首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leaf area index (LAI) of a stand of adult black alder trees(Alnus glutinosa L., Gaertn.) was determined by means of threeindependent methods. (1) The seasonal course of LAI was directlyobtained by counting leaves in situ and adding up their areas,estimated from harvested subsamples of leaves. (2) The seasonalvariation of LAI in the stand was estimated using the Li-CorLAI-2000 PCA in parallel and with this instrument a VegetationArea Index (VAI, projected area of all phyto-elements) was actuallymeasured. (3) Maximum LAI was calculated from leaf litter collectionstaking into account specific leaf area within different layersof the alder crown. Direct LAI estimates (1) and calculationsfrom leaf litter (3) revealed the same figure of maximum LAI(4.8). This LAI was reached in August. The LAI-2000 PCA capturedthe seasonal variation and underestimated, by 11% on average,the LAI obtained directly. Compared with results gained withother broad-leaved tree species the LAI-2000 PCA values foralder were reliable. It is suggested that this is due to thehorizontal homogeneous structure of the main leaf layer. Thisis in the periphery of the crown, where 90% of the light interceptionoccurs. Taking the het-erogeneity into account a satisfactorycompatibility of the three methods applied to the alder standwas achieved. Key words: Alnus glutinosa, leaf area index, in situ counting, LAI-2000 PCA, litter collections  相似文献   

2.
Variety of responses of plant phenolic concentration to CO2 enrichment   总被引:1,自引:0,他引:1  
Leaf area index (LAI) of a stand of adult black alder trees(Alnus glutinosa L., Gaertn.) was determined by means of threeindependent methods. (1) The seasonal course of LAI was directlyobtained by counting leaves in situ and adding up their areas,estimated from harvested subsamples of leaves. (2) The seasonalvariation of LAI in the stand was estimated using the Li-CorLAI-2000 PCA in parallel and with this instrument a VegetationArea Index (VAI, projected area of all phyto-elements) was actuallymeasured. (3) Maximum LAI was calculated from leaf litter collectionstaking into account specific leaf area within different layersof the alder crown. Direct LAI estimates (1) and calculationsfrom leaf litter (3) revealed the same figure of maximum LAI(4.8). This LAI was reached in August. The LAI-2000 PCA capturedthe seasonal variation and underestimated, by 11% on average,the LAI obtained directly. Compared with results gained withother broad-leaved tree species the LAI-2000 PCA values foralder were reliable. It is suggested that this is due to thehorizontal homogeneous structure of the main leaf layer. Thisis in the periphery of the crown, where 90% of the light interceptionoccurs. Taking the het-erogeneity into account a satisfactorycompatibility of the three methods applied to the alder standwas achieved. Key words: Alnus glutinosa, leaf area index, in situ counting, LAI-2000 PCA, litter collections  相似文献   

3.
Light microscopy demonstrated that the apparently amorphous,achlorophyllous tissue at the base of in vitro shoot clump cultureof Narcissus was comparable in structure to the basal plateof Narcissus bulbs. Both had very complex vascularisation andsmall, densely packed parenchymatous cells. In shoot clump cultures, primordia were produced by meristematiczones at the surface of this achlorophyllous tissue, very closeto the base of leaves. Single leaf units excised from the invitro shoot clump cultures with a wedge of basal achlorophylloustissue were highly organogenic when used as secondary explantsfor in vitro culture of Narcissus. No organogenesis occurredin the absence of the leaf base and achlorophyllous (basal plate)tissue and little organogenesis occurred unless the leaf baseand basal plate tissue were immersed in the culture medium (i.e.explants inoculated into liquid medium or upright in agar-solidifiedmedium). After two 5-week culture passages in liquid medium, more thanfive leaves were produced per leaf base inoculated. Thus rapidmicropropagation of Narcissus can be achieved using only thebase of single leaf units excised from shoot clump cultures.Copyright1993, 1999 Academic Press Anatomy, basal plate, bulb, in vitro, leaf culture, Narcissus, organogenesis  相似文献   

