首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The application of the polymerase chain reaction (PCR) for detection of Clostridium botulinum types A, B and E in foods, environmental and clinical samples was evaluated and compared to the mouse bioassay. Samples inoculated with 10, 100 and 1000 spores of Cl. botulinum types A and B included pasteurized milk, UHT milk, infant formula, infant faeces, meat juice, canned tuna, mushrooms, blood sausage and soil. Clostridium botulinum type E spores were inoculated into fish eggs, canned tuna, picked herring, raw fish and soil at similar levels. Spores were added to 2.5 g of each sample with the exception of soil which was inoculated in 10 g samples. The presence of Cl. botulinum in sample enrichments was determined by both PCR and the bioassay. An overall correlation of 95.6% was observed between PCR results and the mouse bioassay. Of the total of 114 samples tested there was disparity between the mouse bioassay and the PCR in three samples of soil inoculated with 100 type A or E spores and 10 type B spores per 10 g, respectively, and two samples of infant faeces inoculated with 10 type A or B spores per 2.5 g. All of these samples gave negative animal results and positive PCR results.  相似文献   

2.
A monoclonal antibody-based amplified enzyme-linked immunosorbent assay (ELISA) method for detecting Clostridium botulinum type A toxin was evaluated for its ability to detect the toxin in the supernatant fluid of pure cultures and after growth from Cl. botulinum spores inoculated into pork slurries. Slurries containing NaCl (1.5-4.5% w/v) and polyphosphate (0.3% w/v) were either unheated or heated, 80 degrees C/5 min + 70 degrees C/2 h, before storage at 15 degrees, 20 degrees or 27 degrees C. The presence of specific toxin was confirmed by mouse bioassay and results compared with those of the amplified ELISA method. A total of 49 strains, 39 Cl. botulinum and 10 Cl. sporogenes (putrefactive anaerobes), and 95 slurry samples were tested. Fourteen of 15 strains of type A Cl. botulinum and 34 of 36 slurry samples containing type A toxin were positive by ELISA. No false positive reactions occurred with Cl. botulinum types B, C, D, E and F, or with the 10 strains of Cl. sporogenes. However, toxin produced by one strain of Cl. botulinum type A (NCTC 2012) was not detected by the amplified ELISA.  相似文献   

3.
A monoclonal antibody-based amplified ELISA method for detecting Clostridium botulinum type B toxin was evaluated for its ability to detect the toxin in the supernatant fluid of pure cultures and after growth from Cl. botulinum spores inoculated into pork slurries. Slurries containing NaCl (1.5-4.5% w/v) and polyphosphate (0.3% w/v) were either unheated or heated 80 degrees C/5 min followed by 70 degrees C/2 h before incubation at 15 degrees, 20 degrees or 27 degrees C. Presence of specific toxin was confirmed by mouse bioassay and results were compared with those of the amplified ELISA method. A total of 48 strains, consisting of 38 Cl. botulinum and 10 Cl. sporogenes (putrefactive anaerobes), and 140 slurry samples were tested. Cultures of eight out of nine strains of type B Cl botulinum and 73 of 101 slurry samples containing type B toxin were positive by ELISA; the remaining 28 slurry samples contained type B toxin at levels below or close to the detection limit (20 LD50/ml) of the type B ELISA. No false-positive reactions occurred with Cl. botulinum types A, C, D, E or F, or with the 10 strains of Cl. sporogenes. Toxin produced by one strain of Cl. botulinum type B (NCTC 3807) was not detected by this single monoclonal antibody-based amplified ELISA. With a mixture of two monoclonal antibodies, however, the toxin from NCTC 3807 could be detected without reducing the sensitivity of the ELISA.  相似文献   

4.
A monoclonal antibody-based amplified enzyme-linked immunosorbent assay (ELISA) method for detecting Clostridium botulinum type A toxin was evaluated for its ability to detect the toxin in the supernatant fluid of pure cultures and after growth from Cl. botulinum spores inoculated into pork slurries. Slurries containing NaCl (1.5–4.5% w/v) and polyphosphate (0.3% w/v) were either unheated or heated, 80°C/5 min + 70°C/2 h, before storage at 15°, 20° or 27°C. The presence of specific toxin was confirmed by mouse bioassay and results compared with those of the amplified ELISA method. A total of 49 strains, 39 Cl. botulinum and 10 Cl. sporogenes (putrefactive anaerobes), aiid 95 slurry samples were tested. Fourteen of 15 strains of type A Cl. botulinum and 34 of 36 slurry samples containing type A toxin were positive by ELISA. No false positive reactions occurred with Cl. botulinum types B, C, D, E and F, or with the 10 strains of Cl. sporogenes. However, toxin produced by one strain of Cl. botulinum type A (NCTC 2012) was not detected by the amplified ELISA.  相似文献   

