首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wild-type recombinant horseradish peroxidase isoenzyme C and two protein variants, Phe41----Val and Arg38----Lys, have been characterised using both one- and two-dimensional NMR spectroscopy. Proton NMR spectra recorded in both resting and cyanide-ligated states of the proteins were compared with those of the corresponding plant peroxidase. The latter contains 18% carbohydrate in eight N-linked oligosaccharide side chains whereas the recombinant proteins are expressed in nonglycosylated form. The spectra of the plant enzyme and refolded recombinant protein are essentially identical with the exception of carbohydrate-linked resonances in the former, indicating that their solution structures are highly similar. This comparison also identifies classes of carbohydrate resonances in the plant enzyme which provides new information on the local environment and mobility of the oligosaccharide side chains. Comparison of the spectra of the cyanide-ligated states of the two variants and those of plant horseradish peroxidase C indicated that there were significant differences with respect to haem and haem-linked resonances. These could not be rationalised simply on the basis of the local perturbation expected from a single-site substitution. The two substitutions made to residues on the distal side of the haem apparently influenced the degree of imidazolate character of the proximal His170 imidazole ring thus perturbing the magnetic environment of the haem group. Inspection of the spectra of the Phe41----Val variant also showed that the resonances of a phenylalanine residue in the haem pocket had been incorrectly assigned to Phe41 in a previous study. A new assignment, based on additional information from two-dimensional nuclear Overhauser enhancement spectroscopy, was made to Phe152. The assignments made for the Phe41----Val variant were also used as a basis to investigate the structure of the complex formed with the aromatic donor molecule, benzhydroxamic acid.  相似文献   

2.
We have solved the x-ray structures of the binary horseradish peroxidase C-ferulic acid complex and the ternary horseradish peroxidase C-cyanide-ferulic acid complex to 2.0 and 1.45 A, respectively. Ferulic acid is a naturally occurring phenolic compound found in the plant cell wall and is an in vivo substrate for plant peroxidases. The x-ray structures demonstrate the flexibility and dynamic character of the aromatic donor binding site in horseradish peroxidase and emphasize the role of the distal arginine (Arg(38)) in both substrate oxidation and ligand binding. Arg(38) hydrogen bonds to bound cyanide, thereby contributing to the stabilization of the horseradish peroxidase-cyanide complex and suggesting that the distal arginine will be able to contribute with a similar interaction during stabilization of a bound peroxy transition state and subsequent O-O bond cleavage. The catalytic arginine is additionally engaged in an extensive hydrogen bonding network, which also includes the catalytic distal histidine, a water molecule and Pro(139), a proline residue conserved within the plant peroxidase superfamily. Based on the observed hydrogen bonding network and previous spectroscopic and kinetic work, a general mechanism of peroxidase substrate oxidation is proposed.  相似文献   

3.
The amino acid sequences of the 51% different horseradish peroxidase HRP C and turnip peroxidase TP 7 have previously been completed by us, but the three-dimensional structures are unknown. Recently the amino acid sequence and the crystal structure of yeast cytochrome c peroxidase have appeared. The three known apoperoxidases consist of 300 +/- 8 amino acid residues. The sequences have now been aligned and show 18% and 16% identity only, between the yeast peroxidase and plant peroxidase HRP C and TP 7, respectively. We show that different structural tests all support similar protein folds in plant peroxidases and yeast peroxidase and, therefore, a common evolutionary origin. The following tests support this thesis: (a) predicted helices in the plant peroxidases follow the complex pattern observed in the crystal structure of cytochrome c peroxidase; (b) their hydropathic profiles are similar and agree with observed buried and exposed peptide chain in cytochrome c peroxidase; (c) half-cystines which are distant in the amino acid sequence of plant peroxidases become spatial neighbours when fitted into the cytochrome c peroxidase model; (d) the two-domain structure proposed from limited proteolysis of apoperoxidase HRP C is observed in the crystal structure of cytochrome c peroxidase. The similarities and differences of the plant and yeast peroxidases and the reactive side chains of a plant peroxidase active site are described. The characteristics of Ca2+-binding sequences, derived from several superfamilies, are applied to predict the Ca2+-binding sequences in plant peroxidases.  相似文献   

