首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Conjugated linoleic acid (CLA) constitutes a group of isomers derived from linoleic acid. Diverse studies have suggested that these unsaturated fatty acids have beneficial effects on human health. However, it has also been reported that their consumption can generate alterations in hepatic tissue. Thus, in the present study, we evaluated the effect of two of the major isomers of CLA, cis-9, trans-11-CLA and trans-10, cis-12-CLA, in the regulation of insulin signaling in a hepatic cell model, clone 9 (C9). We found that the two isomers decrease insulin-stimulated phosphorylation of the main proteins involved in insulin signaling, such as Akt at Ser473 and Thr308, the insulin receptor at Tyr1158, IRS-1 at Tyr632, and GSK-3 at Ser9/21. Protein expression, however, was unaffected. Interestingly, both isomers of CLA promoted phosphorylation and activation of PKCε. Inhibition of PKCε activity by a dominant-negative form or knockdown of endogenous PKCε prevented the adverse effects of CLA isomers on insulin-induced Akt phosphorylation. Additionally, we also found that both isomers of CLA increase phosphorylation of IRS-1 at Ser612, a mechanism that probably underlies the inhibition of IRS-1 signaling by PKCε. Using confocal microscopy, we found that both isomers of CLA induced lipid accumulation in C9 cells with the presence of spherical cytosolic vesicles, suggesting their identity as neutral lipid droplets. These findings indicate that cis-9, trans-11-CLA and trans-10, cis-12-CLA isomers could have a significant role in the development of insulin resistance in hepatic C9 cells through IRS-1 serine phosphorylation, PKCε activation, and hepatic lipid accumulation.  相似文献   

2.
HEAT TREATMENT OF VEGETABLE OILS GAVE RISE TO FOUR MAIN CONJUGATED LINOLEIC ACID (CLA) ISOMERS : the 9c,11t, 9t,11t, 10t,12c and 10t,12t. The diet of male Wistar rats was supplemented with 150 mg/day either 9c,11t-, 9t,11t-, 10t,12c- or 10t,12t CLA isomers for 6 days and their effects on lipid composition were investigated in liver, heart, skeletal muscle Gastrocnemius, kidneys, brain and adipose tissue. The incorporation of all isomers was low (< 1.4%) and the level was as follows : adipose tissue > Gastrocnemius > liver, kidneys > brain. The main changes in the overall lipid composition were observed in skeletal muscle (Gastrocnemius) and in heart and were associated with feeding the 10t,12c and 10t,12t isomers. The diet enriched in 10t,12t CLA decreased the total long chain polyunsaturated fatty acid proportion in Gastrocnemius (from 18.4% to 14.4%) and increased that of 20:4 n-6 in heart (from 16.9 to 19.3%). The diet enriched in 10t,12c CLA decreased the monounsaturated fatty acid proportion in Gastrocnemius (from 32.0 to 26.1%) and produced an effect similar to the 10t,12t in heart. By contrast, the 9c,11t and 9t,11t isomers did not affect fatty acid composition in all tissues and organs. We concluded that ingestion of 10t,12c and 10t,12t CLA present in oils and in CLA mixtures could change muscle lipid composition.  相似文献   

3.
A quantitative GC method for conjugated linoleic acid (CLA) isomers of physiological significance (cis-9, trans-11 CLA and trans-10, cis-12 CLA) as non-esterified fatty acids (NEFA) or triacylglycerols (TAG) was developed. Furthermore, the effect of the internal standard addition point (sample or fat extract) was studied. Response linearity, recovery and precision assays, detection and quantification limits were determined. Linearity was demonstrated over a range from 0.1 to 10 microg/mL. When CLA isomers were present as NEFA, the recovery significantly decreased (P< or =0.05) from 76% to 27.1% (cis-9, trans-11 CLA) and 28.5% (trans-10, cis-12 CLA) when the standards were added to the fat extract or to the initial tissue, respectively. As an application, liver samples from hamsters fed a diet supplemented with both CLA isomers were analyzed. The CLA isomers in liver samples were detected with reasonable reproducibility.  相似文献   