5.
Heat destruction of types B and E Clostridium botulinum spores on whitefish chubs was observed to be dependent upon the relative humidity (RH) in the chamber in which fish were heated. Experimental conditions were designed to simulate those attainable in commercial fish-smoking plants. Low numbers of type E spores were destroyed with regularity, within 30 min, on fish which were held at an internal temperature of 77 C (170.6 F) in an atmosphere of at least 70% RH. However, an internal temperature of 82 C (179.6 F) and a minimum RH of 70% were required to destroy several hundred thousand type E spores. Quantitative estimates of spore destruction were arrived at with a modified most probable number procedure. Type E spore populations were reduced by 2 to 4 logarithms at 77 C (170.6 F), by 5 to 6 logarithms at 82 C (179.6 F), and by more than 6 logarithms at 88 C (190.4 F) when fish were heated in an atmosphere of 70% RH. A 5 to 6 logarithm reduction of spores was also observed when fish inoculated with type B spores were processed at 82 C (179.6 F) in an atmosphere of 70% RH.  相似文献   

6.
A specific and sensitive combined selection and enrichment PCR procedure was developed for the detection of Clostridium botulinum types B, E, and F in fecal samples from slaughtered pigs. Two enrichment PCR assays, using the DNA polymerase rTth, were constructed. One assay was specific for the type B neurotoxin gene, and the other assay was specific for the type E and F neurotoxin genes. Based on examination of 29 strains of C. botulinum, 16 strains of other Clostridium spp., and 48 non-Clostridium strains, it was concluded that the two PCR assays detect C. botulinum types B, E, and F specifically. Sample preparation prior to the PCR was based on heat treatment of feces homogenate at 70 degrees C for 10 min, enrichment in tryptone-peptone-glucose-yeast extract broth at 30 degrees C for 18 h, and DNA extraction. The detection limits after sample preparation were established as being 10 spores per g of fecal sample for nonproteolytic type B, and 3.0 x 10(3) spores per g of fecal sample for type E and nonproteolytic type F with a detection probability of 95%. Seventy-eight pig fecal samples collected from slaughter houses were analyzed according to the combined selection and enrichment PCR procedure, and 62% were found to be PCR positive with respect to the type B neurotoxin gene. No samples were positive regarding the type E and F neurotoxin genes, indicating a prevalence of less than 1.3%. Thirty-four (71%) of the positive fecal samples had a spore load of less than 4 spores per g. Statistical analysis showed that both rearing conditions (outdoors and indoors) and seasonal variation (summer and winter) had significant effects on the prevalence of C. botulinum type B, whereas the effects of geographical location (southern and central Sweden) were less significant.  相似文献   

7.
A cocktail of washed spores from six psychrotrophic Clostridium strains isolated from blown vacuum-packed meats was inoculated onto lamb chumps. A second washed spore cocktail of four toxigenic reference Cl. botulinum strains, types A, B (two strains) and E, and a Cl. butyricum type E strain, was similarly inoculated onto lamb chumps. All inoculated lamb chumps were individually vacuum-packed and placed into storage at various temperatures typical of good to grossly abusive chilled storage (-1 degree C to 15 degrees C). All packs were observed for gas production (pack-'blowing') over a 12 week storage period. On gas production, or after 12 weeks of storage, packs were examined by mouse bioassay for botulinum toxin production. The packs inoculated with the meat isolate cocktail showed evidence of gas production earlier than packs inoculated with reference strains. No botulinum toxin was recovered from the meat isolate inoculated packs, while botulinal toxin was detected in reference strain inoculated packs down to a nominal storage temperature of 2 degrees C.  相似文献   

