首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous work has shown exotic and native plant species richness are negatively correlated at fine spatial scales and positively correlated at broad spatial scales. Grazing and invasive plant species can influence plant species richness, but the effects of these disturbances across spatial scales remain untested. We collected species richness data for both native and exotic plants from five spatial scales (0.5–3000 m2) in a nested, modified Whittaker plot design from severely grazed and ungrazed North American tallgrass prairie. We also recorded the abundance of an abundant invasive grass, tall fescue (Schedonorus phoenix (Scop.) Holub), at the 0.5-m2 scale. We used linear mixed-effect regression to test relationships between plant species richness, tall fescue abundance, and grazing history at five spatial scales. At no scale was exotic and native species richness linearly related, but exotic species richness at all scales was greater in grazed tracts than ungrazed tracts. Native species richness declined with increasing tall fescue abundance at all five spatial scales, but exotic species richness increased with tall fescue abundance at all but the broadest spatial scales. Severe grazing did not reduce native species richness at any spatial scale. We posit that invasion of tall fescue in this working landscape of originally native grassland plants modifies species richness-spatial scale relationships observed in less disturbed systems. Tall fescue invasion constitutes a unique biotic effect on plant species richness at broad spatial scales.  相似文献   

2.
Temperate humid grasslands are known to be particularly vulnerable to invasion by alien plant species when grazed by domestic livestock. The Flooding Pampa grasslands in eastern Argentina represent a well-documented case of a regional flora that has been extensively modified by anthropogenic disturbances and massive invasions over recent centuries. Here, we synthesise evidence from region-wide vegetation surveys and long-term exclosure experiments in the Flooding Pampa to examine the response of exotic and native plant richness to environmental heterogeneity, and to evaluate grazing effects on species composition and diversity at landscape and local community scales. Total plant richness showed a unimodal distribution along a composite stress/fertility gradient ranging several plant community types. On average, more exotic species occurred in intermediate fertility habitats that also contained the highest richness of resident native plants. Exotic plant richness was thus positively correlated with native species richness across a broad range of flood-prone grasslands. The notion that native plant diversity decreases invasibility was supported only for a limited range of species-rich communities in habitats where soil salinity stress and flooding were unimportant. We found that grazing promoted exotic plant invasions and generally enhanced community richness, whereas it reduced the compositional and functional heterogeneity of vegetation at the landscape scale. Hence, grazing effects on plant heterogeneity were scale-dependent. In addition, our results show that environmental fluctuations and physical disturbances such as large floods in the pampas may constrain, rather than encourage, exotic species in grazed grasslands.  相似文献   

3.
Exotic-dominated ecosystems with low diversity are becoming increasingly common. It remains unclear, though, whether differences between native and exotic species (driver model), or changes in disturbances or resources (passenger model), allow exotics to become competitive dominants. In our field experiment, plant species origin (native or exotic), cattle grazing (ungrazed or intensely grazed once), and species composition treatments were fully crossed and randomly assigned to four-species mixtures and monocultures of grassland plants. We found that biodiversity declined more rapidly in exotic than in native species mixtures, regardless of our grazing disturbance treatment. Early declines in species evenness (i.e., increases in dominance) led to subsequent declines in species richness (i.e., local extinctions) in exotic mixtures. Specifically, Simpson’s diversity was 29% lower after 1 year, and species richness was 15% lower after 3 years, in exotic than in native mixtures. These rapid biodiversity declines in exotic mixtures were partly explained by decreased complementarity (i.e., niche partitioning and facilitation), presumably because exotic species lack the coevolutionary history that can lead to complementarity and coexistence in native communities. Thus, our results suggest that exotic species can drive biodiversity declines in the presence or absence of a grazing disturbance, partly because exotic species interactions differ from native species interactions. This implies that restoring plant biodiversity in grasslands may require removal of exotic species, in addition to disturbance management.  相似文献   