4.
Conjugated linoleic acid (CLA) has been reported to reduce blood pressure in obese insulin-resistant rats, but its mechanism of action has not been identified. The objective of this study was to determine whether CLA isomers can reduce obesity-related hypertension in the fa/fa Zucker rat in relation to adiponectin production and endothelial nitric oxide synthase (eNOS) activation. Obese fa/fa Zucker rats were randomly assigned to one of four groups: (1) cis-9,trans-11-CLA, (2) trans-10,cis-12 (t10,c12)-CLA, (3) control or (4) captopril. After 8 weeks, systolic blood pressure increased 30% in control obese rats. This increase was attenuated 11%-13% in the t10,c12-CLA isomer and captopril groups, respectively. The t10,c12-CLA isomer concurrently elevated adiponectin levels in both plasma and adipose tissue and increased phosphorylated eNOS in adipose tissue as well as the aorta. Although a direct effect of CLA was not observed in cultured endothelial cells, direct adiponectin treatment increased phosphorylation of eNOS. Endothelial nitric oxide synthase phosphorylation was also increased in adipose of fa/fa Zucker rats infused with adiponectin in parallel with improvements in blood pressure. Our results suggest that the t10,c12-CLA isomer attenuates development of obesity-related hypertension, at least in part, by stimulating adiponectin production, which subsequently activates vascular eNOS.  相似文献   

5.
The aim of the present study was to determine the effects of conjugated linoleic acid (CLA) on lipid and fatty acid metabolism in Atlantic salmon. The overall objective being to test the hypotheses that CLA has beneficial effects in salmon including growth enhancement, improved flesh quality through decreased adiposity and lipid deposition thereby minimising detrimental effects of feeding high fat diets, and increased nutritional quality through increased levels of beneficial fatty acids including n-3 highly unsaturated fatty acids (HUFA) and CLA itself. Salmon smolts were fed diets containing two levels of fish oil (low, approximately 18% and high, approximately 34%) containing three levels of CLA (a 1:1 mixture of 9-cis,trans-11 and trans-10,cis-12. at 0, 1 and 2% of diet) for 3 months and the effects on growth performance, liver and muscle (flesh) lipid contents and class compositions, and fatty acid compositions determined. The diets were also specifically formulated to investigate whether the effects of CLA, if any, were more dependent upon absolute content of CLA in the diet (as percentage of total diet) or the relative level of CLA to other fatty acids. Dietary CLA in salmon smolts had no effect on growth parameters or biometric parameters. However, there was a clear trend of increased total lipid and triacylglycerol contents in both liver and flesh in fish fed CLA, particularly in fish fed the high oil diets. Finally, CLA was incorporated into tissue lipids, with levels in flesh being 2-fold higher than in liver, but importantly, incorporation in liver was at the expense of saturated and monounsaturated fatty acids whereas in flesh it was at the expense of n-3HUFA.  相似文献   

