首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In studies of the effect of long or short-day photoperiod treatments on the qualitative gibberellin (GA) content of mature leaves of a facultative short-day (SD) strawberry cultivar (Fragaria × ananassa Duch. cv. Elsanta), GA1, GA8, GA17, GA19, GA20, GA29 and GA44 were identified by full-scan gas chromatography - mass spectrometry (GC-MS) in extracts from plants grown under long-day (LD) conditions, and GA1, GA5, GA8, GA19, GA20 and GA29 in similar extracts from plants subjected to eight SD cycles after growth under LD conditions. The early 13-hydroxylation GA biosynthetic pathway thus appeared to predominate, with the apparent absence of GA5 in LD and of GA17 and GA44 in SD extracts providing evidence of modulation of this pathway by photoperiod. A search, including GC-MS with selected ion monitoring, failed to detect GA3, or the polyhydroxylated GA85, GA86, GA87 or GA32 for which some extracts were specifically purified.This paper is respectfully dedicated to the memory of Gordon Browning, who died suddenly on the 1st July, 1993. He will be sorely missed, both as a friend and colleague.  相似文献   

2.
The role of gibberellins (GAs) in photoperiodic control of leaf elongation in Poa pratensis was studied by both application of exogenous GAs and analysis of endogenous GAs. Leaf elongation was strongly increased under long day (LD, 24 h) conditions at both 9 and 21°C, leaf length at 9°C LD being similar to that in plants grown in short days (SD, 8 h) at 21°C. However, even at 21°C leaf elongation was enhanced by LD. Exogenous GA1 could completely compensate for LD at both 9 and 21°C. Gibberellins A20, A19 and A44 could also partly replace LD, but they were significantly less active than GA1, GA53 was inactive when applied to plants grown at 9°C in SD and exhibited only marginal activity at 9°C LD and 21°C SD. The total level of GAs of the early 13-hydroxylation pathway (A53, A44, A19, A20 and A1) increased rapidly when plants were transferred from SD to LD at 9°C. After transfer from 9 to 21°C, there was an increase in GA levels at both LD and SD, followed by a decrease under LD conditions. In all cases, GA19 was the predominant GA, accounting for 60 to 80% of the analysed GAs. Levels of the bioactive GA1 were low and increased transiently by LD four days after transfer from SD to LD. At both temperatures, the ratio GA19 to GA20 and GA20 to GA1 at 9°C was enhanced by LD compared with SD. Taken together, these results support the hypothesis that photoperiodic regulation of leaf elongation in Poa pratensis is GA-mediated, and they indicate a photoperiodic control of oxidation of GA53 to GA44 and GA19 to GA20, and perhaps also of 3β-hydroxylation of GA20 to GA1.  相似文献   

3.
Talon M  Zeevaart JA 《Plant physiology》1990,92(4):1094-1100
Stem growth and flowering in the long-day plant Silene armeria L. are induced by exposure to a minimum of 3 to 6 long days (LD). Stem growth continues in subsequent short days (SD), albeit at a reduced rate. The growth retardant tetcyclacis inhibited stem elongation induced by LD, but had no effect on flowering. This indicates that photoperiodic control of stem growth in Silene is mediated by gibberellins (GA). The objective of this study was to analyze the effects of photoperiod on the levels and distribution of endogenous GAs in Silene and to determine the nature of the photoperiodic after-effect on stem growth in this plant. The GAs identified in extracts from Silene by full-scan combined gas chromatography-mass spectrometry (GC-MS), GA12, GA53, GA44, GA17, GA19, GA20, GA1, GA29, and GA8, are members of the early 13-hydroxylation pathway. All of these GAs were present in plants under SD as well as under LD conditions. The GA53 level was highest in plants in SD, and decreased in plants transferred to LD conditions. By contrast, GA19, GA20, and GA1 initially increased in plants transferred to LD, and then declined. Likewise, when Silene plants were returned from LD to SD, there was an increase in GA53, and a decrease in GA19, GA20, and GA1 which ultimately reached levels similar to those found in plants kept in SD. Thus, measurements of GA levels in whole shoots of Silene as well as in individual parts of the plant suggest that the photoperiod modulates GA metabolism mainly through the rate of conversion of GA53. As a result of LD induction, GA1 accumulates at its highest level in shoot tips which, in turn, results in stem elongation. In addition, LD also appear to increase the sensitivity of the tissue to GA, and this effect is presumably responsible for the photoperiodic after-effect on stem elongation in Silene.  相似文献   

