首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Taking advantage of the polymorphism created by the presence or the absence of a LINE-1 repeat in intron 12 of the mouse serum albumin-encoding gene, we sequenced the repeat (Alb-L1Md), as well as the flanking regions in BALB/c DNA. The empty insertion site in a wild-type mouse of the same species Mus domesticus was amplified using PCR and sequenced. The Alb-L1Md was truncated at its 5' end and bordered by two 14-bp repeats, which represented the duplication of the empty insertion site. The absence of mutations in the two direct repeats as well as in the poly(dA) tail suggests that the Alb-L1Md sequence had been inserted very recently. On the basis of the insertion sequence of intron 12 and of the sequence of the consensus L1Md repeat, 5' of the insertion, we discuss a model of integration of full-length L1Md-RNA leading to the truncation of the inserted repeat.  相似文献   

2.
3.
4.
LINE-1 (L1) lineages in the mouse   总被引:2,自引:0,他引:2  
Recently, a rapidly amplifying family of mouse LINE-1 (L1) has been identified and named T(F). The evolutionary context surrounding the derivation of the T(F) family was examined through phylogenetic analysis of sequences in the 3' portion of the repeat. The Mus musculus domesticus T(F) family was found to be the terminal subfamily of the previously identified L1Md4 lineage. The L1Md4 lineage joins the other prototypical mouse LINE-1 lineage (the L1MdA2 lineage) approximately 1 MYA at about the time of the common ancestor of M. m. domesticus, Mus spicilegus, and Mus spretus. However, the T(F) family from M. m. domesticus was found to join to the previously reported M. spretus Ms475 and Ms7024 LINE-1 families at just 0.5 MYA, indicating horizontal transfer. The T(F) family from M. m. domesticus was then found to be even more recently related to LINE-1's from another species, M. spicilegus. A separate spretus A2 lineage was found through a directed search of a PCR library. This lineage, in contrast to the spretus T(F) lineage, does join domesticus at about 1 MYA, as would be expected in the absence of horizontal transfer. A third major family was also found that splits off from the L1Md4 lineage shortly after its departure from the L1MdA2 lineage. The new family, named the Z family, was found to contain the de novo LINE-1 inserts causing the beige and med mutations. Whether the split with the Z family was before or after the recombination that introduced the F-type promoters and defined the inception of T(F) as a lineage is unclear. In enumerating copies of the various LINE-1 families, we found that T(F) 3' ends were not much more numerous than the reported number of 5' ends, suggesting that T(F) may not be subjected to the 90% truncation pattern typical of LINE-1 as a whole.  相似文献   

5.
6.
The mate recognition protein (MRP) gene is a member of a family of extracellular matrix protein genes, called MRP Motif Repeat (MMR) genes, with no known homologs. Two sets of MMR genes, designated MMR-A and MMR-B, were found in Brachionus manjavacas. MMR-B has previously been shown to encode the MRP in the Brachionus plicatilis species complex. MMR family genes share the same basic structure: a signal peptide sequence, followed by nearly identical 276 bp (MMR-A) or 261 bp (MMR-B) repeats, with a truncated final repeat. Each repeat of the predicted MMR-A and -B proteins is expected to have a secondary structure of 5 α-helices, ranging in length from 11 to 20 amino acids, separated by coils of 1–3 amino acids. Hydrophobic and hydrophilic amino acids are predicted to be partitioned to opposite sides of each α-helix, suggesting that MMR proteins are globular with a hydrophobic core. MMR-A and MMR-B proteins vary in their post-translational modifications, resulting in differences in size and charge, and likely causing differences in the physical properties of the proteins on the surface of the female, and their ability to be recognized by a receptor on a male rotifer. The identity of MMR gene repeats is theorized to be maintained by concerted evolution, through a process of unequal crossing over and/or gene conversion, with new mutations likely to be lost. Rarely, however, the same process of concerted evolution can rapidly spread a mutation across all of the repeats. When a mutation results in conformational changes in the protein detectable by males, it could lead to reproductive isolation and thereby to speciation. Thus, changes in MRP could be a driving force in the high degree of species diversity seen within the B. plicatilis cryptic species complex.  相似文献   