6.
The fatty acid-conjugated linoleic acid (CLA) enhances glucose tolerance and insulin action on skeletal muscle glucose transport in rodent models of insulin resistance. However, no study has directly compared the metabolic effects of the two primary CLA isomers, cis-9,trans-11-CLA (c9,t11-CLA) and trans-10,cis-12-CLA (t10,c12-CLA). Therefore, we assessed the effects of a 50:50 mixture of these two CLA isomers (M-CLA) and of preparations enriched in either c9,t11-CLA (76% enriched) or t10,c12-CLA (90% enriched) on glucose tolerance and insulin-stimulated glucose transport in skeletal muscle of the insulin-resistant obese Zucker (fa/fa) rat. Animals were treated daily by gavage with either vehicle (corn oil), M-CLA, c9,t11-CLA, or t10,c12-CLA (all CLA treatments at 1.5 g total CLA/kg body wt) for 21 consecutive days. During an oral glucose tolerance test, glucose responses were reduced (P < 0.05) by 10 and 16%, respectively, in the M-CLA and t10,c12-CLA animals, respectively, whereas insulin responses were diminished by 21 and 19% in these same groups. There were no significant alterations in these responses in the c9,t11-CLA group. Insulin-mediated glucose transport activity was enhanced by M-CLA treatment in both type I soleus (32%) and type IIb epitrochlearis (58%) muscles and by 36 and 48%, respectively, with t10,c12-CLA. In the soleus, these increases were associated with decreases in protein carbonyls (index of oxidative stress, r = -0.616, P = 0.0038) and intramuscular triglycerides (r = -0.631, P = 0.0028). Treatment with c9,t11-CLA was without effect on these variables. These results suggest that the ability of CLA treatment to improve glucose tolerance and insulin-stimulated glucose transport activity in insulin-resistant skeletal muscle of the obese Zucker rat are associated with a reduction in oxidative stress and muscle lipid levels and can be specifically ascribed to the actions of the t10,c12 isomer. In the obese Zucker rat, the c9,t11 isomer of CLA is metabolically neutral.  相似文献   

7.
The elongated form of conjugated linoleic acid (CLA), conjugated eicosadienoic acid (CEA, conj. 20:2delta(c11,t13/t12,c14)), was generated from CLA by liver microsomal fractions. Subsequent testing showed that dietary CEA significantly reduced body fat, and increased lean mass similar to CLA when compared to controls. CEA also decreased lipoprotein lipase activity and triacylglyceride, and increased glycerol release in 3T3-L1 adipocytes, correlated with the trans-12,cis-14 isomer, but CEA required a longer incubation period than cells treated with CLA. Based on the fact that CEA fed animals had CLA in tissue, we suggest that the effect of CEA is due to the CLA converted from CEA in the system. The delta-6 desaturated and elongated form of trans-10,cis-12 CLA (conjugated eicosatrienoic acid, CETA, conj. 20:3delta(c8,t12,c14)) inhibited LPL activity and increased glycerol release but was less active than trans-10,cis-12 CLA or CEA. The 21-carbon conjugated fatty acid, conjugated heneicosadienoic acid (CHDA, conj. 21:2delta(c12,t14/c13,t15)), was not active on LPL inhibition, triacylglyceride, or glycerol release in 3T3-L1 adipocytes. We also provide evidence that CLA was metabolized to conjugated dodecadienoic acid (conj. 12:2delta(c3,t5/t4,c6)). In addition, there were indications of the presence of conjugated tetradecadienoic acid (conj. 14:2delta(c5,t7/t6,c8)), suggesting that CLA can be metabolized through fatty acid beta-oxidation. This is the first work to report the presence of conjugated 12 and 14 carbon fatty acids, originated from CLA, and the biological activities of CEA, CETA and CHDA.  相似文献   

8.
9.
Conjugated linoleic acids (CLA) are dietary fatty acids. Whereas cis-9,trans-11-(c9,t11)-CLA can be found in meat and dairy products, trans-9,trans-11-(t9,t11)-CLA is a constituent of vegetable oils. Previous studies showed that these two isomers activate different nuclear receptors and, thus, expression of genes related to lipid metabolism. Here we show that these CLA isomers are differentially elongated and desaturated in primary monocyte-derived macrophages isolated from healthy volunteers by using gas chromatography-mass spectrometry (GC-MS). We further demonstrate that c9,t11-CLA incorporates in phosphatidylcholine (PC) and phosphatidylethanolamine (PE) species and activates de novo glycerophospholipid synthesis by quantitative electrospray ionization-tandem mass spectrometry (ESI-MS/MS). c9,t11-CLA leads to strong shifts of the species profiles to PC 18:2/18:2 and PE 18:2/18:2, which are due to de novo synthesis and fatty acid remodeling. In contrast, t9,t11-CLA is preferentially bound to neutral lipids, including triglycerides and cholesterol esters. Taken together our results show that c9,t11-CLA and t9,t11-CLA have differential effects on PC and PE metabolism. Moreover, these data demonstrate that the structure of fatty acids not only determines their incorporation into lipid classes but also modulates the kinetics of lipid metabolism, particularly PC synthesis.  相似文献   