4.
The novel class III ascorbate peroxidase isoenzyme II from tea leaves (TcAPXII), with an unusually high specific ascorbate peroxidase activity associated with stress response, has been characterized by resonance Raman (RR), electronic absorption, and Fourier transform infrared (FT-IR) spectroscopies. Ferric and ferrous forms and the complexes with fluoride, cyanide, and CO have been studied at various pH values. The overall blue shift of the electronic absorption spectrum, the high RR frequencies of the core size marker bands, similar to those of 6-coordinate low-spin heme, and the complex RR spectrum in the low-frequency region of ferric TcAPXII indicate that this protein contains an unusual 5-coordinate quantum mechanically mixed-spin heme. The spectra of both the fluoride and the CO adducts suggest that these exogenous ligands are strongly hydrogen-bonded with a residue that appears to be unique to this peroxidase. Electronic absorption spectra also emphasize structural differences between the benzhydroxamic acid binding sites of TcAPXII and horseradish peroxidases (HRPC). It is concluded that TcAPXII is a paradigm peroxidase since it is the first example of a hybrid enzyme that combines spectroscopic signatures, structural elements, and substrate specificities previously reported only for distinct class I and class III peroxidases.  相似文献   

5.
Aromatic substrate binding to peroxidases is mediated through hydrophobic and hydrogen bonding interactions between residues on the distal side of the heme and the substrate molecule. The effects of perturbing these interactions are investigated by an electronic absorption and resonance Raman study of benzohydroxamic acid (BHA) binding to a series of mutants of horseradish peroxidase isoenzyme C (HRPC). In particular, the Phe179 --> Ala, His42 --> Glu variants and the double mutant His42 --> Glu:Arg38 --> Leu are studied in their ferric state at pH 7 with and without BHA. A comparison of the data with those previously reported for wild-type HRPC and other distal site mutants reaffirms that in the resting state mutation of His42 leads to an increase of 6-coordinate aquo heme forms at the expense of the 5-coordinate heme state, which is the dominant species in wild-type HRPC. The His42Glu:Arg38Leu double mutant displays an enhanced proportion of the pentacoordinate heme state, similar to the single Arg38Leu mutant. The heme spin states are insensitive to mutation of the Phe179 residue. The BHA complexes of all mutants are found to have a greater amount of unbound form compared to the wild-type HRPC complex. It is apparent from the spectral changes induced on complexation with BHA that, although Phe179 provides an important hydrophobic interaction with BHA, the hydrogen bonds formed between His42 and, in particular, Arg38 and BHA assume a more critical role in the binding of BHA to the resting state.  相似文献   

6.
The cyclooxygenase activity of the bifunctional enzyme prostaglandin H(2) synthase-2 (PGHS-2) is the target of non-steroidal anti-inflammatory drugs. Inhibition of the peroxidase activity of PGHS has been less studied. Using Soret absorption changes, the binding of aromatic hydroxamic acids to the peroxidase site of PGHS-2 was examined to investigate the structural determinants of inhibition. Typical of mammalian peroxidases, the K(d) for benzhydroxamic acid (42mM) is much greater than that for salicylhydroxamic acid (475microM). Binding of the hydroxamic acid tepoxalin (25microM) resulted in only minor Soret changes. However, tepoxalin is an efficient reducing cosubstrate, indicating that it is an alternative electron donor rather than an inhibitor of the peroxidase activity. Aromatic hydrazides are metabolically activated inhibitors of peroxidases. 2-Naphthoichydrazide (2-NZH) caused the time- and concentration-dependent inhibition of both PGHS-2 peroxidase and cyclooxygenase activities. H(2)O(2) was required for the inactivation of both PGHS-2 activities and indomethacin (which binds at the cyclooxygenase site) did not affect the peroxidase inhibitory potency of 2-NZH. A series of aromatic hydrazides were found to be potent inhibitors of PGHS-2 peroxidase activity with IC(50) values in the 6-100microM range for 13 of the 18 hydrazides examined. Selective inhibition of PGHS-2 over myeloperoxidase and horseradish peroxidase isozyme C was increased by certain ring substitutions. In particular, a chloro group para to the hydrazide moiety increased the PGHS-2 selectivity relative to both myeloperoxidase and horseradish peroxidase isozyme C.  相似文献   