7.
We have examined the evolution of a gene, SM50, encoding a component of the spicule matrix, which plays an integral role in the formation of the echinoderm skeleton. This gene was originally characterized in Strongylocentrotus purpuratus and encodes an imperfect tandem repeat of six or seven amino acids. We have analyzed the sequence of this repeat in a number of sea urchin species and have determined that the repeat regions have undergone concerted evolution. There are differences in the repeat region between species, but the overall repeat structure is conserved, suggesting the repeat forms a structural domain important in biomineralization. The inherent conserved amino acid repeat structure promotes concerted evolution due to the high probability of misreplication and unequal crossing-over in the repeated segment of the gene. While there are constraints on the amino acids allowed in the repeat region, there are also variations, so that the sequences observed illustrate the balance between amino acid substitutions and concerted evolution. We have evidence that substitutions can alter the mechanisms of unequal crossing-over, altering the way concerted evolution occurs. The way in which concerted evolution occurred appears to be determined by the degree of sequence similarity between the repeats in a given gene, which influences how unequal crossing over may occur. We have mapped the differences in repeat regions on existing phylogenetic trees and indicate where concerted evolution has taken place. We also confirm an earlier report that Hemicentrotus pulcherrimus fits into the Strongylocentrotus genus and examine the evolution of the H. pulcherrimus SM50 repeat relative to other members of this genus. Received: 31 October 2000 / Accepted: 20 March 2001  相似文献   

8.
The complete nucleotide sequence of L1Md-A13, a 6372 base-pair (bp) member of the L1Md repetitive family isolated from a BALB/c mouse genomic DNA library, is reported. The nucleotide sequence of 4331 bp from the 5' end of L1Md-9, which is located in the beta-globin complex of the C57BL/10 mouse, is also reported. Parsimony analysis of these sequences plus two previously reported L1Md sequences allows the determination of an ancestral L1Md sequence. Analysis of the L1Md population indicates that this ancestral sequence is likely to represent a functional L1 sequence. This ancestral sequence confirms that the length (1137 bp and 3900 bp) and relationship (14 bp overlap) of the two large open reading frames previously reported are conserved features of the L1Md family. It also allows the determination of an ancestral amino acid sequence for these two open reading frames. Full-length L1Md elements have one of two sequences tandemly repeated at the 5' end. These two monomers are called A-type and F-type. Our data define the 5' end of A-type full-length L1Md elements. L1Md elements of the A-type have varying numbers of tandemly repeated 208 bp monomers, but each element ends about 78 bp from the 5' end of the terminal 208 bp monomer.  相似文献   

9.
Tandemly repeated DNA families appear to undergo concerted evolution, such that repeat units within a species have a higher degree of sequence similarity than repeat units from even closely related species. While intraspecies homogenization of repeat units can be explained satisfactorily by repeated rounds of genetic exchange processes such as unequal crossing over and/or gene conversion, the parameters controlling these processes remain largely unknown. Alpha satellite DNA is a noncoding tandemly repeated DNA family found at the centromeres of all human and primate chromosomes. We have used sequence analysis to investigate the molecular basis of 13 variant alpha satellite repeat units, allowing comparison of multiple independent recombination events in closely related DNA sequences. The distribution of these events within the 171-bp monomer is nonrandom and clusters in a distinct 20- to 25-bp region, suggesting possible effects of primary sequence and/or chromatin structure. The position of these recombination events may be associated with the location within the higher-order repeat unit of the binding site for the centromere-specific protein CENP-B. These studies have implications for the molecular nature of genetic recombination, mechanisms of concerted evolution, and higher-order structure of centromeric heterochromatin.  相似文献   