4.
Little is known about the specific role of exotic species on measures of grassland plant diversity, including how this may vary with climatic conditions or large mammal herbivory. This study examined vegetation responses to long-term livestock grazing, including plant richness and diversity, as well as the contribution of exotic species to these metrics, across a network of 107 northern temperate grasslands in Alberta, Canada, spanning a broad aridity gradient. Exposure to grazing modestly increased plant richness, but did not alter Shannon’s diversity, Simpson’s diversity, or evenness, suggesting stability in floral diversity relative to grazing. However, grazing did increase grass cover while reducing shrub cover, the latter of which was only apparent in mesic grasslands. Unlike total plant diversity, exotic species richness and cover, together with exotic plant contributions to diversity, varied jointly with grazing and aridity. While long-term grazing increased exotic species, this response was most apparent in wetter areas, and non-grazed grasslands remained more resistant to the presence of exotics. Several exotic species were positive indicators of grazing in wetter grasslands, and coincided with lower native species cover, indicating grazing may be facilitating a shift from native to exotic vegetation under these conditions. Overall, our results indicate that while long-term grazing has altered the composition and cover of certain functional groups, including favoring exotics and minimizing woody vegetation in mesic areas, overall changes to plant diversity were limited. Additionally, these findings suggest that semi-arid northern temperate grasslands remain relatively resistant to grazing effects, including their susceptibility to exotic plant encroachment. These results improve our understanding of how ongoing grazing exposure may impact grassland diversity, including efforts to conserve native vegetation, as well as the important role of climate in altering fundamental grassland responses to grazing.  相似文献   

5.
Livestock grazing is often thought to enhance native plant species co-existence in remnant grasslands but may also favour exotic invaders. Recommendations for appropriate grazing strategies are needed, for which an understanding of the response of plant species is necessary. We explored the response of plant species and plant functional groups to grazing in temperate grassland of the Monaro Tablelands of south-east Australia by comparing species abundance in adjacent areas that differed in livestock grazing regime (minimal, infrequent and frequent). We also examined whether species with similar responses to grazing share certain traits and consider whether these traits might provide a useful method of assessing grazing impact. At the scale measured (0.25 m2), an infrequent grazing regime maximised plant species co-existence in these grasslands due to widespread invasion by exotic plant species at infrequent grazing intensity. Many native species declined in abundance when grazing frequency increased from minimal to infrequent. Annuals invaded under infrequent grazing while perennials declined most strongly under high frequency grazing. Low levels of grazing apparently reduce cover and create sites suitable for seed recruitment whereas more frequent grazing reduces the persistence of perennials. While there was a tendency for native species to be more susceptible to grazing impact than exotics, plant traits, in particular longevity (perennial, annual) provided a better prediction of the response of plants to grazing. Although a few native plant species persisted at high grazing frequency, even infrequent livestock grazing may not be appropriate for the conservation of many native perennial grassland species. Targeted reductions in grazing frequency may be necessary to enable the long-term coexistence of grazing susceptible species.  相似文献   

6.
Isbell FI  Wilsey BJ 《Oecologia》2011,165(3):771-781
Species-rich native grasslands are frequently converted to species-poor exotic grasslands or pastures; however, the consequences of these changes for ecosystem functioning remain unclear. Cattle grazing (ungrazed or intensely grazed once), plant species origin (native or exotic), and species richness (4-species mixture or monoculture) treatments were fully crossed and randomly assigned to plots of grassland plants. We tested whether (1) native and exotic plots exhibited different responses to grazing for six ecosystem functions (i.e., aboveground productivity, light interception, fine root biomass, tracer nitrogen uptake, biomass consumption, and aboveground biomass recovery), and (2) biodiversity-ecosystem functioning relationships depended on grazing or species origin. We found that native and exotic species exhibited different responses to grazing for three of the ecosystem functions we considered. Intense grazing decreased fine root biomass by 53% in exotic plots, but had no effect on fine root biomass in native plots. The proportion of standing biomass consumed by cattle was 16% less in exotic than in native grazed plots. Aboveground biomass recovery was 30% less in native than in exotic plots. Intense grazing decreased aboveground productivity by 25%, light interception by 14%, and tracer nitrogen uptake by 54%, and these effects were similar in native and exotic plots. Increasing species richness from one to four species increased aboveground productivity by 42%, and light interception by 44%, in both ungrazed and intensely grazed native plots. In contrast, increasing species richness did not influence biomass production or resource uptake in ungrazed or intensely grazed exotic plots. These results suggest that converting native grasslands to exotic grasslands or pastures changes ecosystem structure and processes, and the relationship between biodiversity and ecosystem functioning.  相似文献   

