首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By comparing the relative sizes of anatomical structures among phenotypes, selective pressures that shape species' morphologies can be evaluated. Aphids emit droplets containing an alarm pheromone/defensive secretion from unique anatomical structures called cornicles, upon being attacked. As aphids live in colonies of high relatedness, it is uncertain whether direct or inclusive fitness benefits have chiefly promoted cornicle evolution. Morphological measurements for apterous parthenogen, alate parthenogen, female sexual and male sexual morphs of 43 species (21 genera, one subfamily) were assessed to distinguish between the hypotheses that: (1) cornicles evolved for mechanical defence against natural enemies (direct fitness); (2) cornicles evolved for alarm signalling (inclusive fitness); or (3) cornicle length has been largely constrained by flight aerodynamics. Our results generally support the inclusive fitness hypothesis; cornicle length decreases as the relative number and relatedness of offspring decreases. As cornicle length is greatest in apterous parthenogenetic morphs, inclusive fitness benefits of protecting highly related kin may have been a key factor selecting for cornicles, and increased cornicle length, in aphids.  相似文献   

2.
When attacked by a predator, aphids of many species secrete cornicle droplets, containing an alarm pheromone, that results in the dispersal of nearby conspecifics. As females are parthenogenetic, alarm signaling functions to enhance the survival of clone-mates. Enigmatically, however, aphids are physically able to, but usually do not emit alarm pheromone when initially detecting a predator, but rather signal only when captured by a predator. We hypothesized that cornicle droplets may be attractive to natural enemies and result in an increased risk of predation for the signaler, thereby selecting for prudent alarm signalers. We tested this hypothesis by investigating the olfactory cues that the multicolored Asian ladybird beetle, Harmonia axyridis Pallas, uses to locate pea aphids, Acyrthosiphon pisum. In choice tests, H. axyridis were attracted to odors from pea aphid colonies, whether feeding or not feeding on a host plant leaf, but were not attracted to cornicle droplets containing alarm pheromone. Further, individual pea aphids emitting cornicle droplets were not located more often or in a shorter period of time by beetles than aphids not emitting cornicle droplets. Thus, the cost of emitting early alarm signals is not prohibitively high in regards to the attraction of predators such as H. axyridis.  相似文献   

3.
1. Winged dispersal is vital for aphids as predation pressure and host plant conditions fluctuate. 2. Ant‐tended aphids also need to disperse, but this may represent a cost for the ants, resulting in an evolutionary conflict of interest over aphid dispersal. 3. The combined effects of aphid alarm pheromone, indicating predation risk, and ant attendance on the production of winged aphids were examined in an experiment with Aphis fabae (Homoptera: Aphididae) (Scopoli 1763) aphids and Lasius niger (Formicidae: Formicinae) (Linné, 1758) ants. 4. This study is the first to investigate the joint effects of alarm pheromone and ant attendance, and also the first to detect an influence of alarm pheromone on the production of winged morphs in A. fabae. 5. After a period of 2 weeks, it was found that aphid colonies exposed to intermittent doses of alarm pheromone produced more winged individuals, whereas ant tending had the opposite effect. The effects were additive on a log scale, and ant attendance had a greater proportional influence than exposure to alarm pheromone. A tentative conclusion is that ants have gained the upper hand in an evolutionary conflict about aphid dispersal.  相似文献   

4.
Abstract 1. Mutualistic interactions between aphids and ants are mediated by honeydew that aphids produce. Previous work showed that when attended by the ant Formica yessensis Forel (Hymenoptera: Formicidae), nymphs of the aphid Tuberculatus quercicola (Matsumura) (Homoptera: Aphididae) developed into significantly smaller adults with lower fecundity than did nymphs that were not ant attended.
2. This study tested the hypothesis that this cost of ant attendance arises through changes in the quality and quantity of honeydew. Ant-attended and ant-excluded aphid colonies were prepared in the field. The composition and concentration of amino acids were compared between the honeydew produced by ant-attended colonies and that produced by ant-excluded colonies.
3. The aphids excreted smaller droplets of honeydew, but also excreted them more frequently, in ant-attended colonies than in ant-excluded colonies. The honeydew of ant-attended aphids contained more types of amino acid, and a significantly higher total concentration of amino acids, than did the honeydew of ant-excluded aphids.
4. These results suggest that the increase in the concentration of amino acids in honeydew leads to a shortage of nitrogen available for aphid growth and reproduction, resulting in lower performance under ant attendance.
5. With the advance of seasons, a significant reduction was found in both the total free amino acid concentration in phloem sap and the frequency of honeydew excretion; however the total concentration of amino acids in the honeydew did not vary significantly during the seasons, suggesting that aphids keep the quality of honeydew constant in order to maintain ant visitation.  相似文献   