10.
Gene families, which encode toxins, are found in many poisonous animals, yet there is limited understanding of their evolution at the nucleotide level. The release of the genome draft sequence for the sea anemone Nematostella vectensis enabled a comprehensive study of a gene family whose neurotoxin products affect voltage-gated sodium channels. All gene family members are clustered in a highly repetitive approximately 30-kb genomic region and encode a single toxin, Nv1. These genes exhibit extreme conservation at the nucleotide level which cannot be explained by purifying selection. This conservation greatly differs from the toxin gene families of other animals (e.g., snakes, scorpions, and cone snails), whose evolution was driven by diversifying selection, thereby generating a high degree of genetic diversity. The low nucleotide diversity at the Nv1 genes is reminiscent of that reported for DNA encoding ribosomal RNA (rDNA) and 2 hsp70 genes from Drosophila, which have evolved via concerted evolution. This evolutionary pattern was experimentally demonstrated in yeast rDNA and was shown to involve unequal crossing-over. Through sequence analysis of toxin genes from multiple N. vectensis populations and 2 other anemone species, Anemonia viridis and Actinia equina, we observed that the toxin genes for each sea anemone species are more similar to one another than to those of other species, suggesting they evolved by manner of concerted evolution. Furthermore, in 2 of the species (A. viridis and A. equina) we found genes that evolved under diversifying selection, suggesting that concerted evolution and accelerated evolution may occur simultaneously.  相似文献   

11.
The structures of two cloned recombinants of bacteriophage lambda and mouse genomic DNA (lambda mA14 and lambda mA36) were compared by electron microscopic analysis of various heteroduplex DNAs, restriction endonuclease mapping and nucleotide sequence determination. Each clone was shown to be derived from a distinct region of the mouse genome, but the two exhibited structural similarity over a region of at least 11,000 bases which included a cytoskeletal gamma-actin processed pseudogene of approximately 1800 bases. It is concluded that the two genomic regions were derived from a common ancestral region by duplication or amplification. The homologous regions of the two clones contained members of the long interspersed repetitive L1Md (long interspersed repeated sequence 1 of Mus domesticus) family lying in opposite orientation to one another, so that single-stranded DNA from the clones could form intra-molecular heteroduplexes. The complete nucleotide sequences of three L1Md members in lambda mA14 were determined. The longest of these (L1Md-14LH) had inserted into the gamma-actin processed pseudogene and, although it contained internal deletions, appeared to possess intact 5' and 3' ends. A second L1Md member (L1Md-14RH1) also appeared to have an intact 5' end but had lost most of its 3' portion, and a third member (L1Md-14RH2) was an internal fragment. The repeated sequence at the 5' ends of L1Md-14LH and L1Md-14RH1 showed these to be members of the L1Md-A family.  相似文献   

12.
Chromosome terminal, complex repeats in the dipteran Chironomus pallidivittatus show rapid concerted evolution during which there is remarkably efficient homogenization of the repeat units within and between chromosome ends. It has been shown previously that gene conversion is likely to be an important component during these changes. The sequence evolution could be a result of different processes—exchanges between repeats in the tandem array as well as information transfer between units in different chromosomes—and is therefore difficult to analyze in detail. In this study the concerted evolution of a region present only once per chromosome, at the junction between the telomeric complex repeats and the subtelomeric DNA was therefore investigated in the two sibling species C. pallidivittatus and C. tentans. Material from individual microdissected chromosome ends was used, as well as clones from bulk genomic DNA. On the telomeric side of the border pronounced species-specific sequence differences were observed, the patterns being similar for clones of different origin within each species. Mutations had been transmitted efficiently between chromosomes also when adjoining, more distally localized DNA showed great differences in sequence, suggesting that gene conversion had taken place. The evolving telomeric region bordered proximally to subtelomeric DNA with high evolutionary constancy. More proximally localized, subtelomeric DNA evolved more rapidly and showed heterogeneity between species and chromosomes. Received: 24 September 1997 / Accepted: 24 November 1997  相似文献   

