首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epinephrine inhibits insulin-stimulated muscle glucose transport.   总被引:2,自引:0,他引:2  
We recently demonstrated that epinephrine could inhibit the activation by insulin of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase (PI3-kinase) in skeletal muscle (Hunt DG, Zhenping D, and Ivy JL. J Appl Physiol 92: 1285-1292, 2002). Activation of PI3-kinase is recognized as an essential step in the activation of muscle glucose transport by insulin. We therefore investigated the effect of epinephrine on insulin-stimulated glucose transport in both fast-twitch (epitrochlearis) and slow-twitch (soleus) muscle of the rat by using an isolated muscle preparation. Glucose transport was significantly increased in the epitrochlearis and soleus when incubated in 50 and 100 microU/ml insulin, respectively. Activation of glucose transport by 50 microU/ml insulin was inhibited by 24 nM epinephrine in both muscle types. This inhibition of glucose transport by epinephrine was accompanied by suppression of IRS-1-associated PI3-kinase activation. However, when muscles were incubated in 100 microU/ml insulin, 24 nM epinephrine was unable to inhibit IRS-1-associated PI3-kinase activation or glucose transport. Even when epinephrine concentration was increased to 500 nM, no attenuating effect was observed on glucose transport. Results of this study indicate that epinephrine is capable of inhibiting glucose transport activated by a moderate, but not a high, physiological insulin concentration. The inhibition of glucose transport by epinephrine appears to involve the inhibition of IRS-1-associated PI3-kinase activation.  相似文献   

2.
Asp, Sven, and Erik A. Richter. Decreased insulinaction on muscle glucose transport after eccentric contractions in rats. J. Appl. Physiol. 81(5):1924-1928, 1996.We have recently shown that eccentriccontractions (Ecc) of rat calf muscles cause muscle damage anddecreased glycogen and glucose transporter GLUT-4 protein content inthe white (WG) and red gastrocnemius (RG) but not in the soleus (S) (S. Asp, S. Kristiansen, and E. A. Richter. J. Appl.Physiol. 79: 1338-1345, 1995). To study whetherthese changes affect insulin action, hindlimbs were perfused at three different insulin concentrations (0, 200, and 20,000 µU/ml) 2 daysafter one-legged eccentric contractions of the calf muscles. Comparedwith control, basal glucose transport was slightly higher (P < 0.05) in Ecc-WG and -RG,whereas it was lower (P < 0.05) atboth submaximal and maximal insulin concentrations in the Ecc-WG and atmaximal concentrations in the Ecc-RG. In the Ecc-S, the glucosetransport was unchanged in hindquarters perfused in the absence orpresence of a submaximal stimulating concentration of insulin, whereasit was slightly (P < 0.05) higherduring maximal insulin stimulation compared with control S. At the endof perfusion the glycogen concentrations were lower in bothEcc-gastrocnemius muscles compared with control muscles at all insulinconcentrations. Fractional velocity of glycogen synthase increasedsimilarly with increasing insulin concentrations in Ecc- and control WGand RG. We conclude that insulin action on glucose transport but notglycogen synthase activity is impaired in perfused muscle exposed toprior eccentric contractions.

