首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
相对于其他的给药途径,蛋白质多肽类药物的口服、经鼻、肺部给药途径更具可行性和商业价值。利用制剂学方法可提高蛋白质多肽类药物生物利用度。通过蛋白多肽类给药系统的评价,对近年来国内外此类药物在剂型、体内外稳定性及生物利用度等方面的研究进展予以综述。  相似文献   

2.
目前,多肽/蛋白质类药物多数需要采用注射剂型给药以确保其生物利用度。开发易于给药、病人顺应性高以及治疗费用更低的非注射剂型是非常有意义的。然而,多肽/蛋白质类药物直接进行非注射给药的生物利用度通常非常低,需要制备具有设计功能的载药系统,例如加入不同比例的酶抑制剂、吸收促进剂等以提高生物利用度。环糊精及其衍生物由于其能与客体分子形成包合物的特性,以及对粘膜的促渗透作用等,在多肽/蛋白质药物的非注射给药系统中获得了日益广泛的应用。综述了近年来环糊精及其衍生物在多肽/蛋白质类药物非注射给药体系中的应用情况。  相似文献   

3.
载药脂质体的研究与应用进展   总被引:2,自引:1,他引:1  
载药脂质体给药系统已成为国内外的研究热点。传统脂质体经修饰和改良后表现出良好的生物相容性,缓释性和靶向性。新型脂质体在经皮给药,肺部给药,脑部靶向治疗,基因治疗等方面的应用研究结果显示,集药物缓释、靶向于一体的具有良好生物安全性的脂质体给药系统具有很大发展潜力。本文综述了该领域中的最新研究进展。  相似文献   

4.
核酸药物作为新型基因治疗药物备受关注,但生物学稳定性差、易被体内核酸酶降解、生物利用度低、靶组织内聚集浓度低等是制 约其发展的主要因素。新的药物递送技术的快速发展在一定程度上解决了核酸药物的稳定性及靶向递送问题,极大地推动了核酸药物的研 发进展。尤其是多肽蛋白类递送载体,已成为核酸药物递送系统研究领域的热点之一。介绍核酸药物递送载体多肽修饰的两种主要方式—— 共价缀合和非共价络合,重点综述近年来多肽缀合物和复合物以及多肽修饰的载体在核酸药物递送系统中的应用研究,探讨多肽介导的核 酸药物递送系统在应用中存在的问题,为新型核酸药物递送系统研发提供参考。  相似文献   

5.
聚乙二醇化修饰对蛋白多肽药物药代动力学的影响   总被引:1,自引:0,他引:1  
聚乙二醇(PEG)化修饰在生物制药领域被认为是改变蛋白多肽类药物生物、理化性质的最佳方法之一。众多研究表明,PEG化后的蛋白多肽在生物体内的药代动力学行为有了很大改变,主要表现在:吸收相半衰期及消除相半衰期延长.血药峰浓度提高,达峰时间滞后,表观分布容积变小,免疫反应性减弱,血浆清除减慢。这些变化极大地改善了蛋白多肽药物在机体内清除快、免疫原性高、有效血药浓度持续时间短、需频繁给药等缺点。聚乙二醇化修饰为生物制药领域开辟了新的天地。  相似文献   

6.
融合蛋白技术应用于生物制药行业已超过25年,其目的为改善原来天然蛋白的性质,从而具有新的理化特征和生物学功能,其中最为显著的特点是改善了小分子蛋白及多肽半衰期短的缺陷。基于该技术所诞生的融合蛋白类药物已成为当前生物药研发的热点。结合已上市融合蛋白类药物,通过与传统多肽蛋白类药物比较,重点突出融合蛋白类药物自身特点,主要从融合抗体Fc段和人血清白蛋白以延长小分子蛋白及多肽半衰期的角度对融合蛋白药物长效化策略进行评述;对融合蛋白类药物在体内的吸收、分布、代谢和排泄的显著特征进行概述;综述该类药物在体内的分析技术并指出当前分析技术的优缺点及发展方向,为长效化融合蛋白药物的设计、分析研究与开发提供依据和思路。  相似文献   

