首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The role of tubular mastigonemes in the reversal of thrust of the anterior flagellum ofPhytophthora cinnamomi was analysed using mastigoneme-specific monoclonal antibodies and immunoflu-orescence and video microscopy. Exposure of live zoospores ofP. cinnamomi to the mastigoneme-specific Zg antibodies caused alterations in the arrangement of mastigonemes on the flagellar surface and at Zg concentrations above 0.3 /ml, mastigonemes became detached from the flagellum. As a consequence of antibody binding to the mastigonemes there were concentration-dependent perturbations in zoospore swimming behaviour and anterior flagellum beat pattern. With increasing antibody concentration zoospores swam more slowly and other parameters of their swimming pattern, such as the wavelength of the swimming helix and the frequency of rotation, were also reduced. The effects of Zg antibodies were specific at two levels: control immunoglobulins or antibodies that bound to other flagellar surface components did not have an effect on motility, and Zg antibodies did not interfere with the motility of zoospores of oomycete species to which they did not bind. The effects of antibody-induced disruption of mastigoneme arrangement strongly support previous hypotheses that tubular mastigonemes are responsible for thrust reversal by the anterior flagellum, enabling it to pull the cell through the surrounding medium.  相似文献   

2.
Summary Antibodies raised against the calcium-binding protein centrin, were used to identify and localise centrin containing structures in the flagellar apparatus of zoospores and cysts of the oomycetePhytophthora cinnamomi. Immunoblotting of extracts from zoospores indicates that theP. cinnamomi centrin homologue is a 20 kDa protein. Immunofluorescence microscopy with anti-centrin antibodies reveals labelling in the flagella, the basal body connector and co-localisation along the microtubular R1 root (formerly called AR3) that runs from the right side of the basal body of the anterior flagellum into the anterior of the zoospore close to the ventral surface. The centrin (R1cen) and tubulin components of the R1 root split into four loops on the right hand side of the ventral groove and rejoin along the left hand side of the groove. The R1 root continues down the left hand side of the zoospore past the basal bodies and parallel to the R4 root. We propose that at least inP. cinnamomi there is no R2 root. Immunogold labelling confirms that centrin is a component of the basal body connector complex. When the zoospores become spherical during encystment, the R1cen pivots by approximately 90 ° with respect to the nucleus.  相似文献   

3.
Summary Scanning electron microscopy and transmission electron microscopy (carbon replicas) confirm the existence of a deep longitudinal groove on one side of the pyriform body of the zoospores of Phytophthora palmivora. Upon encystment the cell rounds off but the groove may be temporarily retained as a depression on the cyst surface. The carbon replicas revealed significant differences in outer surface texture: the zoospore surface is finely granular whereas the outer surface of both young and mature cysts are distinctly microfibrillar with only occasional patches of amorphous material.  相似文献   

4.
The spatial configuration of the flagellar apparatus of the biflagellate zoospores of the green algal genusMicrospora is reconstructed by serial sectioning analysis using transmission electron microscopy. Along with the unequal length of the flagella, the most remarkable characteristics of the flagellar apparatus are: (1) the subapical emergence of the flagella (especially apparent with scanning electron microscopy); (2) the parallel orientation of the two basal bodies which are interconnected by a prominent one-piece distal connecting fiber; (3) the unique ultrastructure of the distal connecting fiber composed of a central tubular region which is bordered on both sides by a striated zone; (4) the different origin of the d-rootlets from their relative basal bodies; (5) the asymmetry of the papillar region which together with the subapical position of the basal bodies apparently cause the different paths of corresponding rootlets in the zoospore anterior; (6) the presence of single-membered d-rootlets and multi-membered s-rootlets resulting in a 7-1-7-1 cruciate microtubular root system which, through the different rootlet origin, does not exhibit a strict 180° rotational symmetry. It is speculated that the different basal body origin of the d-rootlets is correlated with the subapical implant of flagella. It is further hypothesized that in the course of evolution the ancestors ofMicrospora had a flagellar papilla that has migrated from a strictly apical position towards a subapical position. Simultaneously, ancestral shift of flagella along the apical cell body periphery has taken place as can be concluded from the presence of an upper flagellum overlying a lower flagellum in the flagellar apparatus ofMicrospora. The basic features of the flagellar apparatus of theMicrospora zoospore resemble those of the coccoid green algal generaDictyochloris andBracteacoccus and also those of the flagellate green algal genusHeterochlamydomonas. This strengthens the general supposition thatMicrospora is evolutionarily closely related to taxa which were formerly classified in the traditionalChlorococcales.  相似文献   