13.
14.
Many structural, signaling, and adhesion molecules contain tandemly repeated amino acid motifs. The alpha-actinin/spectrin/dystrophin superfamily of F-actin-crosslinking proteins contains an array of triple alpha-helical motifs (spectrin repeats). We present here the complete sequence of the novel beta-spectrin isoform beta(Heavy)- spectrin (beta H). The sequence of beta H supports the origin of alpha- and beta-spectrins from a common ancestor, and we present a novel model for the origin of the spectrins from a homodimeric actin-crosslinking precursor. The pattern of similarity between the spectrin repeat units indicates that they have evolved by a series of nested, nonuniform duplications. Furthermore, the spectrins and dystrophins clearly have common ancestry, yet the repeat unit is of a different length in each family. Together, these observations suggest a dynamic period of increase in repeat number accompanied by homogenization within each array by concerted evolution. However, today, there is greater similarity of homologous repeats between species than there is across repeats within species, suggesting that concerted evolution ceased some time before the arthropod/vertebrate split. We propose a two-phase model for the evolution of the spectrin repeat arrays in which an initial phase of concerted evolution is subsequently retarded as each new protein becomes constrained to a specific length and the repeats diverge at the DNA level. This evolutionary model has general applicability to the origins of the many other proteins that have tandemly repeated motifs.   相似文献   

15.
The presence of the L1 sequences, L1Md4 next to the pseudogene beta h3 and I12 found in the twelfth intron of the albumin gene, in certain strains of laboratory mice but not of others has led to the suggestion that these sequences were recent insertions into the Mus mus domesticus genome. To be sure that they are really recent insertions and not relics of an ancestral chromosome, we investigated the presence or absence of these sequences in populations of wild mice belonging to the semispecies M. m. domesticus and M. m. musculus as well as in other species of the genus Mus and in related murids. The sequence I12 in the albumin gene was found in 34% of the chromosomes of the wild mice belonging to M. m. domesticus and to a lesser extent (6%) in M. m. musculus. Of 114 M. m. domesticus chromosomes, L1Md4 was found in only nine, seven of which came from the same locality. Its presence was associated with the haplotype Hbbp, which is relatively rare in European populations of M. musculus. Since there was no evidence for the presence of these two L1 sequences in more distantly related species, we conclude that they are recent insertions in the M. musculus genome.   相似文献   

16.
Histones are small basic nuclear proteins with critical structural and functional roles in eukaryotic genomes. The H1 multigene family constitutes a very interesting histone class gathering the greatest number of isoforms, with many different arrangements in the genome, including clustered and solitary genes, and showing replication-dependent (RD) or replication-independent (RI) expression patterns. The evolution of H1 histones has been classically explained by concerted evolution through a rapid process of interlocus recombination or gene conversion. Given such intriguing features, we have analyzed the long-term evolutionary pattern of the H1 multigene family through the evaluation of the relative importance of gene conversion, point mutation, and selection in generating and maintaining the different H1 subtypes. We have found the presence of an extensive silent nucleotide divergence, both within and between species, which is always significantly greater than the nonsilent variation, indicating that purifying selection is the major factor maintaining H1 protein homogeneity. The results obtained from phylogenetic analysis reveal that different H1 subtypes are no more closely related within than between species, as they cluster by type in the topologies, and that both RD and RI H1 variants follow the same evolutionary pattern. These findings suggest that H1 histones have not been subject to any significant effect of interlocus recombination or concerted evolution. However, the diversification of the H1 isoforms seems to be enhanced primarily by mutation and selection, where genes are subject to birth-and-death evolution with strong purifying selection at the protein level. This model is able to explain not only the generation and diversification of RD H1 isoforms but also the origin and long-term persistence of orphon RI H1 subtypes in the genome, something that is still unclear, assuming concerted evolution.  相似文献   

17.
A Bubert  S Khler    W Goebel 《Applied microbiology》1992,58(8):2625-2632
The iap gene of Listeria species encodes protein p60. The comparison of iap-related genes from different Listeria species indicated common and variable regions within these genes which appeared to be specific for each Listeria species. On the basis of the iap gene sequences, pairs of polymerase chain reaction (PCR) primers which allowed the unambiguous identification of all members of the genus Listeria, of groups of related Listeria species, and of L. monocytogenes, exclusively, were selected. The PCR primers specific for L. monocytogenes yielded PCR products which represented essentially the repeat region of the iap gene. The size of these PCR products allowed an estimate of the number of the TN repeat units within the repeat region of the p60 protein of an L. monocytogenes strain. The data indicated that the number of repeat units differed among L. monocytogenes isolates.  相似文献   