7.
脂质体作为一种药物载体广泛应用于肿瘤药物输送中。配体修饰的靶向脂质体,其靶向配体分子在脂质体表面修饰的构象和密度等参数,对脂质体本身的特性及其体内的靶向效果,有很大的影响。但有关其中的具体相互关系,以及可能的最优条件,国内外文献都尚无定论。据此我们建立了多肽靶向脂质体表面配体修饰的分析方法,并通过影像学手段来研究不同靶向肽含量对脂质体在荷瘤裸鼠中的靶向行为的影响。首先采用孵育插入法将带有多肽的脂质分子插入脂质体表面,用分子筛色谱法分离修饰后的脂质体和未插入的多肽脂质,再用HPLC-ELSD定量各脂质成分,得到多肽靶向脂质体表面的靶向肽密度。而后将修饰有不同密度靶向多肽的荧光脂质体经荷瘤小鼠尾静脉注射,分别在给药前后各时间点对小鼠进行扫描,对扫描得到的图像进行处理并计算AUC、T1/2和MRT等相关药代动力学参数。结果表明,随着脂质体表面多肽密度的增加,即多肽密度大于1.298%的靶向脂质体,其肿瘤部位的荧光AUC、T1/2和MRT都较未修饰的隐形脂质体有所提高,显示其在肿瘤组织中的聚集量增多、停留时间延长,针对肿瘤细胞的特异性作用机制得以彰显。  相似文献   

8.
本文通过查阅并归纳近几年相关文献,较为系统地概述了靶向活性多肽、细胞穿膜肽和靶向细胞穿膜肽等多肽表面修饰脂质体药物递送系统(drug delivery system, DDS)的研究进展。经不同活性多肽表面修饰,或可增强脂质体DDS的靶向性,或可提高药物的细胞摄取率和生物利用度。总之,多肽表面修饰的脂质体在新型DDS研究及应用中具有良好的前景。  相似文献   

9.
生物可降解聚合物纳米粒给药载体   总被引:4,自引:0,他引:4  
生物可降解聚合物纳米粒用于给药载体具有广阔的前景。本文综述了生物可降解聚合物纳米粒给药载体领域的最新进展 :包括纳米粒表面修饰特性、药物释放、载多肽和蛋白质等生物大分子药物传输中的潜在应用。  相似文献   

10.
多肽类药物制剂研究现状   总被引:1,自引:0,他引:1  
多肽类药物制剂研究所面临的主要问题是多肽的不稳定性、体内半衰期短和生物膜透过性差。本文综述了(1)引起多肽不稳定性的原因;(2)提高多肽稳定性的方法;(3)多肽类药物制剂货架时间的确定;(4)多肽类药物的分析手段;(5)多肽类药物的控释研究;(6)多肽的非注射途径给药研究。最后提出了多肽类药物制剂研究的展望。  相似文献   

11.
Liposome, one of various drug carriers, has been extensively studied as an inert carrier for the delivery of protein, DNA, and biologically active agents into cells. Recently, much effort has been directed to the development of stimuli-sensitive liposomes that are able to respond to certain internal or external stimuli, such as, pH, electricity, temperature, magnet, or light. Among them, to obtain liposomes which release the contents in response to ambient temperature, liposomes have been modified with chemically synthetic polymers having various lower critical solution temperatures (LCST). In this study, instead of chemically synthetic polymers, a biologically produced elastin-like polypeptide (ELP), which was composed of oligomeric repeats of the pentapeptide sequence (Val-Pro-Gly-Val- Gly), was used for endowing the liposome with thermosensitivity. A model drug was encapsulated in the ELPconjugated liposomes and the release behavior of the drug caused by the liposome disruption due to the aggregation of ELPs was investigated. In addition, conjugation of ELP to liposome was identified with Fourier Transformed Infrared (FT-IR) and Scanning Electron Microscope (SEM) analyses.  相似文献   

12.
Numerous techniques have been developed over the past 10 years for the conjugation of proteins to liposomes. Early procedures involved coupling with reagents such as glutaraldehyde or EDCI. Subsequently, more sophisticated approaches involving selective bifunctional coupling agents have been developed. These later procedures are also much more efficient for coupling in aqueous media. The techniques of coupling have become more rigorous because investigators have recognized the inherent problems of producing, purifying and characterizing protein conjugated liposomes.