4.
Cell-free extracts capable of converting [14C]-labeled gibberellins (GAs) were prepared from spinach (Spinacia oleracea L.) leaves. [14C]-labeled GAs, prepared enzymically from [14C]mevalonic acid, were incubated with these extracts, and products were identified by gas chromatography-mass spectrometry. The following pathway was found to operate in extracts from spinach leaves grown under long day (LD) conditions: GA12 → GA53 → GA44 → GA19 → GA20. The pH optima for the enzymic conversions of [14C]GA53, [14C]GA44 and [14C]GA19 were approximately 7.0, 8.0, and 6.5, respectively. These three enzyme activities required Fe2+, α-ketoglutarate and O2 for activity, and ascorbate stimulated the conversion of [14C]GA53 and [14C]GA19. Extracts from plants given LD or short days (SD) were examined, and enzymic activities were measured as a function of exposure to LD, as well as to darkness following 8 LD. The results indicate that the activities of the enzymes oxidizing GA53 and GA19 are increased in LD and decreased in SD or darkness, but that the enzyme activity oxidizing GA44 remains high irrespective of light or dark treatment. This photoperiodic control of enzyme activity is not due to the presence of an inhibitor in plants grown in SD. These observations offer an explanation for the higher GA20 content of spinach plants in LD than in SD.  相似文献   

5.
Jan A. D. Zeevaart 《Planta》1969,86(2):124-133
Summary Acidic extracts of the long-short-day plant Bryophyllum daigremontianum contain two gibberellin (GA)-like substances called fractions I and II. In plants under permanent short-day (SD) conditions the levels of both I and II are very low. In continuous long days (LD) the total GA content is approximately 20 times higher than in SD, mainly due to an increased level of II. Extracts of plants induced to flower by the shift LDSD show a further increase in the level of II. Application of GA3 to plants in SD causes normal flower formation, but the level of fraction II remains as low as in vegetative plants in permanent SD.Approximately 10% of the GA3 applied could still be recovered from leaves and inflorescences after 45 days, indicating that GA3 is very stable in Bryophyllum, Most of the GA3 recovered was still associated with the treated leaves, but small amounts could be detected in other leaves and in inflorescences. Results of grafting experiments indicate that these low levels of GA3 are adequate to induce production of the floral stimulus.  相似文献   

6.
In an early-flowering line of pea (G2) apical senescence occurs only in long days (LD), while growth in short days (SD) is indeterminate. In SD, G2 plants are known to produce a graft-transmissible substance which delays apical senescence in related lines that are photoperiod-insensitive with regard to apical senescence. Gibberellic acid (GA3) applied to the apical bud of G2 plants in LD delayed apical senescence indefinitely, while N6-benzyladenine and -naphthaleneacetic acid were ineffective. Of the gibberellins native to pea, GA9 had no effect whereas GA20 had a moderate senescence-delaying effect. [3H]GA9 metabolism in intact leaves of G2 plants was inhibited by LD and was restored by placing the plants back in SD. Leaves of photoperiod-insensitive lines (I-types) metabolized GA9 readily regardless of photoperiod, but the metabolites differed qualitatively from those in G2 leaves. A polar GA9 metabolite, GAE, was found only in G2 plants in SD. The level of GA-like substances in methanol extracts from G2 plants dropped about 10-fold after the plants were moved from SD to LD; it was restored by transferring the plants back to SD. A polar zone of these GA-like materials co-chromatographed with GAE. It is suggested that a polar gibberellin is synthesized by G2 plants in SD; this gibberellin promotes shoot growth and meristematic activity in the shoot apex, preventing senescence.Abbreviations GA gibberellin - GA3 gibberellic acid - SD short days - LD long days  相似文献   