7.
Relationships between the diversity and abundance of native versus exotic species underpin management of disturbance regimes for conservation. Theory predicts negative, positive or neutral relationships depending on respective drivers, with greatest potential benefit when natives and exotics show opposing responses to management. We examined drivers of exotic plant cover and relationships with native plant richness using 12-year burning, mowing and grazing experiments in two representative temperate grassy eucalypt woodlands with contrasting histories of frequent versus infrequent disturbance. We hypothesized that disturbance and high resources favour exotics, and assessed whether natives and exotics covary positively due to common external drivers or negatively due to contrasting external drivers and/or competition. Positive relationships with rainfall and disturbance explained >80 % of the variation in exotic cover at both sites, supporting our first hypothesis. Native–exotic relationships were non-linear, with native richness first increasing rapidly with increasing exotic cover, then levelling and beginning to decrease. Common external drivers, particularly inter-annual rainfall, explained initial positive relationships, highlighting a prevalence of positive relationships at long temporal (as well as large spatial) scales. At the historically frequently-burnt site, a concomitant increase in native richness and exotic cover after fire contributed to the positive relationship, indicating a management trade-off. At the long-unburnt site, exotics increased but natives decreased with fire, suggesting dual benefits of low fire frequency. We conclude that relationships between exotic cover and native richness emerge from interactions among external drivers and competitive responses, with responses to external drivers dominating at low resources and negative interactions gaining importance as resources increase.  相似文献   

8.
Abstract Stock grazing has degraded many riparian ecosystems around the world. However, the potential for ecosystem recovery following the removal of grazing stock is poorly known. We developed a conceptual model to predict the responses of native and exotic herbaceous plants to grazing exclusion, based on site productivity and the degree of initial vegetation degradation. The effects of excluding grazing stock on richness, cover and composition of herbaceous plants were examined over 12 years in the degraded understorey of a riparian forest in Gulpa Island State Forest in south‐eastern Australia. We predicted that grazing exclusion would lead to limited changes in vegetation cover, richness and composition, owing to presumed low site productivity and the high degree of understorey degradation. Results showed that the cover, richness and composition of native and exotic species varied significantly among years. Over all plots, regions and years, total cover was slightly but significantly lower in grazed than in ungrazed plots (43.4% vs. 50.8%). While the cover of native plants increased over time in both treatments, the rate of increase was slightly greater in ungrazed plots. Grazing exclusion had no effect on the richness of native or exotic species, but had a significant but minor impact on plant composition, with different common species (mostly exotics) being promoted or diminished in ungrazed plots. The composition of grazed and ungrazed areas did not become more different over time. Overall, the effects that could be attributed to grazing exclusion were relatively minor and transient. Results are consistent with predictions based on site productivity and initial degradation, and should not be extrapolated to other more productive, or less degraded, riparian systems.  相似文献   

9.
Little is known about the patterns and dynamics of exotic species invasions at landscape to regional spatial scales. We quantified the presence (identity, abundance, and richness) and characteristics of native and exotic species in estuarine strandline plant communities at 24 sites in Narragansett Bay, Rhode Island, USA. Our results do not support several fundamental predictions of invasion biology. Established exotics (79 of 147 recorded plant species) were nearly indistinguishable from the native plant species (i.e. in terms of growth form, taxonomic grouping, and patterns of spatial distribution and abundance) and essentially represent a random sub-set of the current regional species pool. The cover and richness of exotic species varied substantially among quadrats and sites but were not strongly related to any site-level physical characteristics thought to affect invasibility (i.e. the physical disturbance regime, legal status, neighboring habitat type, and substrate characteristics). Native and exotic cover or richness were not negatively related within most sites. Across sites, native and exotic richness were positively correlated and exotic cover was unrelated to native richness. The colonization and spread of exotics does not appear to have been substantially reduced at sites with high native diversity. Furthermore, despite the fact that the Rhode Island strandline system is one of the most highly-invaded natural plant communities described to date, exotic species, both individually and as a group, currently appear to pose little threat to native plant diversity. Our findings are concordant with most recent, large-scale investigations that do not support the theoretical foundation of invasion biology and generally contradict small-scale experimental work.  相似文献   