7.
 The heme protein wheat germ peroxidase (isoenzyme C2) and its cyanide-inhibited form have been investigated by means of electronic, CD and paramagnetic NMR spectroscopy. The data indicate a protein environment of the active site distinct from that of horseradish peroxidase (HRP), with a larger solvent accessibility. The iron is pentacoordinated at neutral and low pH, whereas a hydroxyl anion may be bound at alkaline pH. The fifth axial ligand is a His residue with a partial anionic character, as found in other peroxidases. A spin equilibrium is observed at high enzyme concentrations. Received: 17 September 1996 / Accepted: 10 January 1997  相似文献   

8.
Peroxidases typically bind their reducing substrates weakly, with K(d) values in the millimolar range. The binding of benzhydroxamic acid (BHA) to ferric horseradish peroxidase isoenzyme C (HRPC) [K(d) = 2.4 microM; Schonbaum, G. R. (1973) J. Biol. Chem. 248, 502-511] is a notable exception and has provided a useful tool for probing the environment of the peroxidase aromatic-donor-binding site and the distal heme cavity. Knowledge of the underlying thermodynamic driving forces is key to understanding the roles of the various H-bonding and hydrophobic interactions in substrate binding. The isothermal titration calorimetry results of this study on the binding of aromatic hydroxamic acid analogues to ferric HRPC under nonturnover conditions (no H(2)O(2) present) confirm the significance of H-bonding interactions in the distal heme cavity in complex stabilization. For example, the binding of BHA to HRPC is enthalpically driven at pH 7.0, with the H-bond to the distal Arg38 providing the largest contribution (6.74 kcal/mol) to the binding energy. The overall relatively weak binding of the hydroxamic acid analogues to HRPC is due to large entropic barriers (-11.3 to -37.9 eu) around neutral pH, with the distal Arg38 acting as an "entropic gate keeper". Dramatic enthalpy-entropy compensation is observed for BHA and 2-naphthohydroxamic acid binding to HRPC at pH 4.0. The enthalpic loss and entropic gain are likely due to increased flexibility of Arg38 in the complexes at low pH and greater access by water to the active site. Since the Soret absorption band of HRPC is a sensitive probe of the binding of hydroxamic acids and their analogues, it was used to investigate the binding of six donor substrates over the pH range of 4-12. The negligible pH dependence of the K(d) values corrected for substrate ionization suggests that enthalpy-entropy compensation is operative over a wide pH range. Examination of the thermodynamics of binding of ring-substituted hyrazides to HRPC reveals that the binding affinities of aromatic donors are highly sensitive to the position and nature of the ring substituent.  相似文献   

9.
L Banci  I Bertini  E A Pease  M Tien  P Turano 《Biochemistry》1992,31(41):10009-10017
1H NMR spectra at 200- and 600-MHz of manganese peroxidase from Phanerochaete chrysosporium and of its cyanide derivative are reported. The spectrum of the native protein is very similar to that of other peroxidases. The assignment of the spectrum of the cyanide derivative has been performed through 1D NOE, 2D NOESY, and COSY experiments. This protein is very similar to lignin peroxidase, the only meaningful difference being the shift of H delta 2 of the proximal histidine. The spectra of the cyanide derivative of these two proteins are compared with those of horseradish peroxidase and cytochrome c peroxidase. The shift pattern of the protons of the proximal histidine is discussed relative to the structural properties which affect the Fe3+/Fe2+ redox potential.  相似文献   

10.
Absorption spectroscopy measurements of the binding of aromatic donors and competitive inhibitors to horseradish peroxidase indicate that they are bound to the enzyme through hydrophobic forces and hydrogen bonding. Nuclear magnetic resonance experiments show that the minimal distances between the enzyme iron and the protons of a typical donor, p-cresol, are 7.0 ± 0.5, 7.7 ± 0.5 and 8.5 ± 0.5 Å, for the ortho-, meta- and methyl-protons, respectively.A model for the binding of aromatic donors to horseradish peroxidase based on this result is presented. It is proposed that the aromatic ring is attached to a hydrophobic region in the protein interior and the phenol oxygen is hydrogen-bonded to the pyrrolic nitrogen of the iron-coordinated histidine. This structure is compatible with the proton-iron distances measured and offers an intramolecular path for electron conduction from donor to heme analogous to that proposed by Winfield for the peroxidases.  相似文献   