7.
Application of gibberellin A53 (GA53) to short-day (SD)-grown spinach (Spinacia oleracea L.) plants caused an increase in petiole length and leaf angle similar to that found in plants transferred to long days (LD). [2H] GA53 was fed to plants in SD, LD, and in a SD to LD transition experiment, and the metabolites were identified by gas chromatography with selected ion monitoring. After 2, 4, or 6 SD, [2H]GA53 was converted to [2H]GA19 and [2H]GA44. No other metabolites were detected. After 2 LD, only [2H] GA20 was identified. In the transition experiment in which plants were given 4 SD followed by 2 LD, all three metabolites were found. The results demonstrate unequivocally that GA19, GA20, and GA44 are metabolic products of GA53, and strongly suggest that photoperiod regulates GA metabolism, in part, by controlling the conversion of GA19 to GA20.  相似文献   

8.
Agrostemma githago is a long-day rosette plant in which transfer from short days (SD) to long days (LD) results in rapid stem elongation, following a lag phase of 7–8 d. Application of gibberellin A20 (GA20) stimulated stem elongation in plants under SD, while 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride (AMO-1618, an inhibitor of GA biosynthesis) inhibited stem elongation in plants exposed to LD. This inhibition of stem elongation by AMO-1618 was overcome by simultaneous application of GA20, indicating that GAs play a role in the photoperiodic control of stem elongation in this species. Endogenous GA-like substances were analyzed using reverse-phase high-performance liquid chromatography and the d-5 corn (Zea mays L.) assay. Three zones with GA-like activity were detected and designated, in order of decreasing polarity, as A, B, and C. A transient, 10-fold increase in the activity of zone B occurred after 8–10 LD, coincident with the transition from lag phase to the phase of rapid stem elongation. After 16 LD the activity in this zone had returned to a level similar to that under SD, even though the plants were elongating rapidly by this time. However, when AMO-1618 was applied to plants after 11 LD, there was a rapid reduction in the rate of stem elongation, indicating that continued GA biosynthesis was necessary following the transient increase in activity of zone B, if stem elongation was to continue under LD. It was concluded that control of stem elongation in A. githago involves more than a simple qualitative or quantitative change in the levels of endogenous GAs, and that photoperiodic induction alters both the sensitivity to GAs and the rate of turnover of endogenous GAs.Abbreviations AMO-1618 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride - GA(s) gibberellin(s) - LD long day(s) - LDP long-day plant(s) - SD short day(s)  相似文献   

9.
The effects of differential photoperiodic treatments applied to shoot tips and mature leaves of the long-day (LD) plant Silene armeria L. on growth and flowering responses, and on the levels of endogenous gibberellins (GAs), were investigated. Gibberellins were analyzed by gaschromatography-mass spectrometry and the use of internal standards. Exposure of mature leaves to LD, regardless of the photoperiodic conditions of the shoot tips, short days (SD), LD, or darkness, promoted elongation of the stems and of the immature leaves. Long-day treatment of the mature leaves modified the levels of endogenous GAs in shoot tips kept under LD, SD, or darkness. In shoot tips kept in LD or darkness the levels of GA53 were reduced, whereas the levels of GA19 and GA20 were increased. The contents of GA1 were increased in all three types of shoots: SD twofold, LD fivefold, and darkness eightfold. Dark treatment of the shoot tips on plants of which the mature leaves were grown in SD promoted elongation of the immature etiolated leaves and increased the GA1 content of the shoot tips threefold. However, this treatment did not cause stem elongation. The different photoperiodic treatments applied to the shoot tips did not change the levels of GAs in mature leaves. These results indicate that both LD and dark treatments result in an increase in GA1 in shoot tips. In addition, it is proposed that LD treatment induces the formation of a signal that is transmitted from mature leaves to shoot tips where it enhances the effect of GA on stem elongation.Abbreviations GAn gibberellin An - LD long day(s) - SD short day(s) We thank Dr. L.N. Mander, Australian National University, Canberra, for providing [2H]-gibberellins and Dr. D.A. Gage, MSU-NIH Mass Spectrometry Facility, East Lansing, for advice with mass spectrometry. This work was supported, in part, by a fellowship from the Spanish Ministry of Agriculture (Instituto Nacional de Investigaciones Agrarias) to M.T., by the U.S. Department of Energy grant No. DE-FG02-91ER20021, and by the U.S. Department of Agriculture grant No. 88-37261-3434 to J.A.D.Z.  相似文献   