10.
Grazing is one of the most important factors influencing community structure and productivity in natural grasslands. Understanding why and how grazing pressure changes species diversity is essential for the preservation and restoration of biodiversity in grasslands. We use heavily grazed subalpine meadows in the Qinghai‐Tibetan Plateau to test the hypothesis that grazer exclusion alters plant diversity by changing inter‐ and intraspecific species distributions. Using recently developed spatial analyses combined with detailed ramet mapping of entire plant communities (91 species), we show striking differences between grazed and fenced areas that emerged at scales of just one meter. Species richness was similar at very small scales (0.0625 m2), but at larger scales diversity in grazed areas fell below 75% of corresponding fenced areas. These differences were explained by differences in spatial distributions; intra‐ and interspecific associations changed from aggregated at small scales to overdispersed in the fenced plots, but were consistently aggregated in the grazed ones. We conclude that grazing enhanced inter‐ and intraspecific aggregations and maintained high diversity at small scales, but caused decreased turnover in species at larger scales, resulting in lower species richness. Our study provides strong support to the theoretical prediction that inter‐ and intraspecific aggregation produces local spatial patterns that scale‐up to affect species diversity in a community. It also demonstrates that the impacts of grazing can manifest through this mechanism, lowering diversity by reducing spatial turnover in species. Finally, it highlights the ecological and physiological plant processes that are likely responding to grazing and thereby altering aggregation patterns, providing new insights for monitoring, and mediating the impacts of grazing.  相似文献   

11.
While exotic plant species often come to dominate disturbed communities, long-term patterns of invasion are poorly known. Here we present data from 40 yr of continuous vegetation sampling, documenting the temporal distribution of exotic plant species in old field succession. The relative cover of exotic species decreased with time since abandonment, with significant declines occurring ≥20 yr post-abandonment. The number of exotic species per plot also declined with time since abandonment while field-scale richness of exotics did not change. This suggests displacement occurring at small spatial scales. Life history types changed from short-lived herbaceous species to long-lived woody species for both native and exotic plant species. However, shrubs and lianas dominated woody cover of exotic plants while trees dominated native woody cover. The species richness of exotic and native species was positively correlated at most times. In abandoned hay fields, however, the proportion of exotic plant cover per plot was inversely related to total species richness. This relationship suggests that it is not the presence, but the abundance of exotic species that may cause a reduction in community diversity. While the development of closed-canopy forest appears to limit most introduced plant species, several shade-adapted exotic species are increasing within the fields. These invasions may cause a reversal of the patterns seen in the first 40 yr of succession and may result in further impacts on community structure.  相似文献   