4.
The stipule mutant cochleata(coch) and the simple-leaf mutantunifoliata(uni) are utilized to increase understanding of the controlof compound leaf and flower development in pea. The phenotypeof the coch mutant, which affects the basal stipules of thepea leaf, is described in detail. Mutant coch flowers have supernumeraryorgans, abnormal fusing of flower parts, mosaic organs and partialmale and female sterility. The wild-type Coch gene is shownto have a role in inflorescence development, floral organ identityand in the positioning of leaf parts. Changes in meristem sizemay be related to changes in leaf morphology. In the coch mutant,stipule primordia are small and their development is retardedin comparison with that of the first leaflet primordia. Thediameter of the shoot apical meristem of the uni mutant is approx.25% less than that of its wild-type siblings. This is the firsttime that a significant difference in apical meristem size hasbeen observed in a pea leaf mutant. Genetic controls in thebasal part of the leaf are illustrated by interactions betweencoch and other mutants. The mutantcoch gene is shown to changestipules into a more ‘compound leaf-like’ identitywhich is not affected by thestipules reduced mutation. The interactionof coch and tendril-less(tl) genes reveals that the expressionof the wild-type Tl gene is reduced at the base of the leaf,supporting the theories of gradients of gene action. Copyright2001 Annals of Botany Company Pisum sativum, garden pea, leaf morphogenesis, compound leaf, leaf mutants, flower morphology  相似文献   

5.
IMAICHI  RYOKO 《Annals of botany》1989,63(2):249-256
The morphogenesis of the leaf sheath was studied in Botrychiumstrictum and B. virginianum of subgenus Osmundopteris. In thetwo species, the leaf primordium is initiated on the lowestpart of a ridge which is formed by partial growth of the shootapex. The leaf primordium first grows to cover the shoot apexalmost entirely except for a slit-like opening. The openingis formed by the frontal rim of the growing leaf primordium,i.e. the leaf margin, and the rear part of the shoot apex. Asthe leaf grows, the leaf margin elongates and takes a reverseV-shape. On both lateral edges of the leaf margin, marginalgrowth occurs to form the lobes of the leaf sheath. Such marginalgrowth and a small amount of growth on the uppermost portionof the sheath is involved in the leaf sheath formation in B.cirginianum, while only marginal growth takes place in B. strictum.The leaf sheath of Botrychium virginianum, in comparison tothat of B. strictum, has a morphogenesis which is more similarto the completely covering leaf sheath of subgenera Botrychiumand Sceptridhim. Based on the morphogenesis of the leaf sheath,systematic relationships in subgenus Osmundopteris are discussed Botrychium virginianum, B. strictum, subgenus Osmundopteris, leaf ontogeny, leaf sheath formation, scanning electron microscopy, light microscopy  相似文献   