Protein-liposome coupling techniques were developed mainly for targeted drug delivery. The attachment of specific antibodies to the surface of the liposomes makes them able to bind to cells and to subsequently be internalised by the cells. Protein conjugated liposomes have also been used for various immunochemical and diagnostic purposes. These include the binding of labelled liposomes to cells and the agglutination of cells or latex particles by protein conjugated liposomes.  相似文献   


13.
The development of nano and micro delivery systems (DS), so small in size, is growing in importance, such as in drug targeting. In an era where nano is the new trend, micro and nano materials are in the forefront of progress. These systems can be produced by a diversity of methods. However, the use of high-intensity ultrasound offers an easy and versatile tool for nano- and microstructured materials that are often unavailable by conventional methods. Similarly to the synthesis methods that can be used, several starting materials can be applied to produce particulate systems. In this review, the recent strategic development of DS is discussed with emphasis on liposomes and polymer-based, specially protein-based, nanomedicine platforms for drug delivery. Among the variety of applications that materials in the particulate form can have, the control release of drugs is probably the most prominent one, as these have been in the forefront line of interest for biomedical applications. The basic concepts of sonochemical process pertaining to DS are summarized as well as the role of sonochemical procedure to their preparation. The different applications of these systems wrap up this review.  相似文献   

14.
作为药物递送载体,脂质体(LPs)由于免疫原性低、稳定性好、毒性低和成本低而被认为是有前途的纳米药物递送系统。然而,LPs的靶向递送效果并不理想,往往会对正常的机体细胞造成伤害,因此,如何优化LPs药物,使其具有靶向性仍然是当前研究的重点。本文结合近年来国内外相关研究进展,重点介绍了多肽、抗体、糖类、配体,以及核酸适配体等靶向修饰物对LPs功能的影响,并归纳总结了各种靶向修饰目前存在的优势与挑战,以期对LPs给药系统的进一步研究提供科学参考及新药研发提供理论依据。  相似文献   

15.
In order to reduce the toxicity and increase the efficacy of drugs, there is a need for smart drug delivery systems. Liposomes are one of the promising tools for this purpose. An ideal liposomal delivery system should be stable, long-circulating, accumulate at the target site and release its drug in a controlled manner. Even though there have been many developments to this end, the dilemma of having a stable liposome during circulation but converting it into a leaky structure at the target site is still a major challenge. So far, most attempts have focused on destabilizing the liposome in response to a specific stimulus at a target site, but with limited success. Our approach is to keep the stable liposome but build in a remote-controlled valve as a new release mechanism, instead. The valve is a pore-forming bacterial membrane protein. It has been engineered such that, after being reconstituted into the liposomes, its opening and closing can be controlled on command by the ambient pH, light or a combination of both. In addition, a much higher degree of flexibility for fine-tuning of the liposome's response to its environment is achieved.  相似文献   

16.
In order to reduce the toxicity and increase the efficacy of drugs, there is a need for smart drug delivery systems. Liposomes are one of the promising tools for this purpose. An ideal liposomal delivery system should be stable, long-circulating, accumulate at the target site and release its drug in a controlled manner. Even though there have been many developments to this end, the dilemma of having a stable liposome during circulation but converting it into a leaky structure at the target site is still a major challenge. So far, most attempts have focused on destabilizing the liposome in response to a specific stimulus at a target site, but with limited success. Our approach is to keep the stable liposome but build in a remote-controlled valve as a new release mechanism, instead. The valve is a pore-forming bacterial membrane protein. It has been engineered such that, after being reconstituted into the liposomes, its opening and closing can be controlled on command by the ambient pH, light or a combination of both. In addition, a much higher degree of flexibility for fine-tuning of the liposome's response to its environment is achieved.  相似文献   