5.
The mutualistic relationships that occur between myrmecophilous aphids and ants are based on the rich food supply that honeydew represents for ants and on the protection they provide against aphid natural enemies. While aphid predators and parasitoids actively forage for oviposition sites by using aphid semiochemicals, scouts of aphid-tending ant species would also benefit from locating honeydew resources by orienting toward aphid pheromone sources. The present study aims to provide additional information on the use of Aphis fabae alarm pheromone, i.e. (E)-β-farnesene (EβF), by ant scouts. The perception and behavioral impact of EβF on Lasius niger were investigated using electroantennography and two bio-assays measuring their attraction and orientation towards aphid semiochemicals. Pronounced electrical depolarizations were observed from L. niger scout antennae to stimulations of A. fabae alarm pheromone, while other sesquiterpenes elicited weak or no responses. L. niger scouts were significantly attracted toward EβF in a four-arm olfactometer, as well as in an two-choice bioassay. These laboratory results suggest for the first time that low amounts of aphid alarm pheromone can be used by L. niger scouts as a cue indicating the presence of aphid colonies and could therefore mediate the aphid-ant partnership in the field.  相似文献   

6.
When attacked by natural enemies some insect pests, including many aphid species, alert neighboring conspecifics with alarm pheromones. Cornicle secretions with pheromones benefit the attacked aphid but are costly to produce, while alarm pheromone benefits probably fall largely on alerted conspecifics. Given these variable benefits, the likelihood of a secretion may change depending on aphid density. Thus, we first hypothesized that the common alarm pheromone in aphids, E-ß-farnesene (EBF), was present in soybean aphid (Aphis glycines Matsumura) cornicle secretions and would elicit an alarm response in aphids exposed to it. Second, since aphids other than the secretor also benefit from cornicle secretions, we hypothesized that the likelihood of secretion would increase concurrently with the density of neighboring clonal conspecifics. Third, because alarm reaction behavior (e.g. feeding cessation) is probably costly, we hypothesized that alarm reaction behavior would decrease as conspecific density (i.e. alternative prey for an attacking natural enemy) increased. We found that soybean aphids 1) produce cornicle secretions using EBF as an alarm pheromone, 2) are less likely to release cornicle secretions when alone than in a small group (~10 individuals), but that the rate of secretion does not increase further with additional conspecific density, and 3) also exhibit alarm reaction behavior in response to cornicle secretions independent of aphid density. We show that soybean aphids can use their cornicle secretions to warn their neighbors of probable attack by natural enemies, but that both secretion and alarm reaction behavior does not change as density of nearby conspecifics rises above a few individuals.  相似文献   

7.
Insects have evolved amazing methods of defense to ward off enemies. Many aphids release cornicle secretions when attacked by predators and parasitoids. These se cretions contain an alarm pheromone that alerts other colony members of danger, thereby providing indirect fitness benefits to the releaser. In addition, contact with cornicle se cretions could also threaten an attacker and could provide direct fitness to the releaser. However, cornicle secretions may also be recruited as a kairomonal cue by aphid natural enemies. In this study, we investigated the effect of the cornicle droplet volatiles of the cabbage aphid, Brevicoryne brassicae (L.), on the hostsearching behavior of naive and experienced female Diaeretiella rapae (M'Intosh) parasitoids in olfactometer studies. In addition, we evaluated the role ofB. brassicae cornicle droplets on the oviposition prefer ence of the parasitoid in a twochoice bioassay. Naive females did not exhibit any preference between volatiles from aphids secreting cornicle droplets over nonsecreting aphids, while experienced parasitoids exploited the secretions in their host location. Experienced females were also able to choose volatiles from both secreting and nonsecreting aphids over clean air, while this ability was not observed in naive females. Although secretion of cornicle droplets did not influence the percentage of first attack in either naive or experienced females, the success of attack (i.e. resulting in a larva) was significantly different between secreting and nonsecreting aphids in the case of experienced parasitoids.  相似文献   

