial mass, most of which was excreted into the growth medium. However, in this system the antibiotics reduced the synthesis of putrescine. Furthermore, streptomycin caused a rapid loss of cellular putrescine into the medium. The latter effect was not seen in anaerobic conditions or in a streptomycin-resistant mutant of 15 TAU. Methionine added to the growth medium of growing TAU not only markedly increased the total production of spermidine, but also increased both the intracellular concentration of spermidine and the accumulation of RNA. Exogenous spermidine extensively relaxed RNA synthesis in amino acid-starved cultures of 15 TAU. Analysis in sucrose density gradients showed that the RNA accumulated in the presence of spermidine was ribosomal RNA.Cells of E. coli K-12 RC(rel) met(-) leu(-), grown in a complete medium, had approximately the same ratio of free spermidine to RNA as did strain 15 TAU. However, the relaxed strain showed a much lower ratio of putrescine to spermidine than the stringent 15 TAU. Omission of methionine stopped spermidine synthesis and markedly increased both the intracellular accumulation and the total production of putrescine. It seems that a high intracellular level of spermidine acts as a feedback inhibitor in the biosynthesis of putrescine in this strain. The hypothesis that the intracellular concentration of polyamines may participate in the control of the synthesis of ribosomal RNA in bacteria is discussed.  相似文献   

10.
The biosynthetic form of arginine decarboxylase (ADC) catalyzes the synthesis of agmatine, a precursor of putrescine, in Escherichia coli. Selective disruption of the cell envelope and an assessment of ADC activity or immunoprecipitable ADC in various fractions demonstrated its location between the cytoplasmic membrane and peptidoglycan layer. Expression in minicells of the speA gene encoding ADC resulted in the production of two immunoprecipitable species (74 and 70 kilodaltons). Studies in vivo with a pulse and chase of radiolabeled amino acid into the two species suggest a precursor-product relationship. This relationship was corroborated by demonstrating the accumulation of the 74-kilodalton species in a strain of E. coli unable to process signal sequences. Peptide mapping experiments with V8 protease, trypsin, and alpha-chymotrypsin demonstrated that the two species of ADC were very similar except for a minor difference. These data were used to substantiate the compartmentalization hypothesis as to how exogenous arginine can be channeled preferentially into putrescine.  相似文献   

11.
DL-alpha-Difluoromethylornithine, an enzyme-activated irreversible inhibitor of eukaryotic ornithine decarboxylase and consequently of putrescine biosynthesis, inhibited ornithine decarboxylase in enzyme extracts from Pseudomonas aeruginosa in a time-dependent manner t1/2 1 min, and also effectively blocked the enzyme activity in situ in the cell. Difluoromethylornithine, however, had no effect on the activity of ornithine decarboxylase assayed in enzyme extracts from either Escherichia coli or Klebsiella pneumoniae. However, the presence of the inhibitor in cell cultures did partially lower ornithine decarboxylase activity intracellularly in E. coli. Any decrease in the intracellular ornithine decarboxylase activity observed in E. coli and Pseudomonas was accompanied by a concomitant increase in arginine decarboxylase activity, arguing for a co-ordinated control of putrescine biosynthesis in these cells.  相似文献   

12.
The ornithine urea cycle, polyamine synthesis, nitric oxide synthesis and metabolism of arginine to putrescine have been investigated in L3 and adult Haemonchus contortus and Teladorsagia circumcincta. Neither parasite had a detectable arginine deiminase/dihydrolase pathway nor a functional ornithine urea cycle. Nitric oxide synthase was present in central and peripheral nerves, but was not detected in whole parasite homogenates. Both arginase (E.C. 3.5.3.1) and agmatinase (E.C. 3.5.3.11) activities were present in both species. Arginase did not require added Mn2+ and had an optimal pH of 8.5. Polyamine metabolism differed in the two species and from that in mammals. Ornithine decarboxylase (E.C. 4.1.1.17) was present in both parasites, but no arginine decarboxylase (E.C. 4.1.1.19) activity was detected in T. circumcincta. The flexibility of synthesis of putrescine in H. contortus may make this pathway less useful as a target for parasite control than in T. circumcincta, in which only the ornithine decarboxylase pathway was detected.  相似文献   