18.
The iap gene of Listeria species encodes protein p60. The comparison of iap-related genes from different Listeria species indicated common and variable regions within these genes which appeared to be specific for each Listeria species. On the basis of the iap gene sequences, pairs of polymerase chain reaction (PCR) primers which allowed the unambiguous identification of all members of the genus Listeria, of groups of related Listeria species, and of L. monocytogenes, exclusively, were selected. The PCR primers specific for L. monocytogenes yielded PCR products which represented essentially the repeat region of the iap gene. The size of these PCR products allowed an estimate of the number of the TN repeat units within the repeat region of the p60 protein of an L. monocytogenes strain. The data indicated that the number of repeat units differed among L. monocytogenes isolates.  相似文献   

19.
LINES ONE (L1) is a family of movable DNA sequences found in mammals. To measure the rate of their movement, we have compared the positions of L1 elements within homologous genetic loci that are separated by known divergence times. Two models that predict different outcomes of this analysis have been proposed for the behavior of L1 sequences. (i) Previous theoretical studies of concerted evolution in L1 have indicated that the majority of the 100,000 extant L1 elements may have inserted as recently as within the last 3 million years. (ii) Gene conversion has been proposed as an alternative to a history of prolific recent insertions. To distinguish between these two models, we cloned and characterized two embryonic beta-globin haplotypes from Mus caroli and compared them with those of M. domesticus. In 9 of 10 instances, we observed an L1 element to be present in one chromosome and absent at the same site in a homologous chromosome. This frequency is quantitatively consistent with the known rate of concerted evolution. Therefore, we conclude that gene conversion is not required for concerted evolution of the L1 family in the mouse. Furthermore, we show that the extensive movement of L1 sequences contributes to restriction fragment length polymorphism. L1 insertions may be the predominant cause of restriction fragment length polymorphisms in closely related haplotypes.  相似文献   

20.
For molecular phylogenetic reconstruction of some intrageneric groups of plants, a DNA region is needed that evolves more rapidly than the internal transcribed spacer (ITS) of the 18S-26S nuclear ribosomal DNA (nrDNA) repeat. If the region identified is nuclear, it would also be desirable for it to undergo rapid concerted evolution to eliminate problems with coalescence. The external transcribed spacer (ETS) of the nrDNA repeat has shown promise for intrageneric phylogenetic reconstruction, but only the 3' end of the region has been utilized for phylogenetic reconstruction and "universal" primers for PCR amplification have been elusive. We present a method for reliably amplifying and sequencing the entire ETS throughout Asteraceae and some closely allied families. We also show that the ETS is more variable and phylogenetically informative than the ITS in three disparate genera of Asteraceae-Argyranthemum (tribe Anthemideae), Asteriscus (tribe Inuleae), and Helianthus (tribe Heliantheae). The full ETS was amplified using a primer (ETS1f) within the intergenic spacer in combination with a primer (18S-2L) in the 5' end of the highly conserved 18S gene. ETS1f was designed to correspond to a highly conserved region found in Helianthus and Crepis, which are in separate subfamilies of Asteraceae. ETS1f/18S-2L primed in all of the tribes of Asteraceae as well as exemplar taxa from Campanulaceae, Goodeniaceae, and Calyceraceae. For both Argyranthemum and Asteriscus, we were able to directly sequence the ETS PCR products when a single band was produced. When multiple bands were produced, we gel-purified and occasionally cloned the band of interest before sequencing. Although PCR produced single bands for Helianthus species, it was necessary to clone Helianthus amplifications prior to sequencing due to multiple intragenomic ETS repeat types. Alignment of ETS sequences for Argyranthemum and Asteriscus was straightforward and unambiguous despite some subrepeat structure in the 5' end. For Helianthus, different numbers of large tandem subrepeats in different species required analysis of the orthology of the subrepeats prior to alignment. In all three genera, the ETS provided more informative variation for phylogenetic reconstruction and allowed better resolution of relationships than the ITS. Although cloned sequences from Helianthus differed, intragenomic clones consistently formed clades. This result indicated that concerted evolution was proceeding rapidly enough in ETS that species-specific phylogenetic signal was retained. It should be now be possible to use the entire ETS for phylogenetic reconstruction of recently diverged lineages in Asteraceae and at least three other families (approximately 26,000 species or about 8% of all angiosperms).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号