5.
Summary To understand the functions of the longitudinal and transverse flagella of dinoflagellates, the flagellar waveform and frequency of each flagellum were observed by high-speed video-recording. The longitudinal flagellum emerged from the anterior end of the cell and beat with a planar undulating wave whose plane was perpendicular to the valval sutural plane. The transverse flagellum curved around the anterior end of the cell and beat with a helical wave, with different alternating half pitches. The half pitch corresponding to the parts farther from the cellular antero-posterior axis was shorter than that of the parts closer to the axis. This pattern is described by the ratio of the outer-parts half pitch to the pitch of the whole period of the helix and seems to be characteristic of the dinoflagellates' transverse flagellum.Abbreviations p in half pitch corresponding to the inner parts of the transverse flagellum - p out half pitch corresponding to the outer parts of the transverse flagellum - P p pitch of helical swimming trajectory - R p radius of helical swimming trajectory - c rotational frequency of the cell  相似文献   

6.
The zoospore of Blastocladiella emersonii has been re-examined with the electron microscope. The following new findings were made. A double unit-membrane system surrounds all cell organelles except γ-bodies, vacuoles and a few fragments of membranes. Lipid granules on one side of the large mitochondrion alternate with vesicles. The kinetosome of the posterior flagellum does not have any central fibrils as previously reported; a small, cylindrical structure is found within its anterior end. An associated centriole is located next to the kinetosome. Three striated rootlets pass from the kinetosome by separate channels through the mitochondrion. There appears to be no connection between the striated rootlets and the mitochondrion. Microtubules originating at the anterior end of the kinetosome pass into the cytoplasm between the mitochondrion and the nuclear cap. Long, dense strands were observed in some nuclei. The axoneme is taken up into the spore during encystment and is found in the freshly encysted spore. No trace of the flagellar sheath has been found in the encysted spore.  相似文献   

7.
The ultrastructure of sperm from 13 species in 11 genera of Laminariales collected in the northeast Pacific Ocean is unique in the brown algae. The sperm are elongate, and possess a nucleus, several mitochondria and two or three chloroplasts, but no eyespot. The anterior flagellum bears mastigonemes on the proximal half of its length; a distal “whiplash” portion lacks mastigonemes and is an extension of only the two central singlet microtubules of the axoneme. A peculiar feature of these sperm is the posterior flagellum, which is longer than the anterior flagellum and tapers distally as the doublet microtubules become singlets and decrease in number. This feature contrasts with the laminarialean zoospore, which possesses a short posterior flagellum with the usual “9 + 2” axoneme. The structure of these sperm differs from that reported for Chorda, the sperm of which resembles a primitive brown algal zoospore. The facts support the concept that Chorda is the most primitive member of the Laminariales.  相似文献   

8.
Structural changes during cell wall formation by populations of semisynchronously germinating zoospores were studied in the water mold Allomyces macrogynus. Fluorescence microscopy using Calcofluor white ST (which binds to -1,4-linked glycans) demonstrated that Calcofluor-specific material was deposited around most cells between 2–10 min after the induction of encystment (beginning when a wall-less zoospore retracts its flagellum and rounds up). During the first 15 min of encystment there was a progressive increase in fluorescence intensity. Ultrastructural analysis of encysting cells showed that within 2–10 min after the induction of encystment small vesicles 35–70 nm diameter were present near the spore surface, and some were in the process of fusing with the plasma membrane. The fusion of vesicles with the zoospore membrane was concomitant with the appearance of electron-opaque fibrillar material outside the plasma membrane. Vesicles similar to those near the spore surface were found within the gamma () particles of encysting cells. These particles had a crystalline inclusion within the electron-opaque matrix. During the period of initial cyst cell wall formation numerous vesicles appeared to arise at the crystal-matrix interface. Approximately 15–20 min was required for the cell wall to be formed. We suggest that the initial response of the zoospore to induction of encystment is the formation of a cell wall mediated by the fusion of cytoplasmic vesicles with the plasma membrane.Non-Standard Abbreviations GlcNac N-Acetylglucosamine - DS sterile dilute salts solution - PYG peptone-yeast extract-glucose broth  相似文献   