10.
The medium forin vitro culture of green and SANDOZ herbicides-treatedChenopodium rubrum L. plants contained saccharides and hormones in different concentrations. Five days after sowing, the plants were exposed to non-inductive (15 long days—LD) or inductive (6 short days—SD + 9 LD) photoperiodic conditions. The length of hypocotyl and cotyledon blade were measured and percentage of flowering was scored. Gibberellic acid (GA3) stimulated hypocotyl growth of green and photobleached plants under SD and inhibited under LD conditions. Indole-3-acetic acid (IAA) slightly stimulated hypocotyl growth of green plants only under LD conditions. Benzylaminopurine (BAP) inhibited hypocotyl growth regardless of photoperiodic regime. The optimal concentration of glucose or saccharose for flowering in green and SANDOZ-treated plants was 5%. In green SAN 9785-treated plants exogenous saccharides compensated lack of photosynthates to bring about full flowering, but SAN 9789-treated plants needed in addition GA3.  相似文献   

11.
Under strictly non-inductive photoperiods (24-h photoperiods) floral buds were initiated on plants receiving 25 treatments with Reso (resorcinol) or 8 treatments with GA3 (gibberellic acid) or GA3 + Reso, while water treated control plants did not flower at all. Although a single treatment of plants with GA3 or GA3 + Reso is not adequate to cause induction under LD conditions, its effect is added to the sub-threshold induction caused by one SD (short day: 8-h photoperiod) cycle. The initiation of floral buds was hastened with an increasing number of SD cycles accompanying respective number of treatments, the effect of GA3 alone or together with Reso being more pronounced than that of Reso alone. GA3 increased the number of floral buds more than Reso, the number being the highest in plants receiving the respective number of treatments with the combination GA3 + Reso under both inductive as well as non-inductive photoperiods. Deceased.  相似文献   