6.
On the basis of known sunflower (Helianthus annuus L.) responsesto soil water deficit, it is proposed that the effect of thefungus Verticillium dahliae Klebahn on plant leaf area precedesand is greater than its effect on leaf photosynthesis and stomatalconductance. To test this hypothesis, we measured shoot andleaf area growth, leaf photosynthetic rate, stomatal conductanceand disease symptoms in a field experiment including hybridsof high (Sankol) and low (Dekasol 3900) susceptibility to V.dahliae. Plants inoculated with V. dahliae and controls werecompared. We also investigated the effect of V. dahliae on keycomponents of plant leaf area, leaf expansion and senescence,in inoculated and control plants of Sankol and Toba, a hybridof intermediate susceptibility to V. dahliae. Reduction in plantleaf area caused by V. dahliae was first detected 31 d afterinoculation (DAI), when visual symptoms of disease in inoculatedplants were slight (Sankol) or absent (Dekasol 3900). Reductionin leaf photosynthesis was first observed 66 DAI; stomatal conductanceand leaf dark respiration were both unaffected by V. dahliaeduring the whole experiment. In comparison with controls, V.dahliae reduced seasonal duration of plant leaf area by 25%in Dekalb 3900 and by 55% in Sankol, whereas the average reductionin leaf photosynthetic rate was 9%. In correspondence with thereduction in leaf area duration, inoculation reduced shoot drymatter of mature Sankol by 50%. In both experiments, less leafexpansion accounted for most of the early reduction in plantleaf area; as the disease progressed, increasing senescencealso contributed to reduced plant leaf area. It is concludedthat the response of sunflower to V. dahliae resembled the responseof the plant to soil water deficit: (1) plant leaf area, ratherthan leaf photosynthetic rate, accounted for the reduction ingrowth in mass; and (2) reduced leaf expansion early in theseason and faster leaf senescence in older plants accountedfor the decrease in plant leaf area. Copyright 2000 Annals ofBotany Company Helianthus annuus, Verticillium dahliae, allometry, apical dominance, drought, leaf expansion, leaf senescence, photosynthesis, stomatal conductance, growth  相似文献   

7.
Gossypium hirsutum L. (upland cotton) and G. barbadense L. (Pimacotton) are two of the most important fibre producing cottonspecies in cultivation. When grown side-by-side in the field,G.hirsutum has higher photosynthetic and transpiration rates (Luet al., 1997. Australian Journal of Plant Physiology24: 693–700).The present study was undertaken to determine if the differencesin physiology can be explained by leaf and canopy morphologyand anatomy. Scanning electron microscopy was used to comparethe leaf anatomy of field-grown upland (‘Delta’and ‘Pine Land 50’) and Pima (‘S6’)cotton. Compared to G. hirsutum, mature leaves of G. barbadenseare larger and thinner, with a thinner palisade layer. G. barbadenseleaves show significant cupping or curling which allows fora more even absorption of insolation over the course of theday and much more light penetration into the canopy. AlthoughG. barbadense leaves have a 70–78% higher stomatal densityon both the abaxial and the adaxial surfaces, its stomates areonly one third the size of those of G. hirsutum. This resultsin G. barbadense having only about 60% of the stomatal surfacearea per leaf surface area compared to G. hirsutum. These resultsare indicative of the anatomical and physiological differencesthat may limit the yield potential of G. barbadense in certaingrowing environments. Copyright 2000 Annals of Botany Company Cotton, leaf anatomy, leaf development, photosynthesis, Gossypium hirsutum, Gossypium barbadense, stomatal density  相似文献   

8.
The second leaf of wheat was used as a model system to examinethe effects of the Rht3 dwarfing gene on leaf growth. Comparedto the rht3 wild type, the Rht3allele decreased final leaf length,surface area and dry mass by reducing the maximum growth rates,but without affecting growth duration. Gibberellic acid (GA3)increased final leaf length and maximum growth rate in the rht3wild type, but was without effect on the Rht3 mutant, whichis generally regarded as being non-responsive to gibberellin(GA). Paclobutrazol, an inhibitor of GA biosynthesis, decreasedfinal leaf length and maximum growth rate in the rht3 wild typeto values similar to those in the untreated Rht3 mutant. NeitherGA3 nor paclobutrazol affected the duration of leaf growth.The decrease in leaf length was produced by reduction of celllength rather than cell number. The maximum relative elementalgrowth rate (REGR) for cell extension was essentially the samein all treatments, as was the time between the cells leavingthe meristem and achieving maximum extension rate. The differencesbetween the genotypes and treatments were all almost entirelydue to differences in the time taken from the attainment ofmaximum REGR of cell extension to the cessation of extension.This was reflected in the length of the extension zone, whichwas approximately 6–8 per cent of final leaf length. Theeffects of the Rht3 allele, GA3 and paclobutrazol all appearto be on the processes which promote the cessation of cell elongation. Key words: Cell extension, gibberellin, leaf growth, Rht3 gene, Triticum, wheat  相似文献   