12.
Question: How is grazing intensity associated with species and morpho‐functional traits (MFTs) composition, productivity and richness of annual dominated grasslands? Have native and exotic species similar associations to this gradient? Location: Anthropogenic grassland in the Espinal vegetation in the sub‐humid area of the mediterranean type climate region of Chile (35°58’ S, 72°17’ W). Methods: Data were obtained from a long‐term (eight years) experiment with six stocking rates (1 to 3.5 sheep/ha). Detrended Correspondence Analysis (DCA) and regression analysis were used to determinate the relationship between grazing intensity and biomass, richness, abundance and traits of the species. Results: The first DCA axis was related to grazing intensity and explained most of the floristic variation (69.3%); the abundance of some non‐native species, e.g. Vulpia megalura were highly correlated with this axis. In the DCA for MFTs the first axis explained 87% of the variance and was also related to grazing intensity; the abundance of small size plants and shallow roots increased with grazing intensity. The relative abundance of grasses and composites, but not of legumes, changed with stocking rate: as grazing intensity increased composites became the predominant species to the detriment of grasses. The above‐ground biomass measured in exclusion cages declined with increasing grazing pressure. The richness of exotic species was greater compared to native ones at low stocking rates, but they converge to similar values at higher stocking rates. However, the relative abundance of exotic species was greater than 75% in all stocking rates. Conclusions: Grazing intensification has large effects in the structure of grassland in central Chile. With grazing intensities greater than 1 sheep/ha species characteristics change; evolving in a few years (6–8) towards a similar community regardless of the stocking rate. The overgrazed community has more native than exotic species richness, possibly due to greater defence traits against herbivory of this group of species.  相似文献   

13.
At large spatial scales, exotic and native plant diversity exhibit a strong positive relationship. This may occur because exotic and native species respond similarly to processes that influence diversity over large geographical areas. To test this hypothesis, we compared exotic and native species–area relationships within six North American ecoregions. We predicted and found that within ecoregions the ratio of exotic to native species richness remains constant with increasing area. Furthermore, we predicted that areas with more native species than predicted by the species–area relationship would have proportionally more exotics as well. We did find that these exotic and native deviations were highly correlated, but areas that were good (or bad) for native plants were even better (or worse) for exotics. Similar processes appear to influence exotic and native plant diversity but the degree of this influence may differ with site quality.  相似文献   

14.
A survey of grassy woodlands in the Queensland subtropics was conducted, recording herbaceous species richness at 212 sites on three properties (2756 ha). A range of habitats typical of cattle grazing enterprises was sampled and site variables included lithology, slope position, tree density, soil disturbance, soil enrichment and grazing. Results were compared with a previously published survey of temperate grasslands. Lithology, slope position and tree density had relatively minor effects on plant species richness, although in both surveys there was some evidence of lower species richness on the more fertile substrates. Soil disturbance and soil enrichment significantly reduced the richness of native species in both surveys, while exotic species were insensitive (subtropics) or increased (temperate) with disturbance. Rare native species were highly sensitive to disturbances, including grazing, in the temperate study. Although some trends were similar for rare species in the subtropics, the results were not significant and there were complex interactions between grazing, lithology and slope position. Grazing did not have a negative effect on native species richness, except in the closely grazed patches within pastures, and then only on the most intensively developed property. At the scale recorded (30 m2), the native pastures, roadsides and stock routes sampled in the subtropics appear to be among the most species‐rich grasslands ever reported, both nationally and globally. Native species richness was approximately 50% higher than the temperate survey figures across all the comparable habitats. While there are no clear reasons for this result, potential explanations are proposed.  相似文献   

15.
Considerable research has been devoted to understanding how plant invasions are influenced by properties of the native community and to the traits of exotic species that contribute to successful invasion. Studies of invasibility are common in successionally stable grasslands, but rare in recently disturbed or seral forests. We used 16 yr of species richness and abundance data from 1 m2 plots in a clearcut and burned forest in the Cascade Range of western Oregon to address the following questions: 1) is invasion success correlated with properties of the native community? Are correlations stronger among pools of functionally similar taxa (i.e. exotic and native annuals)? Do these relationships change over successional time? 2) Does exotic abundance increase with removal of potentially dominant native species? 3) Do the population dynamics of exotic and native species differ, suggesting that exotics are more successful colonists? Exotics were primarily annual and biennial species. Regardless of the measure of success (richness, cover, biomass, or density) or successional stage, most correlations between exotics and natives were non‐significant. Exotic and native annuals showed positive correlations during mid‐succession, but these were attributed to shared associations with bare ground rather than to direct biotic interactions. At peak abundance, neither cover nor density of exotics differed between controls and plots from which native, mid‐successional dominants were removed. Tests comparing nine measures of population performance (representing the pace, magnitude, and duration of population growth) revealed no significant differences between native and exotic species. In this early successional system, local richness and abundance of exotics are not explained by properties of the native community, by the presence of dominant native species, or by superior colonizing ability among exotics species. Instead natives and exotics exhibit individualistic patterns of increase and decline suggesting similar sets of life‐history traits leading to similar successional roles.  相似文献   