12.
Stem elongation and flowering are two processes induced by long-day (LD) treatment in Silene armeria L. Whereas photoperiodic control of stem growth is mediated by gibberellins (GAs), the flowering response cannot be obtained by GA applications. Microscopic observations on early cellular changes in the shoot meristem following LD induction or GA treatment in short days (SD) were combined with GA analyses of stem sections at various distances below the shoot apex. The earliest effects of both LD and GA induction on the subapical meristem were an increase in the number of cells per cell file and a reduction of cell length in the meristematic tissue approx. 1.0–3.0 mm below the shoot apex. Within 8 d after the beginning of LD induction or after GA application, the cells in the subapical meristem were oriented in long files. In induced tips, cellulose deposition occurred mostly in longitudinal walls, indicating that many transverse cell divisions had taken place which, in turn, increased the length of the stem. In contrast to LD induction, GA treatments did not promote the transition from the vegetative to the floral stage. Endogenous GAs were analyzed by selected ion monitoring (SIM), using labeled internal standards, in extracts from transverse sections of the tip at various distances below the apical meristem. In control plants, the levels of the six 13-hydroxy GAs studied (GA53, GA44, GA19, GA20, GA1, and GA8) decreased as the distance from the apical meristem increased. Except for GA53, GA levels were higher in tips of LD-induced plants, particularly in the meristematic zone approx. 0.5–1.5 mm below the apical meristem. In comparison with SD, the highest increase observed was for GA1, the content of which increased 30-fold in the zone 0.5–3.5 mm below the shoot apex. These data indicate a spatial correlation between the accumulation of GA1 and its precursors, and the enhanced mitotic activity which occurs in the subapical meristem of elongating Silene apices.Abbreviations GAn gibberellin An - LD long day(s) - SD short day(s) We thank Dr. L.N. Mander, Australian National University, Canberra, for providing [2H]- gibberellins, Dr. B.O. Phinney, University of California, Los Angeles, USA, for [13C]GA8, Dr. D.A. Gage, MSU-NIH Mass Spectrometry Facility, for advice with mass spectrometry, and Mr. M. Chassagne, I.N.R.A. C.R. Bordeaux, for the photography. This work was supported, in part, by a fellowship from the Spanish Ministry of Agriculture (Instituto Nacional de Investigaciones Agrarias) to M.T., by the U.S. Department of Energy under contract DE-ACO2-76ERO-1338, and by the U.S. Department of Agriculture grant No. 88-37261-3434 to J.A.D.Z.  相似文献   

13.
The effects of thermo- and photoperiodicity on elongation growth and on endogenous level of gibberellins (GAs) in Begonia x hiemalis during various phases of the day-night cycle have been studied. Plant tissue was harvested during the day and night cycle after temperature and photoperiodic treatments and analyzed for endogenous GAs using combined gas chromatography and mass spectrometry. Elongation growth increased when the difference between day and night temperature (DIF = DT − NT) increased from a negative value (−9.0 and −4.5°C) to zero and with increasing photoperiod from 8 to 16 h. When applied to the youngest apical leaf, gibberellins A1, A4, and A9 increased the elongation of internodes and petioles. GA4 had a stronger effect on elongation growth than GA1 and GA9. In relative values, the effect of these GAs decreased when DIF increased from −9 to 0°C. The time of applying the GAs during a day and night cycle had no effect on the growth responses. In general, endogenous levels of GA19 and GA20 were higher under negative DIF compared with zero DIF. The level of endogenous GA1 in short day (SD)-grown plants was higher under zero DIF than under negative DIF, but this relationship did not appear in long day (LD)-grown plants. The main effects of photoperiod seem to be a higher level of GA19 and GA1 at SD compared with LD, whereas GA20 and GA9 show the opposite response to photoperiod. No significant differences in endogenous level of GA1, GA9, GA19, and GA20 were found for various time points during the diurnal day and night cycle. Endogenous GA20 was higher in petiole and leaf compared with stem, whereas there were no differences of GA1, GA9, and GA19 between plant parts. No clear relationship was found between elongation of internodes and petioles and levels of endogenous GAs. Received December 26 1996; accepted July 1, 1997  相似文献   

14.
The influence of photoperiod on the metabolism of GA20 in Salix pentandra was studied by feeding [3H]-GA20 to seedlings which had been grown previously under long day (LD) or short day (SD) conditions. After 48 h in LD or SD, metabolites were separated on sequential, silica gel partition columns and reversed-phase C18 HPLC. The principal metabolite co-chromatographed with [3H]-GA1 and this conversion was confirmed by feeding [2H]-GA20, which was converted to [2H]-GA1 as identified by gas chromatography-selected ion monitoring. Chromatographic evidence also indicated the minor conversion of [3H]-GA20 to [3H]-GA8 (via [3H]-GA1) and trace conversion to [3H]-GA29 (GAs A1.8,20.29 are native in Salix). Ethyl acetate-insoluble [3H] metabolites were formed and could be cleaved by cellulase to release putative [3H]-GA20 and [3H]-GA1 suggesting the conversion to glucosyl conjugates of these GAs. Metabolism of [3H]-GA20 was slightly more rapid in plants previously grown under LD than SD, an effect which reflected the generally increased shoot growth under LD. However, altering the photoperiod after [3H]-GA20 addition had only a slight effect on the metabolism of [3H]-GA20 in Salix seedlings. This indicates that the conversion of GA20 to GA1 is not a controlling step in the photoperiodic regulation of growth cessation in Salix.  相似文献   