9.
The uptake of -aminoisobutyric acid (AIB) into protoplasts andinto 1 cm sections of leaves from 7 d old light-grown oats (Avenasativa L. cv. ‘Garry’) was studied. Both protoplastsand leaf sections with cuticle and epidermis removed accumulatedAIB against a concentration gradient although the rate of uptakeinto protoplasts was one-third to one-sixth that into leaf sections.AIB uptake into both protoplasts and leaf cells in situ wasstimulated by ‘aging,’ and low pH, and inhibitedby osmotic shock, respiratory poisons, and KCl concentrationsabove 1 mM. It was concluded that the rate of uptake of AIBand its accumulation ratio could be accounted for by the energyinherent in the proton-motive force, the proton-motive forcebeing the sum of the pH gradient and potential difference acrossthe plasma membrane. The similarities between oat mesophyllprotoplasts and leaf cells in situ suggest that these protoplastsare suitable material for the study of certain membrane-regulatedevents.  相似文献   

10.
The effect of development on leaf elongation rate (LER) andthe distribution of relative elemental growth rate (REGR), epidermalcell length, and xyloglucan endotransglycosylase (XET) activitythrough the growing zone of the third leaf of maize was investigated.As the leaf aged and leaf elongation slowed, the length of thegrowing zone (initially 35 mm) and the maximal REGR (initially0.09 mm mm–1 h–1) declined. The decline in REGRwas not uniform through the growth profile. Leaf ageing sawa maintenance of REGR towards the base of the leaf. Epidermalcell size was not constant at a given position in the growingzone, but was seen to increase as the leaf aged. There was apeak of XET activity close to the base of the growing zone.The peak of XET activity preceded the zone of maximum REGR.XET activity declined as leaves aged and their elongation rateslowed. When leaf elongation was complete a distinct peak ofXET activity remained close to the base of the leaf. Key words: Leaf elongation rate (LER), relative elemental growth rate (REGR), xyloglucan endotransglycosylase (XET)  相似文献   

11.
Nitrate Supply and the Biophysics of Leaf Growth in Salix viminalis   总被引:2,自引:0,他引:2  
The influence of nitrogen on leaf area development and the biophysicsof leaf growth was studied using clonal plants of the shrubwillow, Salix viminalis grown with either optimal (High N) orsub-optimal (Low N) supplies of nitrate. Leaf growth rate andfinal leaf size were reduced in the sub-optimal treatment andthe data suggest that in young rapidly growing leaves, thiswas primarily due to changes in cell wall properties, sincecell wall extensibility (% plasticity) was reduced in the LowN plants. The biophysical regulation of leaf cell expansion also differedwith nitrogen treatment as leaves aged. In the High N leaves,leaf cell turgor pressure (P) increased with age whilst in theLow N leaves P declined with age, again suggesting that foryoung leaves, cell wall plasticity limited expansion in theLow N plants. Measurements of cell wall properties showed thatcell wall elasticity (%E) was not influenced by nitrogen treatmentand remained constant regardless of leaf age. Key words: Salix, cell wall extensibility, nitrogen nutrition, biophysics of leaf growth  相似文献   