16.
Patrick L. Lilley  Mark Vellend 《Oikos》2009,118(9):1373-1382
Recent research has proposed a scale-dependence to relationships between native diversity and exotic invasions. At fine spatial scales, native–exotic richness relationships should be negative as higher native richness confers resistance to invasion. At broad scales, relationships should be positive if natives and exotics respond similarly to extrinsic factors. Yet few studies have examined both native and exotic richness patterns across gradients of human influence, where impacts could affect native and exotic species differently. We examined native–exotic richness relationships and extrinsic drivers of plant species richness and distributions across an urban development gradient in remnant oak savanna patches. In sharp contrast to most reported results, we found a negative relationship at the regional scale, and no relationship at the local scale. The negative regional-scale relationship was best explained by extrinsic factors, surrounding road density and climate, affecting natives and exotics in opposite ways, rather than a direct effect of native on exotic richness, or vice versa. Models of individual species distributions also support the result that road density and climate have largely opposite effects on native and exotic species, although simple life history traits (life form, dispersal mode) do not predict which habitat characteristics are important for particular species. Roads likely influence distributions and species richness by increasing both exotic propagule pressure and disturbance to native species. Climate may partially explain the negative relationship due to differing climatic preferences within the native and exotic species pools. As gradients of human influence are increasingly common, negative broad-scale native–exotic richness relationships may be frequent in such landscapes.  相似文献   

17.
Three fundamental, interrelated questions in invasion ecology are: (1) to what extent do exotic species outcompete natives; (2) are native and exotic communities functionally similar or different; and (3) are differences in biogeographic patterns in native and exotic communities due to incomplete invasions among exotics? These questions are analogous to general questions in community ecology regarding the relative roles of competition, environmental response and dispersal limitation in community assembly. We addressed each of these questions for plant communities in discrete meadow patches, using analyses at three scales ranging from the landscape to microsites. A weak positive relationship between native and exotic species richness in microsites, and a predominance of positive correlations in abundance among native and exotic species pairs suggest that competition has been less important than other factors in determining native versus exotic abundance and community composition. In contrast, models of species richness and community compositional change across scales suggest native versus exotic community patterns are largely determined by a mix of scale-dependent concordant (shared positive or negative) and discordant relationships with environmental variables. In addition, detailed analyses of species-area and species-abundance relationships suggest ongoing expansion of exotic species populations, indicating that the assembly of the exotic community is in its early stages. Thus, while competition does not appear to strongly affect native versus exotic abundances and compositions at present, it may intensify in the future. Our results indicate that synoptic patterns in native versus exotic richness that have been previously attributed to a single cause may in fact be due to a complex mix of concordant and discordant responses to environmental factors across scales. They also suggest that conservation efforts aimed at promoting natives and reducing exotics should focus on the factors and scales for which such a response (i.e., promotion of high native and low exotic richness) can be expected.  相似文献   

18.
This study evaluates the hypothesis that biological grazing refuges have an important role in plant-grazer interactions of grasslands with a long history of grazing. We assessed the hypothesis that clumps of the spiny cactus Opuntia polyacantha provide biological refuges from cattle grazing, affecting cover and seedhead production of associated vascular plants in the shortgrass steppe of the North America. The study was based on sampling inside and outside Opuntia clumps in eight long-term moderately grazed pastures established 60 yr ago and their respective ungrazed controls. Opuntia clumps provided a refuge for seedhead production of the dominant grass ( Bouteloua gracilis ) and for cover and seedhead production of many plant groups. Clumps were also a refuge for species sensitive to grazing (species that decrease with grazing) and barrel-cacti, but not for species preferred by cattle (species with greater proportion in the diet than in the field), exotics or weeds. Our results suggest that these effects were mainly through changes in the microenvironmental conditions resulting from protection effects, even though all potential microenvironmental effects could not be measured. Cacti promoted some negative effects on other plant groups, probably due to the space occupied by cladodes inside cactus clumps. The refuge effects observed at the group level did not translate into strong community level effects. Species diversity ( H' ) was greater in cactus clumps due to lower dominance rather than greater richness. The presence of Opuntia clumps increased landscape-scale diversity. This ecological role of Opuntia clumps as refuge from cattle grazing should be taken into consideration in management practices aimed at cactus eradication in order to increase forage availability for livestock. We discuss the potential role of plant community productivity and grazing history with regard to the importance of natural refuges in structuring grassland communities.  相似文献   