10.
11.
Daily intake of conjugated linoleic acid (CLA) has been shown to reduce body fat accumulation and to increase body metabolism; this latter effect has been often associated with the up-regulation of uncoupling proteins (UCPs). Here we addressed the effects of a CLA-supplemented murine diet (~2?% CLA mixture, cis-9, trans-10 and trans-10, cis-12 isomers; 45?% of each isomer on alternating days) on mitochondrial energetics, UCP2 expression/activity in the liver and other associated morphological and functional parameters, in C57BL/6 mice. Diet supplementation with CLA reduced both lipid accumulation in adipose tissues and triacylglycerol plasma levels, but did not augment hepatic lipid storage. Livers of mice fed a diet supplemented with CLA showed high UCP2 mRNA levels and the isolated hepatic mitochondria showed indications of UCP activity: in the presence of guanosine diphosphate, the higher stimulation of respiration promoted by linoleic acid in mitochondria from the CLA mice was almost completely reduced to the level of the stimulation from the control mice. Despite the increased generation of reactive oxygen species through oxi-reduction reactions involving NAD(+)/NADH in the Krebs cycle, no oxidative stress was observed in the liver. In addition, in the absence of free fatty acids, basal respiration rates and the phosphorylating efficiency of mitochondria were preserved. These results indicate a beneficial and secure dose of CLA for diet supplementation in mice, which induces UCP2 overexpression and UCP activity in mitochondria while preserving the lipid composition and redox state of the liver.  相似文献   

12.
Conjugated linoleic acid (CLA) is reported to have health benefits, including reduction of body fat. Previous studies have shown that brown adipose tissue (BAT) is particularly sensitive to CLA-supplemented diet feeding. Most of them use mixtures containing several CLA isomers, mainly cis-9, trans-11 and trans-10, cis-12 in equal concentration. Our aim was to characterize the separate effects of both CLA isomers on thermogenic capacity in cultured brown adipocytes. The CLA isomers showed opposite effects. Hence, on the one hand, trans-10, cis-12 inhibited uncoupling protein (UCP) 1 induction by norepinephrine (NE) and produced a decrease in leptin mRNA levels. These effects were associated with a blockage of CCAAT-enhancer-binding protein-alpha and peroxisome proliferator-activated receptor-gamma(2) mRNA expression. On the other hand, cis-9, trans-11 enhanced the UCP1 elicited by NE, an effect reported earlier for polyunsaturated fatty acids and also observed here for linoleic acid. These findings could explain, at least in part, the effects observed in vivo when feeding a CLA mixture supplemented diet as a result of the combined action of CLA isomers (reduction of adipogenesis and defective BAT thermogenesis that could be through trans-10, cis-12 and enhanced UCP1 thermogenic capacity through cis-9, trans-11).  相似文献   

13.
The present study was aimed at investigating the effect of duration and time of feeding n-3 fatty acids on the fatty acid composition of intramuscular fat and adipose tissue of bulls at slaughter. Four groups of bulls were given during three periods different diets, mainly differing in the presence of linseed as the predominant n-3 fatty acid source in the concentrate either or not in combination with grass (silage) as the roughage. The results show that the fatty acid composition of the feed during the earlier periods of life of the animal were important and influenced the final intramuscular fatty acid composition. Feeding n-3 PUFA during the phases before the finishing diet increased the long chain n-3 PUFA (C20:5n-3, C22:5n-3 and C22:6n-3) compared to animals which were fed only a C 18:3n-3 rich concentrate in the finishing period. The cis-9,trans-11CLA content was increased by feeding linseed in the fattening period and was mainly deposited in the triacylglycerol fraction of the intramuscular fat.  相似文献   