8.
A monoclonal antibody-based amplified ELISA method for detecting Clostridium botulinum type B toxin was evaluated for its ability to detect the toxin in the supernatant fluid of pure cultures and after growth from Cl. botulinum spores inoculated into pork slurries. Slurries containing NaCl (1.5–4.5%w/v) and polyphosphate (0.3%w/v) were either unheated or heated 80°C/5 min followed by 70°C/2 h before incubation at 15°, 20° or 27°C. Presence of specific toxin was confirmed by mouse bioassay and results were compared with those of the amplified ELISA method. A total of 48 strains, consisting of 38 Cl. botulinum and 10 Cl. sporogenes (putrefactive anaerobes), and 140 slurry samples were tested. Cultures of eight out of nine strains of type B Cl. botulinum and 73 of 101 slurry samples containing type B toxin were positive by ELISA; the remaining 28 slurry samples contained type B toxin at levels below or close to the detection limit (20 LD50/ml) of the type B ELISA. No falsepositive reactions occurred with Cl. botulinum types A, C, D, E or F, or with the 10 strains of Cl. sporogenes. Toxin produced by one strain of Cl. botulinum type B (NCTC 3807) was not detected by this single monoclonal antibody-based amplified ELISA. With a mixture of two monoclonal antibodies, however, the toxin from NCTC 3807 could be detected without reducing the sensitivity of the ELISA.  相似文献   

9.
The sensitivity of an enrichment culture procedure for detecting Clostridium botulinum type E in whitefish chubs (Leucichthys sp.) was assayed. Data demonstrated that fish inoculated with 10 or more viable C. botulinum spores regularly develop specifically neutralizable enrichment cultures. Mild heat treatment (60 C, 15 min) substantially reduced the sensitivity of enrichment culturing. This effect was particularly noticeable in the culturing of fish which harbored fewer than 10 spores each. Evidence is presented which indicates that sensitivity of enrichment, without heat, approaches the level of one spore per fish. Smoked whitefish chubs, containing from one to several hundred spores each, were examined for toxin content after storage at 5, 10, 15, and 28 C for as long as 32 days. The lowest temperature at which detectable toxin was produced was 15 C. This occurred in 1 of 10 fish incubated for 14 days. C. botulinum was regularly recovered, by enrichment culture, from fish inoculated with small numbers of spores, even though toxin was not detected by direct extraction of incubated fish. Persistence of C. botulinum type E spores was observed to decline with an increase in the temperature and time at which inoculated fish were stored.  相似文献   

10.
A degenerate primer pair was selected to amplify specifically a 260-bp DNA fragment from Clostridium botulinum types A, B, E, F, and G, and five individual probes allowed identification of each toxinotype by hybridization of the PCR products. The 72 strains of different Clostridium species tested and 11 other bacterial species commonly found in food samples gave an amplification product. This assay was able to detect 1 C. botulinum type A or B and 10 C. botulinum type E strains per reaction. With 184 artificially contaminated food samples, after an 18-h enrichment step, the sensitivity was 10 bacteria per g of sample and the correlation with the mouse bioassay reached 95.6%.  相似文献   

11.
The genetic relatedness of Clostridium botulinum type E isolates associated with an outbreak of wildlife botulism was studied using random amplification of polymorphic DNA (RAPD). Specimens were collected from November 2000 to December 2008 during a large outbreak of botulism affecting birds and fish living in and around Lake Erie and Lake Ontario. In our present study, a total of 355 wildlife samples were tested for the presence of botulinum toxin and/or organisms. Type E botulinum toxin was detected in 110 samples from birds, 12 samples from fish, and 2 samples from mammals. Sediment samples from Lake Erie were also examined for the presence of C. botulinum. Fifteen of 17 sediment samples were positive for the presence of C. botulinum type E. Eighty-one C. botulinum isolates were obtained from plants, animals, and sediments; of these isolates, 44 C. botulinum isolates produced type E toxin, as determined by mouse bioassay, while the remaining 37 isolates were not toxic for mice. All toxin-producing isolates were typed by RAPD; that analysis showed 12 different RAPD types and multiple subtypes. Our study thus demonstrates that multiple genetically distinct strains of C. botulinum were involved in the present outbreak of wildlife botulism. We found that C. botulinum type E is present in the sediments of Lake Erie and that a large range of bird and fish species is affected.  相似文献   