8.
How aphid alarm pheromone can control aphids: a review   总被引:1,自引:0,他引:1  
Aphids are the major pests of arable crops, mostly in temperate regions. They are monophagous as well as polyphagous. They inflict damage in brassica, potato, cotton, vegetable and fruit crops. They damage their host plant directly by feeding upon their phloem sap, or indirectly by transmitting pathogens to them. Their life cycle can be autoecious as well as heteroecious. Aphids use semiochemicals for various purposes, in gathering information from their environment and for communication among themselves. They protect themselves from predators and parasitoids by escape response which is arbitrated by use of alarm pheromone signalling. When alarm pheromone, (E)-ß-farnesene, is released, nearby aphids exhibit a variety of behaviours like moving away, running, dropping off the plant and even attacking the predator. Previous studies of integrated pest management strategies have been aimed at the usage of alarm pheromone. However, scientists require complete knowledge of aphid ecology as well as aphid interaction with its natural enemies to establish efficient and viable biological control. This review presents analysis of the existing aphid pest management methodologies and effectiveness of alarm pheromone on aphids and their natural enemies.  相似文献   

9.
The defensive effects of ants against aphid predators have been well documented in the mutualistic relationship of aphids and their attending ants. However, it is not clear whether ant attendance has any direct effect on the aphids' growth and reproduction. Through field experiments, this study evaluates the benefits and, in particular, the costs of ant attendance to aphid colonies, focusing on the drepanosiphid aphid Tuberculatus quercicola which is associated with the Daimyo oak, Quercus dentata , and which is always attended by the red wood ant Formica yessensis . Ant attendance was clearly beneficial to the aphid; the exclusion of ants led to a significant increase in the extinction rate of aphid colonies. However, MANOVA and randomized block ANOVA indicated that in colonies continuously attended by ants, aphids had significantly smaller body size and produced a smaller number of embryos than in colonies isolated from ants when they were reared under homogeneous host conditions free from natural enemies. Thus, ant attendance had a negative influence on the growth and reproduction of the aphids, even though it contributed to the greater longevity of the aphid colonies. We hypothesize that ant-attended aphids are under intense selective pressures that act against aphid clones which fail to attract many ants, so that aphids have developed an adaptive mechanism to allocate a larger fraction of resources to the honeydew when they are requested to do so by the ants in order to ensure the ants' consistent visitation.  相似文献   

10.
Aphids have evolved various defense strategies against natural enemies, including secretions from their cornicles. We assessed the defensive function of cornicle secretions by the goldenrod aphid, Uroleucon nigrotuberculatum (Olive), against larvae of the lady beetles Coccinella septempunctata bruckii Mulsant and Propylea japonica (Thunberg) (Coleoptera: Coccinellidae). The aphid secreted red droplets from its cornicles when attacked by the larvae. Two‐thirds of the C. septempunctata bruckii larvae and 46.7% of the P. japonica larvae that preyed on the aphids died before reaching the pre‐pupal stage. The secretions caused molting failure when smeared on the larvae's heads or glued to the larvae's mouthparts, killing 56.7% of C. septempunctata bruckii larvae and 36.7% of P. japonica larvae. Second instar larvae were affected most. About 40% of third and fourth instar larvae of C. septempunctata bruckii vomited soon after ingesting the aphids. In the field, up to 40% of first and second instar larvae were smeared with red secretions. Our results show that these cornicle secretions are an effective and active defense against earlier instars of coccinellid larvae.  相似文献   

11.
Alarm pheromone mediates production of winged dispersal morphs in aphids   总被引:9,自引:0,他引:9  
The aphid alarm pheromone ( E )- β -farnesene (EBF) is the major example of defence communication in the insect world. Released when aphids are attacked by predators such as ladybirds or lacewing larvae, aphid alarm pheromone causes behavioural reactions such as walking or dropping off the host plant. In this paper, we show that the exposure to alarm pheromone also induces aphids to give birth to winged dispersal morphs that leave their host plants. We first demonstrate that the alarm pheromone is the only volatile compound emitted from aphid colonies under predator attack and that emission is proportional to predator activity. We then show that artificial alarm pheromone induces groups of aphids but not single individuals to produce a higher proportion of winged morphs among their offspring. Furthermore, aphids react more strongly to the frequency of pheromone release than the amount of pheromone delivered. We suggest that EBF leads to a 'pseudo crowding' effect whereby alarm pheromone perception causes increased walking behaviour in aphids resulting in an increase in the number of physical contacts between individuals, similar to what happens when aphids are crowded. As many plants also produce EBF, our finding suggests that aphids could be manipulated by plants into leaving their hosts, but they also show that the context-dependence of EBF-induced wing formation may hinder such an exploitation of intraspecific signalling by plants.  相似文献   