9.
Primary zoosporogenesis in resting sporangia ofPlasmodiophora brassicae that had been incubated for 14 d in culture solution containing turnip seedlings was examined by transmission electron microscopy. A single zoospore differentiated within each sporangium, the differentiation being initiated by the emergence, of two flagella in the tight space formed by invagination of the plasma membrane within the sporangium. The differentiazing zoospore was similar in intracellular aspects to sporangia within clubroot galls. Then a deep groove formed on the zoospore cell body by further invagination of the plasma membrane. Two flagella appeared to coil around the zoospore cell body in parallel along this groove. Thereafter, the cell body lost the groove and became rounded following the protoplasmic condensation (contraction of cell body) during late development, and assumed an irregular shape at the stage of maturation. Intracellular features in, developing and mature zoospores were complicated, being characterized by electron-dense nuclei and mitochondria, microbodies, cored vesicles and various unidentified cytoplasmic vesicles and granules. A nucleolus-like region was observed only in the nucleus of the mature zoospore. A partially opened germ, pore was also seem in the sporangium containing the mature zoospore.  相似文献   

10.
Cochlosoma anatis Kotlán (Zoomastigophorea, Retortamonadida, Cochlosomidae), isolated from the large intestines of domestic Rouen ducks, and Cochlosoma soricis n. sp., isolated from the small intestines of shrews, were observed by light and scanning electron microscopy. In both organisms, a single flagellum inserted on the dorsal surface at the same level as the insertion of 4 other flagella on the ventral surface. The 4 ventro-lateral flagella emerged from the left side of the anterior attachment disk below the margin and just above the lateral groove which extended the length of the organism. A 6th flagellum emerged from the margin of the attachment disk. The proximal ends of the flagella formed a bundle with the distal ends becoming unraveled like a rope. During motility, the bundle portion extended straight out from the cell and the free ends of the flagella produced a whipping motion. In C. anatis , the dorsal surface was covered with knob-like lumps and small pits and the cells had an axostyle that emerged slightly to the right of the midline in the posterior 1/3 of the body. The axostylar tip was shorter and thicker than the flagella and in most cells it also had an irregular, knobby appearance. The irregular cell surface and axostyle were absent from C. soricis. The margin of the attachment disk curved toward the center and terminated in C. anatis as a straight edge while in C. soricis it continued as a spiral. Indentations in the mucosal brush border similar to those produced by Giardia , but distinctly belonging to Cochlosoma , were interpreted as points of attachment to the host.  相似文献   