14.
The objective of this study was to evaluate the impact of diets enriched with plant oils or seeds, high in polyunsaturated fatty acids (PUFA), on the fatty acid profile of sheep intramuscular and subcutaneous adipose tissue (SAT). Sixty-six lambs were blocked according to initial body weight and randomly assigned to six concentrate-based rations containing 60 g fat/kg dry matter from different sources: (1) Megalac (MG; ruminally protected saturated fat), (2) camelina oil (CO), (3) linseed oil (LO), (4) NaOH-treated camelina seed (CS), (5) NaOH-treated linseed (LS) or (6) CO protected from ruminal saturation by reaction with ethanolamine; camelina oil amides (CA). The animals were offered the experimental diets for 100 days, after which samples of m. longissimus dorsi and SAT were collected and the fatty acid profile determined by GLC. The data were analyzed using ANOVA with 'a priori' contrasts including camelina v. linseed, oil v. NaOH-treated seeds and CS v. CA. Average daily gain and total fatty acids in intramuscular adipose tissue were similar across treatments. The NaOH-treatment of seeds was more effective in enhancing cis-9, trans-11 conjugated linoleic acid (CLA) incorporation than the corresponding oil, but the latter resulted in a higher content of trans-11 18:1 in both muscle neutral and polar lipids (P < 0.01, P < 0.001, respectively). Inclusion of LS resulted in the highest PUFA:saturated fatty acid (SFA) ratio in total intramuscular fat (0.22). The NaOH-treatment of seeds resulted in a higher PUFA/SFA ratio (0.21 v. 0.18, P < 0.001) than oils and on average, linseed resulted in a higher PUFA/SFA ratio than camelina (P < 0.01). Lambs offered LS had the highest concentration of n-3 PUFA in the muscle, while those offered MG had the lowest (P < 0.001). This was reflected in the lowest (P < 0.001) n-6: n-3 PUFA ratio for LS-fed lambs (1.15) than any other treatment, which ranged from 2.14 to 1.72, and the control (5.28). The trends found in intramuscular fat were confirmed by the data for SAT. This study demonstrated the potential advantage from a human nutrition perspective of feeding NaOH-treated seeds rich in PUFA when compared to the corresponding oil. The use of camelina amides achieved a greater degree of protection of dietary PUFA, but decreased the incorporation of biohydrogenation intermediates such as cis-9, trans-11 CLA and trans-11 18:1 compared to NaOH-treated seeds.  相似文献   

15.
The objective of this work was to examine the effect of different levels of grazing on muscle nutritional fatty acid (FA) profile, including the beneficial n-3 polyunsaturated fatty acids (PUFA) and cis-9, trans-11 (cis-9, trans-11) 18:2 conjugated linoleic acid (CLA). Thirty male Galician Blond (GB) breed calves were randomly assigned to the following three grazing treatments: (1) continuous pasture grazing for 250 days (P); (2) 197-day grazing followed by a 50-day short period of concentrate-based finishing (PC) and (3) 57-day grazing followed by a 165-day long period of concentrate-based finishing (C). Calves kept sucking their mothers up to the time of slaughter. The slaughter weight was similar for all treatments (about 330 kg). Samples of the longissimus thoracis muscle were used for assessment of chemical composition by near infrared reflectance spectroscopy and FA profiles by gas chromatography. Muscle from C calves was fatter and had higher content in total FA, monounsaturated FA (MUFA), cis-9 18:1 than muscle from P calves, whereas PC muscle had generally intermediate values. No significant treatment difference for total saturated FAs (SFA) was found. Content of potentially beneficial n-3 PUFA (18:3n-3, 20:3n-3, 20:5n-3 and 22:6n-3), cis-9, trans-11 CLA and n-6:n-3 ratio were lower and PUFA : SFA ratio were higher in P than in both C and PC calves. Calves fed exclusively on pasture synthesised higher amounts of beneficial FA than calves finished on concentrate. A 50-day period of concentrate-based finishing was sufficient to offset the synthesis of beneficial FA from pasture grazing.  相似文献   