13.
Escherichia coli MA-159 is deficient in agmatine ureohydrolase. After addition of exogenous arginine, the cellular putrescine content declines immediately and exponentially; however, the spermidine content remains normal for 3 h. The growth rate of such cultures, measured turbidometrically, slows gradually over many hours. Putrescine-depleted cultures grow especially slowly in media of low osmolarity, whereas nondepleted cultures grow at similar and rapid rates in media of either normal or low osmolarity. External osmolarity also affects the ability of various exogenous polyamines to stimulate growth of putrescine-depleted cultures. In medium of normal osmolarity, putrescine and spermidine both allow sustained rapid growth for many hours. In low osmolarity medium, putrescine allows sustained rapid growth, whereas cultures containing spermidine grow more slowly; this result cannot be explained by conversion of putrescine to spermidine, for cultures grown with exogenous putrescine contain smaller spermidine pools than do cultures grown with exogenous spermidine. Spermine greatly stimulates growth in medium of normal osmolarity; however, in medium of low osmolarity, spermine is much less effective and can block the action of putrescine. Several other polyamines have been studied in this system. These results confirm and expand previous reports that polyamines are necessary for growth of E. coli and suggest that putrescine may have a specific function during growth in media of low osmolarity.  相似文献   

14.
Requirement of Polyamines for Bacterial Division   总被引:8,自引:6,他引:2       下载免费PDF全文
Synchronous cell division in an arginine auxotroph and a histidine auxotroph of Escherichia coli was obtained after starving for the required amino acid for 1 hr. However, cell division was not synchronized after starvation for 1 hr in another arginine auxotroph. This difference is proposed to depend on differences in the concentrations of polyamines in the cells. During amino acid starvation the ratio of putrescine concentration to spermidine concentration decreased in all strains, but it recovered afterward more rapidly in the third strain than in the other two. The cells divided when the ratio returned to normal in the Arg(-) mutants. Added putrescine permitted some of the cells of the first two mutants to divide sooner after amino acid starvation and thus eliminated synchrony. Spermidine added alone had no effect, but, when it was added together with putrescine, it restored synchronous division. Synchrony was established in the third mutant by adding spermidine after arginine starvation. Thus, both the variations in polyamine content and the effects of added polyamines suggest that the polyamines are essential in permitting cell division. We suggest that the molar ratio of putrescine to spermidine can be a critical factor for cell division. This effect of polyamines seems to be specific for cell division. Amino acid starvation does not induce delays in subsequent mass increase or deoxyribonucleic acid synthesis. Possible mechanisms of polyamine action are discussed.  相似文献   

15.
Putrescine, the most abundant biogenic amine in wine, was proved to be produced by Oenococcus oeni strains in wine not only from ornithine but also from arginine. In this case, putrescine may originate from strains possessing the complete enzyme system to convert arginine to putrescine or by a metabiotic association, with an exchange of ornithine, between strains capable of metabolizing arginine to ornithine but unable to produce putrescine and strains capable of producing putrescine from ornithine but unable to degrade arginine. Putrescine production by this metabiotic association occurred once the malolactic fermentation was completed, whereas conversion of ornithine to putrescine by a single culture of the ornithine decarboxylating strain concurred with the degradation of malic acid. Moreover, in the former case, putrescine formation proceeded more slowly than in the latter. Metabiosis may play an important role in the accumulation of putrescine in wine, arginine being one of the major amino acids found in wine.  相似文献   