11.
Interaction of a macrocyclic bisacridine with DNA   总被引:1,自引:0,他引:1  
The binding of the macrocycle SDM to DNA was investigated by visible spectroscopy, stopped-flow kinetics, and NMR spectroscopy. SDM is composed of two 9-aminoacridines linked via the amino groups by a spermine side chain and via the 4-positions by a N,N'-[(methylthio)ethyl]succinamide side chain [Zimmerman, S. C., Lamberson, C. R., Cory, M., & Fairley, T. A. (1989) J. Am. Chem. Soc. 111, 6805-6809]. The visible spectrum of SDM bound to poly[d(A-T)]2 or poly[d(G-C)]2 is red-shifted relative to the spectrum of SDM alone and displays considerable hypochromicity. Results from titrations of SDM with polymer indicate a binding site size of three base pairs per macrocycle. The dissociation constant for SDM bound to either poly[d(A-T)]2 or poly[d(G-C)]2 is an order of magnitude lower than that for a similar bisacridine linked only by a spermine side chain. In addition, the dependence of the dissociation constant on ionic strength is significantly reduced. NMR studies of SDM complexes with poly[d(A-T)]2 or a tetramer, d(CGCG)2, show that intercalation is the mode of binding. The magnitudes of the chemical shift differences for SDM aromatic protons in the free and bound states support intercalation with the acridine ring systems essentially parallel to the long axis of the base pairs. Cross peaks from NOESY spectra of the SDM complex with d(CGCG)2 further support this mode of binding and provide information on the structure of the complex. The results are analyzed for consistency with each of three binding models: (i) bisintercalation with the two side chains in the same groove; (ii) bisintercalation according to the neighbor-exclusion principle with the two side chains in opposite grooves; and (iii) bisintercalation with two side chains in opposite grooves but with violation of the neighbor-exclusion principle. Model i is found to be unlikely on the basis of all evidence obtained, including preliminary modeling studies. Both models ii and iii can be reconciled with the experimental evidence and from a modeling standpoint are energetically feasible.  相似文献   

12.
The catalytic cycle of horseradish peroxidase (HRP; donor:hydrogen peroxide oxidoreductase; EC 1.11.1.7) is initiated by a rapid oxidation of it by hydrogen peroxide to give an enzyme intermediate, compound I, which reverts to the resting state via two successive single electron transfer reactions from reducing substrate molecules, the first yielding a second enzyme intermediate, compound II. To investigate the mechanism of action of horseradish peroxidase on catechol substrates we have studied the oxidation of both 4-tert-butylcatechol and dopamine catalysed by this enzyme. The different polarity of the side chains of both o-diphenol substrates could help in the understanding of the nature of the rate-limiting step in the oxidation of these substrates by the enzyme. The procedure used is based on the experimental data to the corresponding steady-state equations and permitted evaluation of the more significant individual rate constants involved in the corresponding reaction mechanism. The values obtained for the rate constants for each of the two substrates allow us to conclude that the reaction of horseradish peroxidase compound II with o-diphenols can be visualised as a two-step mechanism in which the first step corresponds to the formation of an enzyme-substrate complex, and the second to the electron transfer from the substrate to the iron atom. The size and hydrophobicity of the substrates control their access to the hydrophobic binding site of horseradish peroxidase, but electron density in the hydroxyl group of C-4 is the most important feature for the electron transfer step.  相似文献   