16.
Numerous studies have demonstrated that conjugated linoleic acid (CLA) modulates body composition, reducing body fat accumulation in various mammalian species. However, very few studies have been carried out to assess the effect of CLA on previously stored body fat. The aim of the present work was to analyse the effectiveness of trans-10,cis-12 CLA in improving alterations produced by high-fat feeding in body fat and serum parameters when it was included in an energy-restricted diet. For this purpose male Syrian Golden hamsters were fed on high-fat diet for 7 weeks in order to increase their body fat content, and a further 25% energy-restricted diet supplemented or not with 0.5% trans-10,cis-12 CLA for 3 weeks. Adipose tissues, liver and gastrocnemious muscles were dissected and weighed. Adipocyte diameter and number were assessed in epididymal adipose tissue. Total cholesterol, triacylglycerols, non-esterified fatty acids and glucose were measured in serum. Three weeks of energy restriction resulted in a reduction in body weight and white adipose tissue size in all anatomical locations, without changes in liver and gastrocnemious muscle weights. Epididymal adipocyte size was reduced, but total adipocyte number remained unchanged. Serum cholesterol, triacylglycerols and glucose were significantly reduced. No differences were observed between the restricted groups (control and CLA supplemented). In conclusion, under our experimental conditions, the addition of trans-10,cis-12 CLA to the diet does not increase the benefits produced by energy restriction.  相似文献   

17.
Zhou X  Li D  Yin J  Ni J  Dong B  Zhang J  Du M 《Journal of lipid research》2007,48(8):1701-1709
Conjugated linoleic acid (CLA), a mixture of isomers of linoleic acid, has previously been shown to be able to decrease porcine subcutaneous (SC) adipose tissue levels while increasing the count of intramuscular (IM) adipose tissue in vivo. However, the underlying mechanisms through which it acts are poorly understood. The objective of this study was to investigate the different effects of CLA on adipogenesis in cultured SC adipose tissue and IM stromal vascular cells obtained from neonatal pigs. As shown here, trans-10, cis-12 CLA decreased the expression of adipocyte-specific genes as well as adipose precursor cell numbers and the accumulation of lipid in cultured SC adipose tissue stromal vascular cells. However, the cis-9, trans-11 CLA did not alter adipogenesis in SC cultures. On the other hand, both CLA isomers increased the expression of adipocyte-specific genes in IM cultures, together with the increasing accumulation of lipid and Oil Red O-stained cells. Collectively, these data show that CLA decreases SC adipose tissue but increases IM adipose tissue by different regulation of adipocyte-specific gene expression. These results suggest that adipogenesis in IM adipocytes differs from that in SC adipocytes.  相似文献   

18.
We have previously demonstrated that a crude mixture of commercially available conjugated linoleic acid (CLA) isomers suppressed triglyceride (TG) content and induced apoptosis in post-confluent cultures of murine 3T3-L1 preadipocytes. Furthermore, we found that 100 μM of trans-10, cis-12 isomer of CLA had a greater TG-lowering and apoptotic effect than the crude mixture of CLA isomers. Therefore, the purpose of this study was to: 1) compare the potencies of the two main isomers found in the crude mixture of CLA isomers, e.g. cis-9, trans-11 (41%) and trans-10, cis-12 (44%); and 2) determine if the TG-reducing actions of CLA could be attenuated by the addition of increasing levels of linoleic acid to the cultures. Preadipocyte differentiation was assessed on day 7 of the differentiation protocol by measuring TG content (per 106 cells), cell size, and lipid staining. In experiment 1, post-confluent cultures of 3T3-L1 preadipocytes treated for the first 6 d of differentiation with 100 μM of a crude mixture of CLA isomers or 44 μM of trans-10, cis-12 CLA had less TG content than all other cultures. In contrast, cultures supplemented with 41 μM of the cis-9, trans-11 CLA isomer had the same amount of TG as the BSA controls. In experiment 2, post-confluent cultures of 3T3-L1 preadipocytes treated for the first 6 d of differentiation with 50 μM trans-10, cis-12 CLA had less TG content and a greater number of smaller cells (10–12.5 microns) compared to all other treatments. CLA-treated cultures supplemented with increasing levels of linoleic acid (50–200 μM) had greater TG contents and greater numbers of larger cells (15–20 microns) than cultures treated with 50 μM of the trans-10, cis-12 CLA isomer alone. These data demonstrate that: 1) the TG-lowering effects of the crude mixture of CLA isomers is due almost exclusively to the trans-10, cis-12 isomer; and 2) linoleic acid partially reverses CLA’s attenuation of TG content, suggesting that these unsaturated fatty acids may compete for incorporation into TG or phospholipid-derived eicosanoids that regulate preadipocyte differentiation.  相似文献   