12.
The effects of nitrogen (N) availability on cell number andcell size, and the contribution of these determinants to thefinal area of fully expanded leaves of sunflower (Helianthusannuus L.) were investigated in glasshouse experiments. Plantswere given a high (N =315 ppm) or low (N=21 ppm) N supply andwere transferred between N levels at different developmentalstages (5 to 60% of final size) of target leaves. The dynamicsof cell number in unemerged (< 0.01 m in length) leaves ofplants growing at high and low levels of N supply were alsofollowed. Maximum leaf area (LAmax) was strongly (up to two-fold)and significantly modified by N availability and the timingof transfer between N supplies, through effects on leaf expansionrate. Rate of cell production was significantly (P<0.05)reduced in unemerged target leaves under N stress, but therewas no evidence of a change in primordium size or in the durationof the leaf differentiation–emergence phase. In fullyexpanded leaves, number of cells per leaf (Ncell), leaf areaper cell (LAcell) and cell area (Acell) were significantly reducedby N stress. WhileLAcell and Acellresponded to changeover treatmentsirrespective of leaf size, significant (P<0.05) changes inNcellonly occurred when the changeover occurred before the leafreached approx. 10% of LAmax. There were no differential effectsof N on numbers of epidermal vs. mesophyll cells. The resultsshow that the effects of N on leaf size are largely due to effectson cell production in the unemerged leaf and on both cell productionand expansion during the first phase of expansion of the emergedleaf. During the rest of the expansion period N mainly affectsthe expansion of existing cells. Cell area plasticity permitteda response to changes in N supply even at advanced stages ofleaf expansion. Increased cell expansion can compensate forlow Ncellif N stress is relieved early in the expansion of emergedleaves, but in later phases Ncellsets a limit to this response.Copyright 1999 Annals of Botany Company Helianthus annuus, leaf expansion, leaf cell number, leaf cell size, nitrogen, leaf growth, sunflower.  相似文献   

13.
Yeo, A. R., Yeo, M. E., Caporn, S. J. M., Lachno, D. R. andFlowers, T. J. 1985. The use of 14C-ethane diol as a quantitativetracer for the transpirational volume flow of water and an investigationof the effects of salinity upon transpiration, net sodium accumulationand endogenous ABA in individual leaves of Oryza sativa L.—J.exp. Bot. 36: 1099–1109. Oryza sativa L. (rice) seedlings growing in saline conditionsexhibit pronounced gradients in leaf sodium concentration whichis always higher in the older leaves than the younger ones.Individual leaf transpiration rates have been investigated todiscover whether movement of sodium in the transpiration streamis able to explain these profiles from leaf to leaf. The useof 14C labelled ethane diol to estimate transpiration was evaluatedby direct comparison with values obtained by gas exchange measurements.Ethane diol uptake was linearly related to the transpirationalvolume flow and accurately predicted leaf to leaf gradientsin transpiration rate in saline and non-saline conditions. 14C-ethanediol and 22NaCl were used to compare the fluxes of water andsodium into different leaves. The youngest leaf showed the highesttranspiration rate but the lowest Na accumulation in salineconditions; conversely, the older leaves showed the lower transpirationrates but the greater accumulation of Na. The apparent concentrationof Na in the xylem stream was 44 times lower into the youngerleaf 4 than into the older leaf 1. Exposure to NaCl (50 molm–3) for 24 h elicited an increase in endogenous ABA inthe oldest leaf only, but no significant changes occurred inthe younger leaves. Key words: —Salinity, rice, Oryza sativa L., transpiration, volume flow, abscisic acid  相似文献   

14.
Increasing ß-amylase activity in wheat (Triticum aestlvum,var. Star) seedling shoot tissues was consistently accompaniedby the development of a characteristic polymorphism of the enzyme,as shown by electrophoresis employing amylopectin-containingpolyacrylamide gels. Very young shoot tissue contained one principalform of the enzyme (ß1), whereas two other major forms(ß2, ß3) appeared complementary to thisupon further growth. In vitro incubation experiments indicatedthat the polymorphism arose via a probably proteolytic conversionof ß1 into ß2 and ß3. The conversioninvolved neither an activation of ß-amylase nor asignificant modification of ß-amylase component plvalues. The electrophoretic ß-amylase patterns ofsubcellular leaf compartments suggested that ß1 issynthesized in the cytoplasm of leaf mesophyfi cells and thatthe other forms arise upon transfer of this ‘primary’form into the vacuole. The development of shoot ß-amylaseactivity did not require light, but appeared to be under thenegative control of the chloroplast and was stimulated by mineralnutrients. No clear relationship between ß-amylaseactivity and starch metabolism was evident, since the leaf activitywas largely absent from mesophyll protoplasts, could not beunequivocally demonstrated in the mesophyll chioroplasts, anddeveloped regardless of whether the tissues contained significantamounts of starch or not. Key words: Wheat, leaves, ß-amylase, polymorphism, compartmentation  相似文献   