15.
The following seven gibberellins (GAs) have been identified by gas chromatography-mass spectrometry in shoots and leaves of the long-day plant Agrostemma githago: GA53, GA44, GA19, GA17, GA20, GA1, and 3-epi-GA1. The levels of these compounds were measured, using selected ion monitoring, during photoperiodic induction. The levels of GA44, GA19, GA17, and GA20 all increased to a peak at eight long days (LD), followed by a decline, while the levels of GA1 and 3-epi-GA1 did not reach a peak until 12 LD. The level of GA53 remained steady over the first 10–12 LD. Later in the LD treatment the levels of GA53, GA44, GA19, and GA17 increased again. The rate of metabolism of all GAs except GA53 was higher after 12–16 LD than under short days. These data thus provide indirect evidence for an effect of photoperiodic induction on GA turnover in A. githago.Abbreviations AMO-1618 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride - GA(s) gibberellin(s) - GC-MS gas chromatography-mass spectrometry - HPLC high performance liquid chromatography - LD long day(s) - MeTMS trimethylsilylether of the methyl ester - SD short day(s) - SIM selected ion monitoring  相似文献   

16.
To determine whether daylength influences the rate of metabolism of gibberellins (GAs) in the long-day (LD) rosette plant Agrostemma githago L., [3H]GA20 and [3H]GA1 were applied under short day (SD) and LD. Both were metabolized faster under LD than under SD. [3H]GA20 was metabolized to a compound chromatographically identical to 3-epi-GA1. [3H]GA1 was metabolized to two acidic compounds, the major metabolite having chromatographic properties similar to, but not identical with GA8. [3H]3-epi-GA1 applied to plants under LD was metabolized much more slowly than was [3H]GA1, and formed a very polar metabolite which did not partition into ethyl acetate at pH 2.5. Very polar metabolites were also formed after the feeds of [3H]GA20 and [3H]GA1. It was not possible to characterize these very polar compounds further because of their apparent instability. The results obtained suggest that in Agrostemma GA20 is the precursor of 3-epi-GA1, but there is at present no evidence indicating the precursor of GA1.  相似文献   

17.
Evidence has been reported that bulb development in onion plants (Allium cepa L.) is controlled by endogenous bulbing and anti-bulbing hormones, and that gibberellin (GA) is a candidate for anti-bulbing hormone (ABH). In this study, we identified a series of C-13-H GAs (GA12, GA15, GA24, GA9, GA4, GA34, and 3-epi-GA4) and a series of C-13-OH GAs (GA44, GA20, GA1 and GA8) from the leaf sheaths including the lower part of leaf blades of onion plants (cv. Senshu-Chuko). These results suggested that two independent GA biosynthetic pathways, the early-non-hydroxylation pathway to GA4 (active GA) and early-13-hydroxylation pathway to GA1 (active GA), exist in onion plants. It was also suggested that GA4 and GA1 have almost the same ability to inhibit bulb development in onion plants induced by treatment with an inhibitor of GA biosynthesis, uniconazole-P. The endogenous levels of GA1 and GA4, and their direct precursors, GA20 and GA9, in leaf blades, leaf sheaths, and roots of 4-week-old bulbing and non-bulbing onion plants were measured by gas chromatography/selected ion monitoring with the corresponding [2H]labeled GAs as internal standards. In most cases, the GA levels in long-day (LD)-grown bulbing onion plants were higher than those of short-day (SD)-grown non-bulbing onion plants, but the GA1 level in leaf blades of SD-grown onion plants was rather higher than that of LD-grown onion plants. Relationship between the endogenous GAs and bulb development in onion plants is discussed.  相似文献   