  相似文献   

3.
The cardioactive diterpene forskolin is a known activator of adenylate cyclase, but recently a specific interaction of this compound with the glucose transporter has been identified that results in the inhibition of glucose transport in several human and rat cell types. We have compared the sensitivity of basal and insulin-stimulated hexose transport to inhibition by forskolin in skeletal muscle cells of the L6 line. Forskolin completely inhibited both basal and insulin-stimulated hexose transport when present during the transport assay. The inhibition of basal transport was completely reversible upon removal of the diterpene. In contrast, insulin-stimulated hexose transport did not recover, and basal transport levels were attained instead. This effect of inhibiting (or reversing) the insulin-stimulated fraction of transport is a novel effect of the diterpene. Forskolin treatment also inhibited the stimulated fraction of transport when the stimulus was by 4 beta-phorbol 12,13-dibutyrate, reversing back to basal levels. Half-maximal inhibition of the above-basal insulin-stimulated transport was achieved with 35-50 microM-forskolin, and maximal inhibition with 100 microM. Forskolin did not inhibit 125I-insulin binding under conditions where it caused significant inhibition of insulin-stimulated hexose transport. Forskolin significantly elevated the cyclic AMP levels in the cells; however its inhibitory effect on the above basal, insulin-stimulated fraction of hexose transport was not mediated by cyclic AMP since: (i) 8-bromo cyclic AMP and cholera toxin did not mimic this effect of the diterpene, (ii) significant decreases in cyclic AMP levels caused by 2',3'-dideoxyadenosine in the presence of forskolin did not prevent inhibition of insulin-stimulated hexose transport, (iii) isobutylmethylxanthine did not potentiate forskolin effects on glucose transport but did potentiate the elevation in cyclic AMP, and (iv) 1,9-dideoxyforskolin, which does not activate adenylate cyclase, inhibited hexose transport analogously to forskolin. We conclude that forskolin can selectively inhibit the insulin- and phorbol ester-stimulated fraction of hexose transport under conditions where basal transport is unimpaired. The results are compatible with the suggestions that glucose transporters operating in the stimulated state (insulin or phorbol ester-stimulated) differ in their sensitivity to forskolin from transporters operating in the basal state, or, alternatively, that a forskolin-sensitive signal maintains the stimulated transport rate.  相似文献   

4.
Kawanaka, Kentaro, Izumi Tabata, Shigeru Katsuta, andMitsuru Higuchi. Changes in insulin-stimulated glucose transport and GLUT-4 protein in rat skeletal muscle after training.J. Appl. Physiol. 83(6):2043-2047, 1997.After running training, which increased GLUT-4protein content in rat skeletal muscle by <40% compared with controlrats, the training effect on insulin-stimulated maximal glucosetransport (insulin responsiveness) in skeletal muscle was short lived(24 h). A recent study reported that GLUT-4 protein content in ratepitrochlearis muscle increased dramatically (~2-fold) after swimmingtraining (J.-M. Ren, C. F. Semenkovich, E. A. Gulve, J. Gao, andJ. O. Holloszy. J. Biol.Chem. 269, 14396-14401, 1994).Because GLUT-4 protein content is known to be closely related toskeletal muscle insulin responsiveness, we thought it possible that thetraining effect on insulin responsiveness may remain for >24 h afterswimming training if GLUT-4 protein content decreases gradually fromthe relatively high level and still remains higher than control levelfor >24 h after swimming training. Therefore, we examined thispossibility. Male Sprague-Dawley rats swam 2 h a day for 5 days with aweight equal to 2% of body mass. Approximately 18, 42, and 90 h aftercessation of training, GLUT-4 protein concentration and2-[1,2-3H]deoxy-D-glucosetransport in the presence of a maximally stimulating concentration ofinsulin (2 mU/ml) were examined by using incubated epitrochlearismuscle preparation. Swimming training increased GLUT-4 proteinconcentration and insulin responsiveness by 87 and 85%, respectively,relative to age-matched controls when examined 18 h after training.Forty-two hours after training, GLUT-4 protein concentration andinsulin responsiveness were still higher by 52 and 51%, respectively,in muscle from trained rats compared with control. GLUT-4 proteinconcentration and insulin responsiveness in trained muscle returned tosedentary control level within 90 h after training. We conclude that1) the change in insulinresponsiveness during detraining is directly related to muscle GLUT-4protein content, and 2)consequently, the greater the increase in GLUT-4 protein content thatis induced by training, the longer an effect on insulin responsivenesspersists after the training.