15.
The wildtype leaf of the garden pea possesses proximal pairsof leaflets and distal pairs of tendrils in the blade region.Theafila (af) mutation causes leaflets to be replaced by compound(branched) tendrils. We characterized the morphological variationin leaf form along the plant axis and leaf development in earlyand late postembryonic leaves onafilaplants to infer the roleof theAfgene. Leaf forms are more diverse early in shoot ontogenyonafilaplants.Afinfluences pinna length and pinna branchingin addition to pinna type. Pinna initiation in the proximalregion ofafilaleaf primordia is basipetal and delayed comparedto wildtype plants. In addition, pinna development in the proximalregion ofafilaleaves occurs for a longer period of time thanon wildtype leaf primordia. Therefore,Afregulates the timingand direction of leaf developmental processes in the proximalregion of the leaf, but has little effect on the distal region.These data support the heterochronic model of pea leaf morphogenesisproposed by Luet al. (International Journal of Plant Science157:311–355, 1996).Copyright 1999 Annals of Botany Company. afila,Fabaceae, garden pea, heterochrony, leaf morphogenesis,Pisum sativum.  相似文献   

16.
During tea fermentation, linoleic acid in the neutral fat fraction,and linolenic acid in both the neutral fat and phospholipidfractions from leaves decreased. The addition of linoleic orlinolenic acid to leaf macerates during fermentation resultedin an increase in hexanal or trans-2-hexenal in the volatilefraction. Tracer experiments showed the direct conversion oflinoleic-U-14C and linolenic-U-14C acids to labeled hexanaland trans-2-hexenal, respectively, which were identified as2,4-DNPH derivatives. Further conversion of hexanal and trans-2-hexenal into hexanoicand trans-2-hexenoic acids during tea fermentation was suggestedby the increases in these compounds after the addition of hexanaland trans-2-hexenal to leaf macerates. (Received December 21, 1971; )  相似文献   

17.
Leaf Determination in the Fern Osmunda cinnamomea--A Reinvestigation   总被引:1,自引:0,他引:1  
Earlier studies of leaf determination in the fern Osmunda cinnamomeaL., using the technique of excision and sterile culture, indicatedthat the apices of incompletely determined leaf primordia areconverted into shoot apices after isolation. Subsequently otherworkers questioned this interpretation, suggesting that a primordiumis determined as a leaf shortly after its inception and thatany shoot which arises from it is an adaxial adventitious bud.Because of the importance of this distinction in the interpretationof determination, the phenomenon has been reinvestigated byscanning electron microscopy and histological methods. Sincefixation for electron microscopy was inconsistence, the workwas performed on the primordia using resin models formed indental plastic moulds. Our data, on explanted P3, P4, and P5leaf primodia, provide strong confirmation for the interpretationthat the leaf apex is indeed converted to a shoot apex in incompletelydetermined primodia after explantation. This new evidence formsthe basis for interpreting leaf determination in this experimentalsystem.Copyright 1993, 1999 Academic Press Leaf determination, in vitro, surface replica, scanning electron microscopy, Osmunda cinnamomea L., cinnamon fern  相似文献   