12.
The insecticides demeton-S-methyl and pirimicarb induced cornicle secretion, and thereby alarm pheromone release, in Myzus persicae. Secretion was earliest in young and insecticide-susceptible aphids. In laboratory experiments to assess the behavioural significance of this effect, demeton-S-methyl applied to colonies of R1 (moderately resistant) aphids killed the majority, but caused the remainder to disperse. The timing and degree of dispersal depended on the size and composition of the colonies. Beet yellows virus was transferred by dispersed aphids, but less frequently when recipient indicator seedlings were treated with demeton-S-methyl. R2 (strongly resistant) aphids soon dispersed from colonies containing susceptible nymphs (which secrete alarm pheromone early) and transmitted readily even to treated seedlings. The non-persistent potato virus Y was transferred by dispersed R: aphids and no protection was afforded by treatment of the seedlings.  相似文献   

13.
Emission of alarm pheromone by non-preyed aphid colonies   总被引:1,自引:0,他引:1  
The sesquiterpene (E)-β-farnesene (Eβf) is the primary component of the alarm pheromone of most aphid species. It is released in response to physical stress including attack by natural enemies and causes aphids to cease feeding and disperse. Eβf also acts as a kairomonal cue for aphid natural enemies. In this study, we collected the headspace volatiles released by aphid colonies of different sizes. Gas chromatography-mass spectrometry analysis demonstrated the presence of Eβf in the absence of predator attack. A quadratic relationship was found between the released ( E )-β-farnesene amounts and aphid colony size. Behavioural impact of aphid alarm pheromone towards Episyrphus balteatus female oviposition behaviour was also demonstrated in this work. These results highlight the primary role of the small but continuous release of aphid alarm pheromone in mechanisms of decision-making by aphid predators during their foraging and egg-laying behaviour.  相似文献   

14.
Abstract. 1. The acceptability of sucrose solutions to Formica lugubris Zett. in the field was tested by offering droplets of known concentrations to ants tending aphids.
2. A probit model fitted to the data allowed the computation of the Median Effective Concentration (ED50) and its confidence limits.
3. In spring and early summer ED50 was about 0.15 M sucrose, but the ED50 rose in 1 week at the end of June from 0.2 M to 0.9 M. The change was simultaneous on pine and birch trees. The ED50 fell gradually to about 0.4 M in early November.
4. The increase in ED50 is related to the production of the summer apterae in the aphids tended, Cinara pini (L.) on pines and Symydobius oblongus (von Heyden) on birch. This increases the 'quality' of food resource so that low sucrose concentrations can no longer compete for ant attendance.
5. The increase in ED50 may limit the attendance of wood-ants at the nectaries of bracken, Pteridium aquilinum (L.) Kuhn. and at colonies of some other aphid species which are attended only in early summer.  相似文献   

15.
Aphids are a worldwide pest and an important model in ecology and evolution. Little is known, however, about the genetic structure of their colonies at a microgeographic level. For example, it remains largely unknown whether most species form monoclonal or polyclonal colonies. Here, we present the first detailed study on levels of clonal mixing in a nonsocial facultative ant mutualist, the black bean aphid Aphis fabae. In contrast to the earlier suggestion that colonies of this species are generally monoclonal, we found that across two subspecies of the black bean aphid, A. fabae cirsiiacanthoidis and A. fabae fabae, 32% and 67% of the aphid colonies were in fact polyclonal, consisting of a mix of up to four different clones, which resulted in an overall average relatedness within colonies of 0.90 and 0.79 in the two subspecies. Data further show that the average relatedness in A. f. cirsiiacanthoidis remained relatively constant throughout the season, which means that clonal erosion due to clonal selection more or less balanced with the influx of new clones from elsewhere. Nevertheless, relatedness tended to decrease over the lifetime of a given colony, implying that clonal mixing primarily resulted from the joining of pre‐existing colonies as opposed to via simultaneous host colonisation by several foundresses. Widespread clonal mixing is argued to affect the ecology and evolution of the aphids in various important ways, for example with respect to the costs and benefits of group living, the evolution of dispersal and the interaction with predators as well as with the ant mutualists.  相似文献   

16.
Abstract. 1. The cabbage root fly, Delia radicum (L.), was deterred from laying eggs on brassica plants with >250 cabbage aphid, Brevicoryne brassicae (L.), or peach-potato aphid, Myzuspersicae (Sulz.).
2. Flies did not lay on plants infested with >250 aphids.
3. Preparations of (E)-β-farnesene, the aphid alarm pheromone, deterred the flies from laying only at the extremely high dose of 32 mg/plant.
4. Although M. persicae secreted large (1 ng/insect) amounts of alarm pheromone and B. brassicae extremely small (<0.01 ng/insect) amounts, both aphids equally deterred D. radicum from laying.
5. The deterrent effect appeared to result from the aphids physically disturbing the flies during host-plant selection.  相似文献   