13.
The heme vicinities of the acid and alkaline forms of native (Fd(III)) horseradish peroxidase were investigated in terms of the magnetic circular dichroism (MCD) spectroscopy. The MCD spectrum of the acid form of native horseradish peroxidase was characteristic of a ferric high spin heme group. The resemblance in the MCD spectrum between the acid form and acetato-iron (III)protoporphyrin IX dimethyl ester suggests that the heme iron of the acid form has the electronic structure similar to that in a pentocoordinated heme complex. The MCD spectra of native horseradish peroxidase did not shown any substantial pH dependence in the pH range from 5.20 to 9.00. The MCD spectral change indicated the pK value for the equilibrium between the acid and alkaline forms to be 11.0 which agrees with the results from other methods. The alkaline form of native horseradish peroxidase at pH 12.01 exhibited the MCD spectrum of a low spin complex. The near infrared MCD spectrum suggests that the alkaline form of native horseradish peroxidase has a 6th ligand somehow different from a normal nitrogen ligand such as histidine or lysine. It implicates that the alkaline form has an overall ligand field strength of between the low spin component of metmyoglobin hydroxide and metmyoglobin azide.  相似文献   

14.
Native kringle 4 from human plasminogen has been studied by two-dimensional 1H-NMR methods in order to obtain new structural information about the kringle fold. Two-dimensional scalar correlated spectroscopy (COSY), two-dimensional dipolar correlated spectroscopy (NOESY) and two-dimensional relayed coherance transfer spectroscopy (RCT) experiments were recorded, allowing most resonances arising from the aromatic and methyl-containing residues to be assigned in the spectrum. From an analysis of NOE data, a small segment of double-stranded beta-sheet has been identified near residues Phe63 and Thr64. Further analysis of the NOESY spectrum has allowed detailed study of the conformation of sidechains located in regions near Leu45 and Val69. A model has been constructed of the polypeptide segment comprising residues 40-49 which accounts for the observed NOE interactions.  相似文献   

15.
There is an urgent need to understand the mechanism of activation of the frontline anti-tuberculosis drug isoniazid by the Mycobacterium tuberculosis catalase-peroxidase. To address this, a combination of NMR spectroscopic, biochemical, and computational methods have been used to obtain a model of the frontline anti-tuberculosis drug isoniazid bound to the active site of the class III peroxidase, horseradish peroxidase C. This information has been used in combination with the new crystal structure of the M. tuberculosis catalase-peroxidase to predict the mode of INH binding across the class I heme peroxidase family. An enzyme-catalyzed mechanism for INH activation is proposed that brings together structural, functional, and spectroscopic data from a variety of sources. Collectively, the information not only provides a molecular basis for understanding INH activation by the M. tuberculosis catalase-peroxidase but also establishes a new conceptual framework for testing hypotheses regarding the enzyme-catalyzed turnover of this compound in a number of heme peroxidases.  相似文献   

16.
The binding of indole to both horseradish peroxidase and its cyanide complex can be detected by difference spectra in the Soret region. Indole and cyanide binding are not competitive processes. The effect of indole on the binding rate constants between horseradish peroxidase and cyanide and compound I formation reactions between horseradish peroxidase and hydrogen peroxide or m-chloroperbenzoic acid was studied by the stopped-flow method. In all cases the rate constants of the indole-peroxidase complex with the ligand or substrates were smaller than those of free peroxidase. Since the m-chloroperbenzoic acid reaction has been shown to approach a diffusion-controlled rate, the effect of indole binding on the rate constant for compound I formation using this peracid was analyzed semiquantitatively using theoretical equations for a diffusion-controlled rate process with a capture-window active site model. The effect of indole binding on the diffusion-controlled rate constant could be explained by a decrease in the radius of the capture-window active site.  相似文献   

17.
Salicylhydroxamic acid inhibits myeloperoxidase activity.   总被引:3,自引:0,他引:3  
Salicylhydroxamic and benzohydroxamic acids were found to bind to the resting state of myeloperoxidase and inhibit ligand binding to the heme iron. An ionizable group on the enzyme with pKa = 4 affects salicylhydroxamic acid binding; binding occurs when this group is not protonated. The binding of the heme iron ligands (e.g. cyanide, nitrite, and chloride) is probably controlled by the same ionizable group. The equilibrium dissociation constant of the salicylhydroxamic acid-myeloperoxidase complex is about 2 x 10(-6) M, and the association rate constant is 7.4 x 10(6) M-1.s-1. Salicylhydroxamic acid serves as a donor to the higher oxidation state of myeloperoxidase and thereby inhibits guaiacol oxidation. Salicylhydroxamic acid was also found to bind to intestinal peroxidase and lactoperoxidase. Salicylhydroxamic acid binding to all three mammalian peroxidases was about 3 orders of magnitude stronger than benzohydroxamic acid binding. We conclude that the salicylhydroxamic and benzohydroxamic acids bind in the distal heme cavity of these peroxidases and interact with the heme ligand binding site.  相似文献   