11.
M. Cope  A. R. Hardham 《Protoplasma》1994,180(3-4):158-168
Summary Cryomicrotomy and immunofluorescence microscopy employing three different categories of monoclonal antibody (MAb) that label antigens on the surface of one or both flagella ofPhytophthora dnnamomi have been used to follow the synthesis and assembly of flagellar surface components. MAb Zf 1 binds to the surface of both the anterior tinsel and posterior whiplash flagella, as well as to a nuclear component. The labeling of the flagella is punctate in nature, is brighter at the flagellar base, and does not always extend to the distal tip of the flagella. MAbs in the Zt group recognise an antigen that is located along the sides of the tinsel flagellum and may be associated with the base of the mastigonemes. Immunodot-blot analysis has shown that binding of Zt MAbs is abolished by pretreatment with either pronase or periodate oxidation indicating that the antigen is a glycoprotein. MAbs in the Zg group bind to the mastigonemes on the tinsel flagellum and to packets of mastigonemes in the cytoplasm of zoospores. Zt and Zg antigens increase in abundance during zoosporogenesis and are present throughout the life cycle of the fungus, whereas the non-nuclear localisation of the Zf antigen appears only during sporulation. Prior to association with the flagellar surface, all three components become clustered in the groove region of zoospores. They do not become associated with the flagellar surface until at least 15 min after the flagellar axoneme has formed.Abbreviations BSA bovine serum albumin - DAPI 4,6-diamidino-2-phenylindole - DMF dimethylformamide - lgG1 immunoglobulin G1 - MAbs monoclonal antibodies - NIM non-immune mouse antibodies - PBS phosphate-buffered saline - PBST phosphate-buffered saline with 0.5% Tween 20 - PIPES 1,4-piperazinediethanesulfonic acid - PPD paraphenylenediamine dihydrochloride - RT room temperature - TBS tris-buffered saline - TEST tris-buffered saline with 0.05% Tween 20  相似文献   

12.
13.
Cochlosoma anatis Kotlán (Zoomastigophorea, Retortamonadida, Cochlosomidae), isolated from the large intestines of domestic Rouen ducks, and Cochlosoma soricis n. sp., isolated from the small intestines of shrews, were observed by light and scanning electron microscopy. In both organisms, a single flagellum inserted on the dorsal surface at the same level as the insertion of 4 other flagella on the ventral surface. The 4 ventro-lateral flagella emerged from the left side of the anterior attachment disk below the margin and just above the lateral groove which extended the length of the organism. A 6th flagellum emerged from the margin of the attachment disk. The proximal ends of the flagella formed a bundle with the distal ends becoming unraveled like a rope. During motility, the bundle portion extended straight out from the cell and the free ends of the flagella produced a whipping motion. In C. anatis, the dorsal surface was covered with knob-like lumps and small pits and the cells had an axostyle that emerged slightly to the right of the midline in the posterior 1/3 of the body. The axostylar tip was shorter and thicker than the flagella and in most cells it also had an irregular, knobby appearance. The irregular cell surface and axostyle were absent from C. soricis. The margin of the attachment disk curved toward the center and terminated in C. anatis as a straight edge while in C. soricis it continued as a spiral. Indentations in the mucosal brush border similar to those produced by Giardia, but distinctly belonging to Cochlosoma, were interpreted as points of attachment to the host.  相似文献   

14.
The subcellular organization of zoospores released from sessile, parasitic sporangia of Caulochytrium protostelioides was studied with light and electron microscopy. A single flagellum is posteriorly directed but laterally inserted into the cylindrical motile zoospore. A striated rhizoplast attaches the proximal end of the kinetosome to a specialized region of the nuclear envelope. A system of rough endoplasmic reticulum, smooth endoplasmic reticulum, dictyosomes and bristle-coated vesicles are associated with the one to several pulsating vacuoles typically located near the flagellar apparatus. The microbody-lipid globule complex (MLC) comprises one to many lipid globules. An extensive microbody branches around each lipid globule and encloses a portion of the rhizoplast. A reticulum of smooth surfaced cisternae interdigitates among the branches of the complex microbody, and cisternae are opposed to the surface of lipid globules opposite the microbodies. Mitochondria with predominantly circular profiles are scattered throughout the zoospore body, but several are always adjacent to the microbody, and hence, are also part of the MLC. Ribosomes are uniformly distributed throughout the zoospore, and one to several cisternae of rough endoplasmic reticulum are adjacent to the nuclear envelope. Zoospores of C. protostelioides are similar to several other chytrid zoospores, which also have the same type of microbody-lipid globule complex, but yet are structurally distinct from any other chytrid zoospore.  相似文献   