  相似文献   

5.
Borst SE  Snellen HG  Lai HL 《Life sciences》2000,67(2):165-174
Although the glucose-lowering properties of metformin are well-established, its effects on glucose metabolism in skeletal muscle have not been clearly defined. We tested the effects of metformin in young adult male Sprague-Dawley rats, which have a documented reduced response to insulin in skeletal muscle. Rats were treated with metformin for 20 days (320 mg/kg/day) in the drinking water. During this period, metformin completely prevented the increase in food intake and decreased adiposity by 30%. Metformin also reduced insulin secretion by 37% following an intra-peritoneal injection of glucose. Finally, metformin enhanced transport of [3H]-2-deoxyglucose in isolated strips of soleus muscle. Metformin substantially increased insulin-stimulated transport, while having no effect on basal transport. In control rats, a maximal concentration of insulin stimulated transport 77% above basal. In metformin-treated rats, insulin stimulated transport 206% above basal. We conclude that in the Sprague-Dawley rat model, metformin causes a significant increase in insulin-responsiveness.  相似文献   

6.
The primary purpose of this study was to determine the effect of prior exercise on insulin-stimulated glucose uptake with physiological insulin in isolated muscles of mice. Male C57BL/6 mice completed a 60-min treadmill exercise protocol or were sedentary. Paired epitrochlearis, soleus, and extensor digitorum longus (EDL) muscles were incubated with [3H]-2-deoxyglucose without or with insulin (60 microU/ml) to measure glucose uptake. Insulin-stimulated glucose uptake for paired muscles was calculated by subtracting glucose uptake without insulin from glucose uptake with insulin. Muscles from other mice were assessed for glycogen and AMPK Thr172 phosphorylation. Exercised vs. sedentary mice had decreased glycogen in epitrochlearis (48%, P < 0.001), soleus (51%, P < 0.001), and EDL (41%, P < 0.01) and increased AMPK Thr172 phosphorylation (P < 0.05) in epitrochlearis (1.7-fold), soleus (2.0-fold), and EDL (1.4-fold). Insulin-independent glucose uptake was increased 30 min postexercise vs. sedentary in the epitrochlearis (1.2-fold, P < 0.001), soleus (1.4-fold, P < 0.05), and EDL (1.3-fold, P < 0.01). Insulin-stimulated glucose uptake was increased (P < 0.05) approximately 85 min after exercise in the epitrochlearis (sedentary: 0.266 +/- 0.045 micromol x g(-1) x 15 min(-1); exercised: 0.414 +/- 0.051) and soleus (sedentary: 0.102 +/- 0.049; exercised: 0.347 +/- 0.098) but not in the EDL. Akt Ser473 and Akt Thr308 phosphorylation for insulin-stimulated muscles did not differ in exercised vs. sedentary. These results demonstrate enhanced submaximal insulin-stimulated glucose uptake in the epitrochlearis and soleus of mice 85 min postexercise and suggest that it will be feasible to probe the mechanism of enhanced postexercise insulin sensitivity by using genetically modified mice.  相似文献   

7.
We have examined the independent and combined effects of insulin insufficiency (streptozotocin (STZ)-induced diabetes, 85 mg/kg i.p.) and reduced muscle activity (denervation) (7 days) on basal, insulin-stimulated and contraction-stimulated glucose transport in rat muscles (soleus, red and white gastrocnemius). There were four treatments: control, denervated, diabetic, and denervated + diabetic muscles. Contraction-stimulated glucose transport was lowered (~ 50%) (p < 0.05) to the same extent in all experimental groups. In contrast, there was a much smaller reduction insulin-stimulated glucose transport in muscles from diabetic animals (18-24% reduction, p < 0.05) than in denervated muscles (40-60% reduction, p < 0.05) and in denervated + diabetic muscles (40-60% reduction, p < 0.05). GLUT-4 mRNA reduction was greatest in denervated + diabetic muscles (~ -75%, p < 0.05). GLUT-4 protein was decreased (p < 0.05) to a similar extent in all three experimental conditions (~ -30-40%). In conclusion, (1) muscle inactivity (denervation) and STZ-induced diabetes had similar effects on reducing contraction-stimulated glucose transport, but (2) muscle inactivity (denervation), rather than severe diabetes, produced a 2-fold greater impairment in skeletal muscle insulin-stimulated glucose transport.  相似文献   