17.
Genetic variation in anti-predator traits has been shown for a variety of species. Aphid alarm pheromone, ( E )-β-farnesene, is released by attacked aphids and causes a variety of behavioral defense reactions in the signal receivers. In pea aphids, Acyrthosiphon pisum Harris (Homoptera: Aphididae), ( E )-β-farnesene mediates the production of winged offspring in the presence of natural enemies. While variation in the propensity for pea aphids to produce winged offspring is well-documented, little quantitative information is available about clonal differences in ( E )-β-farnesene emission or the amount of alarm pheromone released in aphid colonies. We tested the wing induction response of four clones when attacked by a predatory lacewing larva, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae), and found that three of the four clones increased the proportion of winged offspring under predator attack. We then investigated the emission of aphid alarm pheromone of these clones of pea aphid under attack. Alarm pheromone emission in aphid colonies of initially 25 adults varied from 81.2 to 10 851.0 ng per aphid colony over 24 h. There were no differences between clones in total emission or in emission per consumption event. These results show that there is substantial variability in alarm pheromone emission within clones and that the propensity to produce winged offspring in some clones is not a simple function of the propensity of alarm pheromone production in these clones.  相似文献   

18.
Aphids exhibit a polymorphism whereby individual aphids are either winged or unwinged. The winged dispersal morph is mainly responsible for the colonization of new plants and, in many species, is produced in response to adverse environmental conditions. Aphids are attacked by a wide range of specialized predators and predation has been shown to strongly influence the growth and persistence of aphid colonies. In two experiments, we reared two clones of pea aphid (Acyrthosiphon pisum) in the presence and absence of predatory ladybirds (Coccinella septempunctata or Adalia bipunctata). In both experiments, the presence of a predator enhanced the proportion of winged morphs among the offspring produced by the aphids. The aphid clones differed in their reaction to the presence of a ladybird, suggesting the presence of genetic variation for this trait. A treatment that simulated disturbance caused by predators did not enhance winged offspring production. The experiments indicate that aphids respond to the presence of a predator by producing the dispersal morph which can escape by flight to colonize other plants. In contrast to previous examples of predator-induced defence this shift in prey morphology does not lead to better protection against predator attack, but enables aphids to leave plants when mortality risks are high.  相似文献   

19.
1. The effects of predator species, aphid density, aphid age, diel period, and habitat complexity on the dropping behaviour of the pea aphid Acyrthosiphon pisum were assessed in a series of laboratory and field-cage experiments.
2. The presence of foliar-foraging predators significantly increased the proportion of aphids that dropped from alfalfa plants. In the absence of predators, less than 7% of the aphids dropped. Dropping more than doubled (14%) when one of three hemipteran predators , N. americoferus, G. punctipes or O. insidiosus , was present. Nearly 60% of the aphids dropped when the ladybird beetle, Coccinella septempunctata , was present.
3. Adult aphids showed a significantly higher propensity to drop than immature aphids, regardless of the presence or absence of predators. Aphid density had no effect on dropping behaviour.
4. Neither diel period nor habitat complexity had an effect on aphid dropping behaviour. Aphids were significantly more likely to drop in the presence of predators during either the day or night and from either early or late regrowth alfalfa.
5. A review of the factors affecting dropping behaviour, including those elucidated in this study, indicates that the propensity to drop from a plant is influenced by three factors: the risk of predation on the plant, the quality of the resource to be abandoned, and the risk of mortality in the new microhabitat.  相似文献   

20.

Ant–aphid mutualisms can generate cascade effects on the host plants, but these impacts depend on the ecological context. We studied the consequences of ant–aphid interactions on the reproductive performance of a Mediterranean leafless shrub (Retama sphaerocarpa), through direct and indirect effects on the arthropod community. By manipulating the presence of ants and aphids in the field, we found that ants increased aphid abundance and their persistence on the plant and reduced aphid predators by nearly half. However, the presence of ants did not affect the abundance of other plant herbivores, which were relatively scarce in the studied plants. Aphids, and particularly those tended by ants, had a negative impact on the plant reproductive performance by significantly reducing the number of fruits produced. However, fruit and seed traits were not changed by the presence of aphids or those tended by ants. We show that ants favoured aphids by protecting them from their natural enemies but did not indirectly benefit plants through herbivory suppression, resulting in a net negative impact on the plant reproductive performance. Our study suggests that the benefits obtained by plants from hosting ant–aphid mutualisms are dependent on the arthropod community and plant traits.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号