17.
Proton pumps: mechanism of action and applications   总被引:1,自引:0,他引:1  
Recent progress in understanding the molecular structures and mechanisms of action of proton pumps has paved the way to their novel applications in biotechnology. Proton pumps, bacteriorhodopsin and ATP synthases in particular, are capable of continuous, renewable conversion of light to chemical, mechanical or electrical energy, which can be used in macro- or nano-scale devices. The capability of protein systems incorporated into liposomes to generate ATP, which can be used to drive chemical reactions and to act as molecular motors has been already demonstrated. Other possible applications of such biochemical devices include targeted drug delivery and biocatalytic reactors. All these devices might prove superior to their inorganic alternatives.  相似文献   

18.
Many drugs that are currently used for the treatment of cancer have limitations, such as induction of resistance and/or poor biological half-life, which reduce their clinical efficacy. To overcome these limitations, several strategies have been explored. Chemical modification by the attachment of lipophilic moieties to (deoxy)nucleoside analogs should enhance the plasma half-life, change the biodistribution, and improve cellular uptake of the drug. Attachment of a lipophilic moiety to a phosphorylated (deoxy)nucleoside analog will improve the activity of the drugs by circumventing the rate-limiting activation step of (deoxy)nucleoside analogs. Encapsulating drugs in nanoparticles or liposomes protects the drug against enzymatic breakdown in the plasma and makes it possible to get lipophilic compounds to the tumor site. In this review, we discuss the considerable progress that has been made in increasing the efficacy of classic (deoxy)nucleoside and fluoropyrimidine compounds by chemical modifications and alternative delivery systems.  相似文献   

19.
Many drugs that are currently used for the treatment of cancer have limitations, such as induction of resistance and/or poor biological half-life, which reduce their clinical efficacy. To overcome these limitations, several strategies have been explored. Chemical modification by the attachment of lipophilic moieties to (deoxy)nucleoside analogs should enhance the plasma half-life, change the biodistribution, and improve cellular uptake of the drug. Attachment of a lipophilic moiety to a phosphorylated (deoxy)nucleoside analog will improve the activity of the drugs by circumventing the rate-limiting activation step of (deoxy)nucleoside analogs. Encapsulating drugs in nanoparticles or liposomes protects the drug against enzymatic breakdown in the plasma and makes it possible to get lipophilic compounds to the tumor site. In this review, we discuss the considerable progress that has been made in increasing the efficacy of classic (deoxy)nucleoside and fluoropyrimidine compounds by chemical modifications and alternative delivery systems.  相似文献   

20.
Developments of novel drug delivery vehicles are sought-after to augment the therapeutic effectiveness of standard drugs. An urgency to design novel drug delivery vehicles that are sustainable, biocompatible, have minimized cytotoxicity, no immunogenicity, high stability, long circulation time, and are capable of averting recognition by the immune system is perceived. In this pursuit for an ideal candidate for drug delivery vehicles, zwitterionic materials have come up as fulfilling almost all these expectations. This comprehensive review is presenting the progress made by zwitterionic polymeric architectures as prospective sustainable drug delivery vehicles. Zwitterionic polymers with varied architecture such as appending protein conjugates, nanoparticles, surface coatings, liposomes, hydrogels, etc, used to fabricate drug delivery vehicles are reviewed here. A brief introduction of zwitterionic polymers and their application as reliable drug delivery vehicles, such as zwitterionic polymer–protein conjugates, zwitterionic polymer-based drug nanocarriers, and stimulus-responsive zwitterionic polymers are discussed in this discourse. The prospects shown by zwitterionic architecture suggest the tremendous potential for them in this domain. This critical review will encourage the researchers working in this area and boost the development and commercialization of such devices to benefit the healthcare fraternity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号