8.
Insulin signaling was examined in muscle made insulin resistant by short-term (24-h) denervation. Insulin-stimulated glucose transport in vitro was reduced by 28% (P < 0.05) in denervated muscle (DEN). In control muscle (SHAM), insulin increased levels of surface-detectable GLUT-4 (i.e., translocated GLUT-4) 1.8-fold (P < 0.05), whereas DEN surface GLUT-4 was not increased by insulin (P > 0.05). Insulin treatment in vivo induced a rapid appearance of phospho[Ser(473)]Akt-alpha in SHAM 3 min after insulin injection. In DEN, phospho[Ser(473)]Akt-alpha also appeared at 3 min, but Ser(473)-phosphorylated Akt-alpha was 36% lower than in SHAM (P < 0. 05). In addition, total Akt-alpha protein in DEN was 37% lower than in SHAM (P < 0.05). Akt-alpha kinase activity was lower in DEN at two insulin levels tested: 0.1 U insulin/rat (-22%, P < 0.05) and 1 U insulin/rat (-26%, P < 0.01). These data indicate that short-term (24-h) denervation, which lowers insulin-stimulated glucose transport, is associated with decreased Akt-alpha activation and impaired insulin-stimulated GLUT-4 appearance at the muscle surface.  相似文献   

9.
Sensitivity of glucose transport to stimulation by insulin has been shown to occur concomitant with activation of the AMP-activated protein kinase (AMPK) in skeletal muscle, suggesting a role of AMPK in regulation of insulin action. The purpose of the present study was to evaluate a possible role of AMPK in potentiation of insulin action in muscle cells. The experimental model involved insulin-responsive C2C12 myotubes that exhibit a twofold increase in glucose transport in the presence of insulin. Treatment of myotubes with the AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR), followed by a 2-h recovery, augmented the ability of insulin to stimulate glucose transport. Similarly, incubation in hyperosmotic medium, another AMPK-activating treatment, acted synergistically with insulin to stimulate glucose transport. Furthermore, the increase in insulin action caused by hyperosmotic stress was prevented by inclusion of compound C, an AMPK inhibitor, in hyperosmotic medium. In addition, iodotubercidin, a general kinase inhibitor that is effective against AMPK, also prevented the combined effects of insulin and hyperosmotic stress on glucose transport. The new information provided by these data is that previously reported AICAR effects on insulin action are generalizable to myotubes, hyperosmotic stress and insulin synergistically increase glucose transport, and AMPK appears to mediate potentiation of insulin action.  相似文献   

10.
Kawanaka, Kentaro, Izumi Tabata, and MitsuruHiguchi. More tetanic contractions are requiredfor activating glucose transport maximally in trained muscle.J. Appl. Physiol. 83(2): 429-433, 1997.Exercise training increases contraction-stimulated maximalglucose transport and muscle glycogen level in skeletal muscle.However, there is a possibility that more muscle contractions arerequired to maximally activate glucose transport in trained than inuntrained muscle, because increased glycogen level after training mayinhibit glucose transport. Therefore, the purpose of this study was toinvestigate the relationship between the increase in glucose transportand the number of tetanic contractions in trained and untrained muscle.Male rats swam 2 h/day for 15 days. In untrained epitrochlearis muscle,resting glycogen was 26.6 µmol glucose/g muscle. Ten, 10-s-longtetani at a rate of 1 contraction/min decreased glycogen level to 15.4 µmol glucose/g muscle and maximally increased2-deoxy-D-glucose(2-DG) transport. Training increasedcontraction-stimulated maximal 2-DG transport (+71%;P < 0.01), GLUT-4 protein content(+78%; P < 0.01), and restingglycogen level (to 39.3 µmol glucose/g muscle;P < 0.01) on the next day after thetraining ended, although this training effect might be due, at least inpart, to last bout of exercise. In trained muscle, 20 tetani werenecessary to maximally activate glucose transport. Twenty tetanidecreased muscle glycogen to a lower level than 10 tetani (18.9 vs.24.0 µmol glucose/g muscle; P < 0.01). Contraction-stimulated 2-DG transport was negatively correlatedwith postcontraction muscle glycogen level in trained (r = 0.60;P < 0.01) and untrained muscle(r = 0.57;P < 0.01).