18.
Lignins are phenolic biopolymers synthesized by terrestrial, vascular plants for mechanical support and in response to pathogen attack. Peroxidases have been proposed to catalyse the dehydrogenative polymerization of monolignols into lignins, although no specific isoenzyme has been shown to be involved in lignin biosynthesis. Recently we isolated an extracellular anionic peroxidase, ATP A2, from rapidly lignifying Arabidopsis cell suspension culture and cloned its cDNA. Here we show that the Atp A2 promoter directs GUS reporter gene expression in lignified tissues of transgenic plants. Moreover, an Arabidopsis mutant with increased lignin levels compared to wild type shows increased levels of ATP A2 mRNA and of a mRNA encoding an enzyme upstream in the lignin biosynthetic pathway. The substrate specificity of ATP A2 was analysed by X-ray crystallography and docking of lignin precursors. The structure of ATP A2 was solved to 1.45 Å resolution at 100 K. Docking of p-coumaryl, coniferyl and sinapyl alcohol in the substrate binding site of ATP A2 were analysed on the basis of the crystal structure of a horseradish peroxidase C-CN-ferulic acid complex. The analysis indicates that the precursors p-coumaryl and coniferyl alcohols are preferred by ATP A2, while the oxidation of sinapyl alcohol will be sterically hindered in ATP A2 as well as in all other plant peroxidases due to an overlap with the conserved Pro-139. We suggest ATP A2 is involved in a complex regulation of the covalent cross-linking in the plant cell wall.  相似文献   

19.
The geometry of hydrogen donor molecules bound to horseradish peroxidase was investigated using nuclear magnetic resonance techniques. Between resorcinol and 2-methoxy-4-methylphenol which showed different optical difference spectra, little difference was observed in the orientation of the molecules bound to horseradish peroxidase: the minimal distances between the enzyme iron and the protons of the phenol rings are in the range of 8.4-11.0 A. This situation was not greatly different for the third compound studied in this paper, benzhydroxamic acid, providing evidence against the view that its side chain coordinates to the heme iron. Furthermore, it was found that transferred nuclear Overhauser effect for the signals of these compounds was observable only when the heme peripheral 8-methyl proton signal was irradiated. These results, together with a hypothetical model of the enzyme structure obtained by computer-aided simulation procedures, suggest that the binding of these donor molecules and competitive inhibitors occur in the vicinity of the heme peripheral 8-methyl group, with hydrophobic interactions probably with Tyr-185 and with hydrogen bond with adjacent amino acid residues such as Arg-183.  相似文献   

20.
In heme peroxidases, a distal His residue plays an essential role in the initial two electron oxidation of resting state enzyme to compound I by hydrogen peroxide. A distal Arg residue assists in this process. The contributions of the charge, H-bonding capacity, size, and mobility of this Arg residue to Coprinus cinereus peroxidase (CIP) reactivity and stability have been examined by substituting Arg51 with Gln (retains H-bond donor at N epsilon position), Asn (small size, H-bond donor and acceptor), Leu (similar to Asn, but hydrophobic), and Lys (charge and H-bond donor, but at N zeta position). UV-visible spectroscopy was used to monitor pH-linked heme changes, compound I formation and reduction, fluoride binding, and thermostability. (1)H NMR spectroscopy enabled heme pocket differences in both resting and cyanide-ligated states of the enzymes to be evaluated and compared with wild-type CIP. We found that the H-bonding capacity of distal Arg is key to fast compound I formation and ligand binding to heme, whereas charge is important for lowering the pK(a) of distal His and for the binding and stabilisation of anionic ligands at heme iron. The properties of the distal Arg residue in CIP, cytochrome c peroxidase (CCP) and horseradish peroxidase (HRP) differ significantly in their pH induced transitions and dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号