19.
Herbivores influence spatial heterogeneity in soil resources and vegetation in ecosystems. Despite increasing recognition that spatial heterogeneity can drive species richness at different spatial scales, few studies have quantified the effect of grazing on spatial heterogeneity and species richness simultaneously. Here we document both these variables in a rabbit-grazed grassland. We measured mean values and spatial patterns of grazing intensity, rabbit droppings, plant height, plant biomass, soil water content, ammonia and nitrate in sites grazed by rabbits and in matched, ungrazed exclosures in a grassland in southern England. Plant species richness was recorded at spatial scales ranging between 0.0001 and 150 m(2). Grazing reduced plant height and plant biomass but increased levels of ammonia and nitrate in the soil. Spatial statistics revealed that rabbit-grazed sites consisted of a mixture of heavily grazed patches with low vegetation and nutrient-rich soils (lawns) surrounded by patches of high vegetation with nutrient-poor soils (tussocks). The mean patch size (range) in the grazed controls was 2.1 +/- 0.3 m for vegetation height, 3.8 +/- 1.8 m for soil water content and 2.8 +/- 0.9 m for ammonia. This is in line with the patch sizes of grazing (2.4 +/- 0.5 m) and dropping deposition (3.7 +/- 0.6 m) by rabbits. In contrast, patchiness in the ungrazed exclosures had a larger patch size and was not present for all variables. Rabbit grazing increased plant species richness at all spatial scales. Species richness was negatively correlated with plant height, but positively correlated to the coefficient of variation of plant height at all plot sizes. Species richness in large plots (<25 m(2)) was also correlated to patch size. This study indicates that the abundance of strong competitors and the nutrient availability in the soil, as well as the heterogeneity and spatial pattern of these factors may influence species richness, but the importance of these factors can differ across spatial scales.  相似文献   

20.
Bakker C  Blair JM  Knapp AK 《Oecologia》2003,137(3):385-391
Grazing by large ungulates often increases plant species richness in grasslands of moderate to high productivity. In a mesic North American grassland with and without the presence of bison (Bos bison), a native ungulate grazer, three non-exclusive hypotheses for increased plant species richness in grazed grasslands were evaluated: (1) bison grazing enhances levels of resource (light and N) availability, enabling species that depend on higher resource availability to co-occur; (2) spatial heterogeneity in resource availability is enhanced by bison, enabling coexistence of a greater number of plant species; (3) increased species turnover (i.e. increased species colonization and establishment) in grazed grassland is associated with enhanced plant species richness. We measured availability and spatial heterogeneity in light, water and N, and calculated species turnover from long-term data in grazed and ungrazed sites in a North American tallgrass prairie. Both regression and path analyses were performed to evaluate the potential of the three hypothesized mechanisms to explain observed patterns of plant species richness under field conditions. Experimental grazing by bison increased plant species richness by 25% over an 8-year period. Neither heterogeneity nor absolute levels of soil water or available N were related to patterns of species richness in grazed and ungrazed sites. However, high spatial heterogeneity in light and higher rates of species turnover were both strongly related to increases in plant species richness in grazed areas. This suggests that creation of a mosaic of patches with high and low biomass (the primary determinant of light availability in mesic grasslands) and promotion of a dynamic species pool are the most important mechanisms by which grazers affect species richness in high productivity grasslands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号