  相似文献   

11.
In the present study, we investigated the effects of chronic clenbuterol treatment on insulin-stimulated glucose uptake in the presence of epinephrine in isolated rat skeletal muscle. Insulin (50 microU/ml) increased glucose uptake in both fast-twitch (epitrochlearis) and slow-twitch (soleus) muscles. In the presence of 24 nM epinephrine, insulin-stimulated glucose uptake was completely suppressed. This suppression of glucose uptake by epinephrine was accompanied by an increase in the intracellular concentration of glucose 6-phosphate and a decrease in insulin-receptor substrate-1-associated phosphatidylinositol 3-kinase (IRS-1/PI3-kinase) activity. Clenbuterol treatment had no direct effect on insulin-stimulated glucose uptake. However, after clenbuterol treatment, epinephrine was ineffective in attenuating insulin-stimulated muscle glucose uptake. This ineffectiveness of epinephrine to suppress insulin-stimulated glucose uptake occurred in conjunction with its inability to increase the intracellular concentration of glucose 6-phosphate and attenuate IRS-1/PI3-kinase activity. Results of this study indicate that the effectiveness of epinephrine to inhibit insulin-stimulated glucose uptake is severely diminished in muscle from rats pretreated with clenbuterol.  相似文献   

12.
The mechanisms by which insulin deficiency affects muscle glucose transport were investigated. Epitrochlearis muscles from rats with streptozotocin-induced diabetes and from controls were incubated in vitro for 0.5-14 h. The incubation was shown not to impair muscle energy stores or tissue oxygenation. Diabetes decreased basal 3-O-methylglucose transport by 40% (p less than 0.01), and insulin-stimulated (20 milli-units/ml) glucose transport capacity by 70% (p less than 0.001). In vitro incubation gradually normalized insulin responsiveness (3.77 +/- 0.38 before versus 8.97 +/- 0.65 mumol X ml-1 X h-1 after 12 h of incubation). Basal glucose transport remained significantly reduced. The reversal of the insulin responsiveness did not require the presence of rat serum and, furthermore, took place even in the absence of insulin. In fact, insulin responsiveness was higher after incubation (14 h) with no insulin than with 100 microunits/ml insulin (9.85 +/- 0.59 versus 8.06 +/- 0.59 mumol X ml-1 X h-1, p less than 0.05). Glucose at 30 mM did not affect the normalization of the insulin-stimulated glucose transport capacity, whereas incubation in serum from diabetic rats resulted in a slightly (26%) blunted reversal (7.60 +/- 0.39 versus 8.89 +/- 0.45 mumol X ml-1 X h-1 with diabetic versus control serum for 14 h, p less than 0.05; before incubation the value was 3.87 +/- 0.40). Inhibition of protein synthesis by cycloheximide blocked the normalization by 80%. These results suggest the presence in diabetic serum of some labile factor that might inhibit the glucose transport system. The results indicate that the decreased insulin-stimulated glucose transport capacity, in the insulin-deficient diabetic muscle, is not a direct consequence of the lack of insulin or of high glucose concentrations.  相似文献   