16.
Escherichia coli strains capable of enhanced synthesis of arginine and urea were produced by derepression of the arginine regulon and simultaneous overexpression of the E. coli carAB and argI genes and the Bacillus subtilis rocF gene. Plasmids expressing carAB driven by their natural promoters were unstable. Therefore, E. coli carAB and argI genes with and without the B. subtilis rocF gene were constructed as a single operon under the regulation of the inducible promoter ptrc. Arginine operator sequences (Arg boxes) from argI were also cloned into the same plasmids for titration of the arginine repressor. Upon overexpression of these genes in E. coli strains, very high carbamyl phosphate synthetase, ornithine transcarbamylase, and arginase catalytic activities were achieved. The biosynthetic capacity of these engineered bacteria when overexpressing the arginine biosynthetic enzymes was 6- to 16-fold higher than that of controls but only if exogenous ornithine was present (ornithine was rate limiting). Overexpression of arginase in bacteria with a derepressed arginine biosynthetic pathway resulted in a 13- to 20-fold increase in urea production over that of controls with the parent vector alone; in this situation, the availability of carbamyl phosphate was rate limiting.  相似文献   

17.
An arginine decarboxylase has been isolated from a Pseudomonas species. The enzyme is constitutive and did not appear to be repressed by a variety of carbon sources. After an approximately 40-fold purification, the enzyme appeared more similar in its properties to the Escherichia coli biosynthetic arginine decarboxylase than to the E. coli inducible (biodegradative) enzyme. The Pseudomonas arginine decarboxylase exhibited a pH optimum of 8.1 and an absolute requirement of Mg2+ and pyridoxal phosphate, and was inhibited significantly at lower Mg2+ concentrations by the polyamines putrescine, spermidine, and cadaverine. The Km for L-arginine was about 0.25 mM at pH 8.1 AND 7.2. The enzyme was completely inhibited by p-chloromercuribenzoate. The inhibition was prevented by dithiothreitol, a feature that suggests the involvement of an -SH group. Of a variety of labeled amino acids tested, only L-arginine, but not D-arginine was decarboxylated. D-Arginine was a potent inhibitor of arginine decarboxylase with a Ki of 3.2 muM.  相似文献   

18.
19.
Enterococcus faecalis ATCC 11700 is able to use arginine and the diamine agmatine as a sole energy source. Via the highly homologous deiminase pathways, arginine and agmatine are converted into CO2, NH3, and the end products ornithine and putrescine, respectively. In the arginine deiminase pathway, uptake of arginine and excretion of ornithine are mediated by an arginine-ornithine antiport system. The translocation of agmatine was studied in whole cells grown in the presence of arginine, agmatine, or glucose. Rapid uncoupler-insensitive uptake of agmatine was observed only in agmatine-grown cells. A high intracellular putrescine pool was maintained by these cells, and this pool was rapidly released by external putrescine or agmatine but not by arginine or ornithine. Kinetic analysis revealed competitive inhibition for uptake between putrescine and agmatine. Agmatine uptake by membrane vesicles was observed only when the membrane vesicles were preloaded with putrescine. Uptake of agmatine was driven by the outwardly directed putrescine concentration gradient, which is continuously sustained by the metabolic process. Uptake of agmatine and extrusion of putrescine by agmatine-grown cells of E. faecalis appeared to be catalyzed by an agmatine-putrescine antiporter. This transport system functionally resembled the previously described arginine-ornithine antiport, which was exclusively induced when the cells were grown in the presence of arginine.  相似文献   

20.
Biosynthetic arginine decarboxylase in phytopathogenic fungi   总被引:3,自引:0,他引:3  
A J Khan  S C Minocha 《Life sciences》1989,44(17):1215-1222
It has been reported that while bacteria and higher plants possess two different pathways for the biosynthesis of putrescine, via ornithine decarboxylase (ODC) and arginine decarboxylase (ADC); the fungi, like animals, only use the former pathway. We found that contrary to the earlier reports, two of the phytopathogenic fungi (Ceratocystis minor and Verticillium dahliae) contain significant levels of ADC activity with very little ODC. The ADC in these fungi has high pH optimum (8.4) and low Km (0.237 mM for C. minor, 0.103 mM for V. dahliae), and is strongly inhibited by alpha-difluoromethylarginine (DFMA), putrescine and spermidine, further showing that this enzyme is probably involved in the biosynthesis of polyamines and not in the catabolism of arginine as in Escherichia coli. The growth of these fungi is strongly inhibited by DFMA while alpha-difluoromethylornithine (DFMO) has little effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号