18.
Application experiments have suggested that short‐day‐induced cessation of elongation growth in trees is caused by photoperiodic regulation of the conversion of gibberellin GA19 to GA20. In the present study we examined further the photoperiodic control of GA metabolism in trees with focus on the conversion of GA19 in Salix pentandra, hybrid aspen (Populus tremula × tremuloides) and silver birch (Betula pendula) using [17,17‐2H2]‐GA19 or unlabelled GAs in application studies. GA20 and GA1 were able to restore growth also in hybrid aspen and silver birch under short days (SD), whereas GA19 had no or only a very small activity. Contrary to hybrid aspen and S. pentandra, the activity of GA20 in silver birch was significantly lower than that of GA1. Gas chromatography‐mass spectrometry (GC‐MS) analysis revealed a smaller turnover of [2H2]‐GA19 in SD than in long days (LD) in hybrid aspen. No such difference in turnover of [2H2]‐GA19 was observed in photoperiod‐insensitive hybrid aspen overexpressing PHYA. Application of unlabelled GAs to seedlings of S. pentandra, hybrid aspen and silver birch under SD followed by quantification of metabolites by GC‐MS analysis, showed that applied GA19 was not readily converted to GA20 and GA1. Although the sensitivity to GAs is also known to decrease under SD, the present data are in favour of a photoperiodic regulation of the metabolism of GA19in vivo in the woody species S. pentandra, hybrid aspen and silver birch. The data might also suggest that silver birch differs from S. pentandra and hybrid aspen by exhibiting a possible photoperiodic control also of the conversion of GA20 to GA1.  相似文献   

19.
A single treatment of plants with GA3 (gibberellic acid) is not adequate to cause induction under LD (long day: 24-h photo-period) condition, but its effect is added to the sub-threshold induction caused by one SD (short day: 8-h photoperiod) cycle. Floral bud initiation is hastened, and the number of floral buds and flowers per flowering plant increases in plants receiving a single treatment with the combination GA3+ SA (salicylic acid) accompanying a single SD cycle. However, the increase on 10 replicate basis is more marked in plants receiving three treatments with the combination GA3+β-N (β-naphthol) and five treatments with the combination GA3+ SA accompanying six and 10 SD cycles, respectively. The number of floral buds and flowers decreases with an increase hi the number of SD cycles, but it is higher in plants treated with GA3, SA or GA3+β-N than in the water-treated controls. — Under long days, treatment of plants with the combinations GA3+ SA or GA3+β-N accelerates the initiation as well as increases the number of floral buds. While a minimum of five treatments with GA3 or of 25 with SA or β-N alone is needed for floral bud initiation under a 24-h photoperiod, three treatments are adequate to induce floral buds with the combination GA3+ SA or GA3+β-N under continuous illumination. Ten or more treatments with these combinations under a 24-h photoperiod produce more flowers than the same treatments under an 8-h photoperiod.  相似文献   

20.
A. J. McComb 《Planta》1967,76(3):242-251
Summary Application of a small amount of gibberellic acid (GA3) to unvernalized rosettes of a biennial strain of Centaurium minus Moench brings about immediate stem elongation under both long days (LD) and short days (SD), but the rate of stem elongation falls after the cessation of treatment. Under LD, but not SD, a second period of rapid and prolonged stem elongation may subsequently take place, associated with flowering. Extended GA3 treatment under SD leads to the formation of a long stem but not to flowering; after the treatment the plants revert to vegetative aerial rosettes unless transferred to LD prior to the cessation of stem elongation; after such a transfer, rapid stem elongation and flowering may be initiated. If flower primordia are initiated under LD, stem elongation and formation of flower primordia continue after transfer to SD, though flowers do not develop fully. It is suggested that under LD but not SD applied GA3 may bring about the production of endogenous gibberellin, and that this synthesis of endogenous gibberellin occurs in the flower primordia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号