13.
In isolated rat adipocytes, basal as well as insulin-stimulated 3-O-methylglucose transport was inhibited nearly completely (maximal inhibition: 95%) by the nucleoside transport inhibitors dipyridamole (IC50 = 5 microM), nitrobenzylthioguanosine (20 microM), nitrobenzylthioinosine (35 microM) and papaverine (130 microM). Transport kinetics in the presence of 10 microM dipyridamole revealed a significant increase in the transport Km value of 3-O-methylglucose (3.45 +/- 0.6 vs 2.36 +/- 0.29 mM in the controls) as well as a decrease in the Vmax value (4.84 +/- 0.95 vs 9.03 +/- 1.19 pmol/s per microliter lipid in the controls). Half-maximally inhibiting concentrations of dipyridamole were one order of magnitude higher than those inhibiting nucleoside (thymidine) uptake (0.48 microM). The inhibitory effect of dipyridamole (5 microM) reached its maximum within 30 s. The agent failed to affect insulin's half-maximally stimulating concentration (0.075 nM) indicating that it did not interfere with the mechanism by which insulin stimulates glucose transport. Further, dipyridamole fully suppressed the glucose-inhibitable cytochalasin B binding (IC50 = 1.65 +/- 0.05 microM). The data indicate that nucleoside transport inhibitors reduce glucose transport by a direct interaction with the transporter or a closely related protein. It is suggested that glucose and nucleoside transporters share structural, and possibly functional, features.  相似文献   

14.
There seems to be an association between increased concentrations of malonyl coenzyme A (malonyl CoA) in skeletal muscle and diabetes and/or insulin resistance. The purpose of the current study was to test the hypothesis that treatments designed to manipulate malonyl CoA concentrations would affect insulin-stimulated glucose transport in cultured C2C12 myotubes. We assessed glucose transport after polyamine-mediated delivery of malonyl CoA to myotubes, after incubation with dichloroacetate (which reportedly increases malonyl CoA levels), or after exposure of myotubes to 2-bromopalmitate, a carnitine palmitoyl transferase I inhibitor. All three of these treatments prevented stimulation of glucose transport by insulin. We also assayed glucose transport after 30 min of inhibition of acetyl coenzyme A carboxylase (ACC), the enzyme which catalyzes the production of malonyl CoA. Three unrelated ACC inhibitors (diclofop, clethodim, and Pfizer CP-640186) all enhanced insulin-stimulated glucose transport. However, none of the treatments designed to manipulate malonyl CoA concentrations altered markers of proximal insulin signaling through Akt. The findings support the hypothesis that acute changes in malonyl CoA concentrations affect insulin action in muscle cells but suggest that the effects do not involve alterations in proximal insulin signaling.  相似文献   

15.
High-fat (HF) diets induce insulin resistance and alter lipid metabolism, although controversy exists regarding the impact of saturated vs. polyunsaturated fats. Adiponectin (Ad) stimulates fatty acid (FA) oxidation and improves insulin sensitivity in humans and rodents, due in part to the activation of AMP-activated protein kinase (AMPK) and subsequent deactivation of acetyl coenzyme A carboxylase (ACC). In genetically obese, diabetic mice, this acute stimulatory effect on AMPK in muscle is lost. The ability of a HF diet to induce skeletal muscle Ad resistance has not been examined. The purpose of this study was to determine whether Ad's effects on FA oxidation and AMPK/ACC would be reduced following different HF diets, and if this coincided with the development of impaired maximal insulin-stimulated glucose transport. Rats were fed a control (10% kcal fat, CON), high unsaturated fat (60% kcal safflower oil, SAFF), or high saturated fat diet (60% kcal lard, LARD) for 4 wk. Following the dietary intervention, glucose transport, lipid metabolism, and AMPK/ACC phosphorylation were measured in the presence and absence of globular Ad (gAd, 2.5 microg/ml) in isolated soleus muscle. LARD rats showed reduced rates of maximal insulin-stimulated glucose transport compared with CON and SAFF (+68 vs. +172 and +184%, P < or = 0.001). gAd increased pACC (+25%, P < or = 0.01) and FA oxidation (+28%, P < or = 0.05) in CON rats, but not in either HF group. Thus 4 wk of HF feeding results in the loss of gAd stimulatory effect on ACC phosphorylation and muscle FA oxidation, and this can occur independently of impaired maximal insulin-stimulated glucose transport.  相似文献   