12.
Factors influencing Clostridium botulinum contamination in the honey production environment were evaluated in a 3-year survey. A number of 1,168 samples from 100 apiaries and related facilities were analysed for the presence of C. botulinum types A, B, E and F, using multiplex polymerase chain reaction targeted to botA, botB, botE and botF genes. Production methods and environmental factors were registered using a questionnaire and by personal observation. Clostridium botulinum was shown to be a common finding throughout the whole honey production chain, and the type most frequently detected was group I type B. In a pulsed-field gel electrophoresis (PFGE) analysis of 202 group I type B isolates, only six different PFGE profiles were observed, of which two clearly distinct profiles predominated. This may indicate the existence of at least two different genetic lineages. The high prevalence of C. botulinum in soil and in samples associated with beeswax suggests the accumulation of soil-derived botulinal spores in wax. Additionally, according to Spearman's rank order correlation and multivariate analysis, production hygiene-dependent factors have a significant influence on the contamination, and thus the number and frequency of C. botulinum spores in honey could possibly be diminished by increasing hygienic level in honey production.  相似文献   

13.
By the dilution-centrifugation method, 270 honey samples, both domestic and imported, were examined and Clostridium botulinum was detected in 23 samples (8.5%); type A in 11 samples, type B in two, type C in 10, and type F in one. Of 58 domestic honey samples, six (10%) were positive; three gave type A and the other two type C. Among imported honey samples, Chinese honey gave 12% positives (types A, B, and C) and Argentina honey 20% positives (types A and F). The incidence was higher with samples taken from drums (18%) and from apiaries (23%) than marketing honey (5%). It was estimated that most positive samples contained spores in one per gram or lower concentrations. One sample contained 4 type A spores per gram and another 36-60 type F spores per gram. No distinct biochemical properties were found with the honey isolates.  相似文献   

14.
Clostridium botulinum type E studies reported in this paper include the incidence of the organism in selected Chesapeake Bay areas, growth and toxin production in crabmeat homogenates, and the effect of pasteurization upon varying levels of spores in crabmeat. Type E spores were detected in 21 of 24 bottom mud samples taken at locations from which blue crabs were being harvested. Sterilized crabmeat homogenates inoculated with as little as five spores per 10 g became toxic after 8 days at 50 F, 2 days at 75 F, and 1 day at 85 F. Growth at 50 F and above was accompanied by gas production and a slightly sour odor. Growth and toxin production at 40 F required 55 days or longer and inocula of 10(3) spores or higher per 10 g of homogenate. At 40 F gas production was usually not apparent and no off odors could be detected. A recommended minimum pasteurization of 1 min at 185 F internal meat temperature reduced type E spore levels in inoculated packs of crabmeat from 10(8) spores per 100 g to 6 or less spores per 100 g, and the pasteurized meat remained nontoxic during 6 months of storage at 40 F.  相似文献   

15.
The ability of spores of one type A and one type B strain of Clostridium botulinum to grow and produce toxin in tomato juice was investigated. The type A strain grew at pH 4.9, but not at pH 4.8; the type B strain grew at pH 5.1, but not at pH 5.0. Aspergillus gracilis was inoculated along with C. botulinum spores into pH 4.2 tomato juice; in a nonhermetic unit, a pH gradient developed under the mycelial mat, resulting in C. botulinum growth and toxin production. In a hermetic unit, mold growth was reduced, and no pH gradient was detected; however, C. botulinum growth and low levels of toxin production (less than 10 50% lethal doses per ml) still occurred and were associated with the mycelial mat. The results of tests to find filterable or dialyzable growth factors were negative. It was demonstrated that for toxin production C. botulinum and the mold had to occupy the same environment.  相似文献   

16.
The ability of spores of one type A and one type B strain of Clostridium botulinum to grow and produce toxin in tomato juice was investigated. The type A strain grew at pH 4.9, but not at pH 4.8; the type B strain grew at pH 5.1, but not at pH 5.0. Aspergillus gracilis was inoculated along with C. botulinum spores into pH 4.2 tomato juice; in a nonhermetic unit, a pH gradient developed under the mycelial mat, resulting in C. botulinum growth and toxin production. In a hermetic unit, mold growth was reduced, and no pH gradient was detected; however, C. botulinum growth and low levels of toxin production (less than 10 50% lethal doses per ml) still occurred and were associated with the mycelial mat. The results of tests to find filterable or dialyzable growth factors were negative. It was demonstrated that for toxin production C. botulinum and the mold had to occupy the same environment.  相似文献   