15.
Summary The ultrastructure ofAphanomyces euteiches during the periods of zoospore motility, encystment, and germination has been studied. The motile spore has two heterokont flagella inserted laterally into the groove of the zoospore body where each is attached to a kinetosome. The kinetosomes and flagella are anchored into the zoospore body by rootlets comprised of two rows of microtubules with up to 12 microtubules in the outer row and are attached by fine threads to a striate fiber bundle. Secondary microtubules are attached at right angles at regular intervals along the rootlets. An unidentified body, 1.25m in diameter, containing helical fibers 16 nm in diameter is present in each zoospore. This body is situated near the two kinetosomes on the side of the pyriform nucleus opposite the contractile vacuole. The Golgi complex is between the nucleus and the contractile vacuole. The latter is surrounded by a 0.5–1.0m wide zone of Golgi proliferated vesicles. Ribosomes are generally absent from this region. Endoplasmic reticulum containing tubules within the expanded cisternae are also present. Vesicles with striated electron opaque inclusions and vesicles containing a granular cortex and center that developed in previous stages of zoosporogenesis were also present. During encystment of the zoospore the latter vesicles disappear. The two flagella are shed at this time leaving a membrane-bounded granular knob protruding from each of the kinetosome terminal plates. The contractile vacuole becomes disorganized and the zoospore assumes a spherical shape. Cyst wall deposition begins immediately and is completed in 30 minutes. The spore begins to germinate 1 hour following initiation of encystment with the appearance of a bulge in the cyst wall which elongates into a germ tube. Mitotic nuclear division follows.Research supported by the College of Agricultural and Life Sciences Station Project No. 1281.Research assistant and Professor. The advice and assistance of G. A. deZoeten, G. R.Gaard, and S.Vicen are most gratefully acknowledged.  相似文献   

16.
The zoospore of Pseudosporonospora cubensis is typical of the secondary zoospore of the Peronosporales. The reniform zoospore contains a central nucleus with a prominent beak-like extension to the kinetosomes on the lateral side of the spore in the groove region. "Fuzzy" vesicles derived from dictyosomes surround and fuse with the contractile vacuole. Mitochondria and microbodies are located in the peripheral cytoplasm of the zoospore but the latter are confined to the groove region of the spore. The microbodies usually contain a laminate inclusion and the microbodies are not in a fixed position in relation to the peripheral cisternae. Neither a microbody-lipid body complex nor a "U-body" were observed.
The kinetosomes of the spore are almost perpendicular to each other at the distal end of the beak-like extension of the nucleus. A complex system of cytoplasmic microtu-bules flare out from the kinetosomes to surround the nucleus and bundles of cytoplasmic microtubules extend under the plasmalemma of the spore. The zoospore contain numerous vesicles with osmiophilic inclusions which are finely striated; these are the so-called finger-print vesicles.  相似文献   

17.
Summary Zoospores of the mosquito pathogenic fungusLagenidium giganteum preferentially attach to and encyst on the cuticular surface of the immature stages of many species of mosquitoes as the initial step in the infection process. Recognition by zoospores of specific chemical or physical signals on the cuticular surface triggers attachment. A number of compounds likely to be present on the surface of mosquito larvae were evaluated for efficacy in eliciting zoospore encystment. Free amino acids and oligomers, a number of phenolic and polyphenolic compounds and most carbohydrates did not induce encystment at concentrations less than 500 g/ml. Colloidal chitin and chitin films were also ineffective as was O-carboxy-methylchitin; however, glycol chitin and glycol chitosan induced rapid encystment at concentrations at or below 1 g/ml. Zoospores also attached to and encysted in great numbers on fibers of oxycellulose, but not on cellulose. Concanavalin A was the only lectin which induced encystment at concentrations less than 10 g/ml, which suggests that a glycoprotein with terminal mannose and/or glucose residues is involved in encystment. A number of phenols were metabolized by peroxidase on the zoospore surface. Addition of hydrogen peroxide to zoospore suspensions reduced the time needed to induce zoospore encystment by some phenols; however, there was no consistent relationship between the presence or absence of this synergistic effect and the ability ofL. giganteum peroxidase to metabolize a given substrate. The sterol-binding compound amphotericin B induced immediate encystment at 3.5 g/ml, suggesting that sterols, which are required for the induction of zoosporogenesis, were present on the zoospore membrane.  相似文献   