16.
This study examines the relationship between insulin-stimulated glucose transport and insulin-induced translocation of glucose transporters in isolated rat adipocytes. Adipose cells were incubated with or without cycloheximide, a potent inhibitor of protein synthesis, for 60 min and then for an additional 30 min with or without insulin. After the incubation we measured 3-O-methylglucose transport in the adipose cells, and subcellular membrane fractions were prepared. The numbers of glucose transporters in the various membrane fractions were determined by the cytochalasin B binding assay. Basal and insulin-stimulated 3-O-methylglucose uptakes were not affected by cycloheximide. Furthermore, cycloheximide affected neither Vmax. nor Km of insulin-stimulated 3-O-methylglucose transport. In contrast, the number of glucose transporters in plasma membranes derived from cells preincubated with cycloheximide and insulin was markedly decreased compared with those from cells incubated with insulin alone (10.5 +/- 0.8 and 22.2 +/- 1.8 pmol/mg of protein respectively; P less than 0.005). The number of glucose transporters in cells incubated with cycloheximide alone was not significantly different compared with control cells. SDS/polyacrylamide-gel-electrophoretic analysis of [3H]cytochalasin-B-photolabelled plasma-membrane fractions revealed that cycloheximide decreases the amount of labelled glucose transporters in insulin-stimulated membranes. However, the apparent molecular mass of the protein was not changed by cycloheximide treatment. The effect of cycloheximide on the two-dimensional electrophoretic profile of the glucose transporter in insulin-stimulated low-density microsomal membranes revealed a decrease in the pI-6.4 glucose-transporter isoform, whereas the insulin-translocatable isoform (pI 5.6) was decreased. Thus the observed discrepancy between insulin-stimulated glucose transport and insulin-induced translocation of glucose transporters strongly suggests that a still unknown protein-synthesis-dependent mechanism is involved in insulin activation of glucose transport.  相似文献   

17.
Previous studies suggest that the stimulation of glucose transport by insulin involves the tyrosine phosphorylation of c-Cbl and the translocation of the c-Cbl/CAP complex to lipid raft subdomains of the plasma membrane. We now demonstrate that Cbl-b also undergoes tyrosine phosphorylation and membrane translocation in response to insulin in 3T3-L1 adipocytes. Ectopic expression of APS facilitated insulin-stimulated phosphorylation of tyrosines 665 and 709 in Cbl-b. The phosphorylation of APS produced by insulin drove the translocation of both c-Cbl and Cbl-b to the plasma membrane. Like c-Cbl, Cbl-b associates constitutively with CAP and interacts with Crk upon insulin stimulation. Cbl proteins formed homo- and heterodimers in vivo, which required the participation of a conserved leucine zipper domain. A Cbl mutant incapable of dimerization failed to interact with APS and to undergo tyrosine phosphorylation in response to insulin, indicating an essential role of Cbl dimerization in these processes. Thus, both c-Cbl and Cbl-b can initiate a phosphatidylinositol 3-kinase/protein kinase B-independent signaling pathway critical to insulin-stimulated GLUT4 translocation.  相似文献   