17.
The TaqMan real-time PCR method for the quantitative detection of C. botulinum type A was developed based on sequence-specific hybridization probes. The validity of this assay was verified by using 10 genera of 20 strains, including reference strains of C. botulinum types A, B, C, D, E and F. The detection limit of this assay was evaluated on C. botulinum type A, using a 10-fold dilution series of DNA and spores . The DNA and spores were detected up to level of 0.1 ng/ml and 10(2)spores/ml, respectively. Spore spiked food sample preparation prior to the real-time PCR was performed by two methods, heat treatment and GuSCN. The detection limits after heat treatment showed 10(2) spores/ml for spiked sausage slurry, and 10(3) spores/ml for spiked canned corn slurry, while detection limits after GuSCN precipitation showed 10(2) spores/ml in both sausage and canned corn. Therefore the real-time PCR assay after GuSCN precipitation is useful for the quantification of C. botulinum type A because it showed identical CT values in both pure spore solutions and food slurries. We suggest that quantitative analysis of C. botulinum type A by TaqMan real-time PCR can be a rapid and accurate assessment method for botulinal risk in food samples.  相似文献   

18.
Chub injected in the loin muscle with 10(6)Clostridium botulinum type E spores were smoked to an internal temperature of 180 F (82.2 C) for 30 min, sealed in plastic bags, and incubated at room temperature (20 to 25 C) for 7 days. Viable type E spores were found in practically all such fish. Toxin formation by the survivors in the smoked fish was dependent on the brine concentration of the smoked fish. A brine concentration of 3% or higher, as measured in the loin muscle, inhibited toxin formation. Six different type E strains gave similar results. Only a few hundred of the million spores in the inoculum survived the smoking. Moisture in the atmosphere during smoking did not reduce the incidence of fish with type E survivors.  相似文献   

19.
The effect of sodium lactate and storage temperature on toxigenesis by proteolytic (Pr) and nonproteolytic (Np) Clostridium botulinum spores inoculated in processed 'sous-vide'-type beef, chicken breast and salmon was explored. Three g samples of beef and salmon homogenates with 0, 2.4 and 4.8% (w/w) lactate and of chicken with 0, 1.8 and 3.6% (w/w) lactate were placed in 24-well tissue culture plates. The samples were inoculated with 104 spores of pools of Pr (4A + 2B + 2F strains) or Np (4B + 4E strains), vacuum-packaged in barrier bags, and stored at 16 and 30°C for Pr and at 4, 8, 12 and 30°C for Np for up to 90 d. Lactate at 2.4% in beef and 1.8% in chicken delayed toxigenesis by Np for 40 d at 12°C and by Pr for 28 d at 16°C. Delaying toxigenesis for similar periods of time in salmon required 4.8% lactate and 12°C for Np, and 2.4% lactate and 16°C for Pr. Increasing levels of lactate and decreasing temperature significantly delayed toxigenesis of Cl. botulinum in the 'sous-vide' products.  相似文献   

20.
Botulinum toxins (BoNTs) are classically produced by Clostridium botulinum but rarely also from neurotoxigenic strains of Clostridium baratii and Clostridium butyricum. BoNT type A (BoNT/A), BoNT/B, BoNT/E, and very rarely BoNT/F are mainly responsible for human botulism. Standard microbiological methods take into consideration only the detection of C. botulinum. The presumptive identification of the toxigenic strains together with the typing of BoNT has to be performed by mouse bioassay. The development of PCR-based methods for the detection and typing of BoNT-producing clostridia would be an ideal alternative to the mouse bioassay. The objective of this study was to develop a rapid and robust real-time PCR method for detecting C. botulinum type A. Four different techniques for the extraction and purification of DNA from cultured samples were initially compared. Of the techniques used, Chelex 100, DNeasy tissue kit, InstaGene matrix DNA, and boiling, the boiling technique was significantly less efficient than the other three. These did not give statistically different results, and Chelex 100 was chosen because it was less expensive than the others. In order to eliminate any false-negative results, an internal amplification control was synthesized and included in the amplification mixture according to ISO 22174. The specificity of the method was tested against 75 strains of C. botulinum type A, 4 strains of C. botulinum type Ab, and 101 nontarget strains. The detection limit of the reaction was less than 6 x 10(1) copies of C. botulinum type A DNA. The robustness of the method was confirmed using naturally contaminated stool specimens to evaluate the tolerance of inhibitor substances. SYBR green real-time PCR showed very high specificity for the detection of C. botulinum types A and Ab (inclusivity and exclusivity, 100%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号