18.
The comparative patterns of penetration of 2,4-dichlorophenoxyaceticacid (2,4-D) into the leaves of Phaseolus vulgaris, Zea mays,Pisum sativum, Beta wlgaris, Helianthus annuus and Gossypiumhirsuium have been examined. Save for Zea and Gossypium where there is little change withthe stage of leaf development the rates of penetration intoboth surfaces decrease as the leaf matures. The relative ratesare dependent on the species and the age of the leaf but thereare differences between the surfaces. In Phaseolus the characteristicsof primary leaves differ from those of trifoliate leaves sinceonly in immature trifoliate leaves is penetration into the adaxialsurface greater. In darkness the rates of penetration over 24 h remain constantor fall but slightly for all species. Light consistently promotespenetration but with Beta there is a lag before entry is acceleratedinto the abaxial surface as has previously been reported foryoung primary leaves of Phaseolus. For the remaining speciesthe courses of penetration in both light and darkness into bothsurfaces follow similar patterns. As the light intensity isincreased entry is enhanced but the limit of response variesbetween species, between surfaces within species, and in trifoliateleaves of Phaseolus with age. For the six species the order of the relative rates of entryis closely similar whether comparisons are made in light ordarkness or between abaxial and adaxial surfaces: viz. Zea >Helianthus > Phaseolus (primary) > Phaseolus (trifoliate)> Pisum = Beta = Gossypium. The observed specific differencesare discussed in relation to variations in leaf structure, theproperties and thickness of the cuticle and the physiologicaland metabolic processes which influence transport within theepidermal tissues after it has passed through the cuticle bydiffusion.  相似文献   

19.
Vegetative crops of chrysanthemum were grown for 5 or 6 weekperiods in daylit assimilation chambers. Crop responses to differentradiation levels and temperatures were analysed into effectson dry matter partitioning, specific leaf area, leaf photosynthesisand canopy light interception. The percentage of newly formed dry matter partitioned to theleaves was almost constant, although with increasing radiationor decreasing temperature, a greater percentage of dry matterwas partitioned to stem tissue at the expense of root tissue.There was a positive correlation between the percentage of drymatter in shoot material and the overall carbon: dry matterratio. Canopy photosynthesis was analysed assuming identical behaviourfor all leaves in the crop. Leaf photochemical efficiency wasonly slightly affected by crop environment. The rate of grossphotosynthesis per unit leaf area at light saturation, PA (max),increased with increasing radiation integral, but the same parameterexpressed per unit leaf dry matter, Pw (max) was almost unaffectedby growth radiation. In contrast, PA (max) was hardly affectedby temperature but Pw (max) increased with increasing growthtemperature. This was because specific leaf area decreased withdecreasing temperature and increased with decreasing radiation.There was a positive correlation between canopy respirationintegral and photosynthesis integral, and despite a four-foldchange in crop mass during the experiments, the maintenancecomponent of canopy respiration remained small and constant. Canopy extinction coefficient showed no consistent variationwith radiation integral but was negatively correlated with temperature.This decrease in the efficiency of the canopy at interceptingradiation exactly cancelled the increase in specific carbonassimilation rate that occurred with increasing growth temperature,giving a growth rate depending solely on the incident lightlevel. Chrysanthemum, dry matter partitioning, photosynthesis, specific leaf area  相似文献   

20.
Growth performances of Crotalaria juncea L. and C. sericea Retz.have been compared at two controlled temperatures, 16–20°C, and 28–32 °C, with respect to increase ind. wt and leaf area, relative growth rate, leaf area ratio,specific leaf area, leaf weight ratio, net assimilation rate,the ratio of mean relative growth rate to mean relative rateof leaf area increase () and shoot/root ratios. Both the speciesgrew better at the higher temperature; however the relativegrowth rate was more affected by temperature in C. sericea thanin C. juncea. Further, it was observed to be more dependenton net assimilation rate than on the leaf area ratio. Crotalaria juncea L., Crotalaria sericea Retz., relative growth rate, leaf area ratio, specific leaf area, leaf weight ratio, leaf area increase, net assimilation rate, shoot/root ratio  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号