18.
In vivo calorie restriction [CR; consuming 60% of ad libitum (AL) intake] induces elevated insulin-stimulated glucose transport (GT) in skeletal muscle. The mechanisms triggering this adaptation are unknown. The aim of this study was to determine whether physiological reductions in extracellular glucose and/or insulin, similar to those found with in vivo CR, were sufficient to elevate GT in isolated muscles. Epitrochlearis muscles dissected from rats were incubated for 24 h in media with glucose (8 mM) and insulin (80 microU/ml) at levels similar to plasma values of AL-fed rats and compared with muscles incubated with glucose (5.5 mM) and/or insulin (20 microU/ml) at levels similar to plasma values of CR rats. Muscles incubated with CR levels of glucose and insulin for 24 h had a subsequently greater (P < 0.005) GT with 80 microU/ml insulin and 8 mM [(3)H]-3-O-methylglucose but unchanged GT without insulin. Reducing only glucose or insulin for 24 h or both glucose and insulin for 6 h did not induce altered GT. Increased GT after 24-h incubation with CR levels of glucose and insulin was not attributable to increased insulin receptor tyrosine phosphorylation, Akt serine phosphorylation, or Akt substrate of 160 kDa phosphorylation. Nor did 24-h incubation with CR levels of glucose and insulin alter the abundance of insulin receptor, insulin receptor substrate-1, GLUT1, or GLUT4 proteins. These results provide the proof of principle that reductions in extracellular glucose and insulin, similar to in vivo CR, are sufficient to induce an increase in insulin-stimulated glucose transport comparable to the increase found with in vivo CR.  相似文献   

19.
We hypothesized that levodopa with carbidopa, a common therapy for patients with Parkinson's disease, might contribute to the high prevalence of insulin resistance reported in patients with Parkinson's disease. We examined the effects of levodopa-carbidopa on glycogen concentration, glycogen synthase activity, and insulin-stimulated glucose transport in skeletal muscle, the predominant insulin-responsive tissue. In isolated muscle, levodopa-carbidopa completely prevented insulin-stimulated glycogen accumulation and glucose transport. The levodopa-carbidopa effects were blocked by propranolol, a beta-adrenergic antagonist. Levodopa-carbidopa also inhibited the insulin-stimulated increase in glycogen synthase activity, whereas propranolol attenuated this effect. Insulin-stimulated tyrosine phosphorylation of insulin receptor substrate (IRS)-1 was reduced by levodopa-carbidopa, although Akt phosphorylation was unaffected by levodopa-carbidopa. A single in vivo dose of levodopa-carbidopa increased skeletal muscle cAMP concentrations, diminished glycogen synthase activity, and reduced tyrosine phosphorylation of IRS-1. A separate set of rats was treated intragastrically twice daily for 4 wk with levodopa-carbidopa. After 4 wk of treatment, oral glucose tolerance was reduced in rats treated with drugs compared with control animals. Muscles from drug-treated rats contained at least 15% less glycogen and approximately 50% lower glycogen synthase activity compared with muscles from control rats. The data demonstrate beta-adrenergic-dependent inhibition of insulin action by levodopa-carbidopa and suggest that unrecognized insulin resistance may exist in chronically treated patients with Parkinson's disease.  相似文献   

20.
Botulinum toxin A (botox) is a toxin used for spasticity treatment and cosmetic purposes. Botox blocks the excitation of skeletal muscle fibers by preventing the release of acetylcholine from motor nerves, a process termed chemical denervation. Surgical denervation is associated with increased expression of the canonical insulin-activated kinase Akt, lower expression of glucose handling proteins GLUT4 and hexokinase II (HKII) and insulin resistant glucose uptake, but it is not known if botox has a similar effect. To test this, we performed a time-course study using supra-maximal insulin-stimulation in mouse soleus ex vivo. No effect was observed in the glucose transport responsiveness at day 1, 7 and 21 after intramuscular botox injection, despite lower expression of GLUT4, HKII and expression and phosphorylation of TBC1D4. Akt protein expression and phosphorylation of the upstream kinase Akt were increased by botox treatment at day 21. In a follow-up study, botox decreased submaximal insulin-stimulated glucose transport. The marked alterations of insulin signaling, GLUT4 and HKII and submaximal insulin-stimulated glucose transport are a potential concern with botox treatment which merit further investigation in human muscle. Furthermore, the botox-induced chemical denervation model may be a less invasive alternative to surgical denervation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号