18.
Details of zoospore germination in Chorda tomentosa Lyngb. are outlined. Uninucleate zoospores, when released are embedded in a mucilaginous mass of carbohydrate which dissolves and the biflagellate zoospores become motile. The long anterior flagellum is composed of a highly coiled terminal region and a rigid lower section bearing mastigonemes. The rigid, short posterior flagellum lacks mastigonemes. After initial contact by the tightly coiled region of the anterior flagellum, the zoospore draws itself to the substrate by flagellar resorbtion. After deposition of 3 wall layers the germling produces a germ tube. During this time the disc-shaped chloroplast enlarges undergoing changes in shape. As the germ tubes reach ca. 15 μm they cease forward growth and swell at their tips. The majority of cytoplasm of the original zoospore moves into the tube. Just before the nucleus enters the tube, centriole replication occurs. Mitosis is presumed to take place somewhere in the germ tube so that at 24 h, 2-celled gametophytes are produced.  相似文献   

19.

Aims

We investigated potential mechanisms by which a seed microbiome recruited from vermicomposted dairy manure alters Pythium aphanidermatum zoospore mediated pathogenesis in cucumber.

Methods

Bioassays were conducted to measure arrival of zoospores at the seed surface via qPCR and subsequent seedling disease incidence. Seed exudates were collected at relevant time points for use in zoospore microscopy assays. Metabolomic analysis was used to characterize seed exudates.

Results

Microbes recruited by the germinating seed from a disease suppressive substrate within 8 hours of sowing prevented zoospore arrival at the seed surface, modified seed exudates and reduced disease incidence. In vitro exposure to microbially modified seed exudates altered zoospore homing responses and reduced both encystment and germination compared to control exudates. Combining modified and control exudates failed to restore zoospore attraction to levels observed with control exudates. Observed zoosporolytic activity of the modified exudates was unique to the ethyl acetate fraction and metabolomic analysis revealed several putative zoosporolytic compounds present at higher relative abundance when compared to control exudates.

Conclusions

The observed disease suppression was likely due to the production of a specific zoosporolytic compound or set of compounds in the spermosphere by one or more members of the seed-recruited vermicompost microbiome.
  相似文献   

20.
A panel of twelve monoclonal antibodies (MAbs), designated FS1 to FS12, have been raised against surface antigens of Fucus serratus sperm. The antibodies were selected on the basis that they show region-, gamete-, species- or genus-preferential binding. Indirect immunofluorescence shows that the antigens bound by the MAbs are distributed non-randomly over the cell surface. Seven MAbs (FS1, FS3, FS4, FS6, FS8, FS9, FS10) bind antigens located primarily on the cell body, while the others (FS2, FS5, FS7, FS11, FS12) bind antigens located primarily on the anterior flagellum. Of the MAbs that label the anterior flagellum, FS2, FS5, FS7 and FS12 form a halo at the perimeter of the flagellum. Electron microscopic-immunogold studies indicate that the halo results from labelling of the mastigonemes, as opposed to the flagellar plasmamembrane. Gamete-preferential binding of antibodies was detected using an enzyme-linked immunosorbent assay with egg membrane vesicles. Eight of the MAbs bind sperm antigens not common to eggs, though FS2, FS4, FS5 and FS9 bind antigens present on both sperm and eggs. In studies of species- and genus-specificity FS2, FS3, FS5, FS6, FS7, FS8, FS10, FS11 and FS12 exhibit genus-preferential binding, labelling sperm of F. serratus and F. vesiculosus more intensely than that of Ascophyllum nodosum. Only FS10 showed marked species-preferential binding, labelling sperm of F. serratus much more intensely than that of F. vesiculosus.Abbreviations Au-GAMIG gold-conjugated goat anti-mouse immunoglobulin - ELISA enzyme-linked immunosorbent assay - EM electron microscope - FITC-RAMIG fluorescein-isothiocyanate-conjugated rabbit anti-mouse immunoglobulin - IIF indirect immunofluorescence - MAb monoclonal antibody  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号