19.
The biologically active isomers of conjugated linoleic acid.   总被引:70,自引:0,他引:70  
Numerous physiological effects are attributed to conjugated linoleic acid (CLA). The purpose of this presentation is to consider these effects with respect to the cis-9,trans-11 and trans-10,cis-12 CLA isomers. We review previously published data and present new findings that relate to underlying biochemical mechanisms of action. Both isomers are natural products. The cis-9,trans-11 isomer is the principal dietary form of CLA, but the concentrations of this isomer and the trans-10,cis-12 isomer in dairy products or beef vary depending on the diet fed to cows or steers, respectively. The trans-10,cis-12 CLA isomer exerts specific effects on adipocytes, in particular reducing the uptake of lipid by inhibiting the activities of lipoprotein lipase and stearoyl-CoA desaturase. The trans-10,cis-12 CLA isomer also affects lipid metabolism in cultured Hep-G2 human liver cells, whereas both the cis-9,trans-11 and trans-10,cis-12 CLA isomers appear to be active in inhibiting carcinogenesis in animal models. We present new findings indicating that the cis-9,trans-11 CLA isomer enhances growth and probably feed efficiency in young rodents. Accordingly, the effects of CLA on body composition (induced by trans-10,cis-12 CLA) and growth/feed efficiency (induced by cis-9,trans-11 CLA) appear to be due to separate biochemical mechanisms. We also show that a 19-carbon CLA cognate (conjugated nonadecadienoic acid, CNA) inhibits lipoprotein lipase activity as effectively as CLA in cultured 3T3-L1 adipocytes. Presumably, CNA is metabolized differently than the 18-carbon CLA isomers, so this finding indicates direct activity of the administered compound as opposed to acting via a metabolite.  相似文献   

20.
AIMS: To observe the antiobesity activity of trans-10,cis-12-conjugated linoleic acid (CLA)-producing lactobacillus in mice. METHODS AND RESULTS: Lactobacillus plantarum PL62, which can grow in the presence of linoleic acid, was selected and studied. The culture supernatant of Lact. plantarum PL62 contained trans-10,cis-12-conjugated linoleic acid (6.4 microg ml(-1)), and the crude enzyme prepared from washed cells produced trans-10,cis-12 CLA (1395 microg mg(-1) protein). Lact. plantarum PL62 reduced the weights of epididymal, inguinal, mesenteric, and perirenal white adipose tissues and significantly reduced the blood levels of total glucose and body weights of mice (P<0.01). CONCLUSIONS: trans-10,cis-12-CLA-producing Lact. plantarum PL62 can exert the same antiobesity activity as trans-10,cis-12-CLA in mice. SIGNIFICANCE AND IMPACT OF THE STUDY: trans-10,cis-12-CLA-producing Lactobacillus can be a replacement for CLA for obesity treatment via the continuous production of trans-10,cis-12-CLA. The results provide a novel opportunity to develop foods with antiobesity activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号