首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
M Yang  D Liu  D W Bolen 《Biochemistry》1999,38(34):11216-11222
This work determines the ratio of DeltaH(vH) /DeltaH(cal) for staphylococcal nuclease (SN) denaturation in guanidine hydrochloride (GdnHCl) to test whether GdnHCl-induced denaturation is two-state. Heats of mixing of SN as a function of [GdnHCl] were determined at pH 7.0 and 25 degrees C. The resulting plot of DeltaH(mix) vs [GdnHCl] exhibits a sigmoid shaped curve with linear pre- and post-denaturational base lines. Extending the pre- and post-denaturational lines to zero [GdnHCl] gives a calorimetric DeltaH (DeltaH(cal)) of 24.1 +/- 1.0 kcal/mol, for SN denaturation in the limit of zero GdnHCl concentration. Guanidine hydrochloride-induced denaturation Gibbs energy changes in the limit of zero denaturant concentration (DeltaG degrees (N)(-)(D)) at pH 7. 0 were determined for SN from fluorescence measurements at fixed temperatures over the range from 15 to 35 degrees C. Analysis of the resulting temperature-dependent DeltaG degrees (N)(-)(D) data defines a van't Hoff denaturation enthalpy change (DeltaH(vH)) of 26. 4 +/- 2.8 kcal/mol. The model-dependent van't Hoff DeltaH(vH) divided by the model-independent DeltaH(cal) gives a ratio of 1.1 +/- 0.1 for DeltaH(vH)/DeltaH(cal), a result that rules out the presence of thermodynamically important intermediate states in the GdnHCl-induced denaturation of SN. The likelihood that GdnHCl-induced SN denaturation involves a special type of two-state denaturation, known as a variable two-state process, is discussed in terms of the thermodynamic implications of the process.  相似文献   

2.
To understand trimethylamine N-oxide (TMAO) attenuation of the denaturating effects of urea or guanidine hydrochloride (GdnHCl), we have determined the apparent transfer free energies (DeltaG(tr)(')) of cyclic dipeptides (CDs) from water to TMAO, urea or GdnHCl, and also the blends of TMAO and denaturants (urea or GdnHCl) at a 1:2 ratio as well as various denaturant concentrations in the presence of 1M TMAO, through the solubility measurements, at 25 degrees C. The CDs investigated in the present study included cyclo(Gly-Gly), cyclo(Ala-Ala) and cyclo(Val-Val). The observed DeltaG(tr)(') values indicate that TMAO can stabilize the CDs while urea or GdnHCl can destabilize the CDs. Furthermore, the DeltaG(tr)(') values of the blends of TMAO with urea or GdnHCl revealed that TMAO strongly counteracted the denaturating effects of urea on CDs in all instances, however, TMAO partially counteracted the perturbing effects of GdnHCl on CDs. TMAO counteraction ability of the deleterious effects of denaturants depended on the denaturant-CDs pair. The experimental results were further used to estimate the transfer free energies (Deltag(tr)(')) of the various functional group contributions from water to TMAO, urea or GdnHCl individually and to the combinations of TMAO and the denaturants in various ratios.  相似文献   

3.
4.
Urea-induced equilibrium unfolding of human serum albumin (HSA) when studied by mean residue ellipticity at 222 nm (MRE(222)) or intrinsic fluorescence measurements showed a two-step, three-state transition with a stable intermediate around 4.6-5.2 M urea. The presence of 2,2,2-trifluoroethanol (TFE) resulted in a single-step, two-state transition with a significant shift towards higher urea concentration, suggesting the stabilizing effect of TFE. The free energy of stabilization (DeltaDeltaG(D)(H(2)O)) in the presence of 3.0 M TFE was determined to be 2.68 and 2.72 kcal/mol by MRE(222) and fluorescence measurements, respectively. The stabilizing potential of other alcohols on the refolding behavior of HSA at 5.0 M urea (where the intermediate exists) as studied by MRE(222) and intrinsic fluorescence measurements showed the following order: 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) > TFE > 2-chloroethanol > tert-butanol > iso-propanol > ethanol > methanol. Further, the extent of refolding at the highest concentration of alcohol was similar in all cases. The stabilizing effect of TFE on guanidine hydrochloride (GdnHCl)-induced unfolding of HSA was nearly equal to that found for urea denaturation, as reflected in the DeltaDeltaG(D)(H(2)O) value (2.38 kcal/mol). Taken together, these results suggest that the stabilizing effect of TFE and other alcohols on urea/GdnHCl-induced unfolding of HSA is higher for alcohols that contain bulky groups or fluorine atoms.  相似文献   

5.
Bolen DW  Yang M 《Biochemistry》2000,39(49):15208-15216
The DeltaG degrees (N)(-)(D) value obtained from extrapolation to zero denaturant concentration by the linear extrapolation method (LEM) is commonly interpreted to represent the Gibbs energy difference between native (N) and denatured (D) ensembles at the limit of zero denaturant concentration. For DeltaG degrees (N)(-)(D) to be interpreted solely in terms of N and D, as is common practice, it must be shown to be independent of denaturant concentration. Because DeltaG degrees (N)(-)(D) is often observed to be dependent on the nature of the denaturant, it is necessary to determine the circumstances under which DeltaG degrees (N)(-)(D) can be interpreted as a property solely of the protein. Here, we use proton inventory, a thermodynamic property of both the native and denatured ensembles, to monitor the thermodynamic character of denaturant-dependent aspects of N and D ensembles and the N right arrow over left arrow D transition. Use of a thermodynamic rather than a spectral parameter to monitor denaturation provides insight into the manner in which denaturant affects the meaning of DeltaG degrees (N)(-)(D) and the nature of the N right arrow over left arrow D transition. Three classes of proteins are defined in terms of the thermodynamic behaviors of their N right arrow over left arrow D transition and N and D ensembles. With guanidine hydrochloride as a denaturant, the classification of protein denaturations by these procedures determines when the LEM gives readily interpretable DeltaG degrees (N)(-)(D) values with this denaturant and when it does not.  相似文献   

6.
We have characterized the stability and folding behavior of the isolated extrinsic PsbQ protein of photosystem II (PSII) from a higher plant, Spinacia oleracea, using intrinsic protein fluorescence emission and near- and far-UV circular dichroism (CD) spectroscopy in combination with differential scanning calorimetry (DSC). Experimental results reveal that both chemical denaturation using guanidine hydrochloride (GdnHCl) and thermal unfolding of PsbQ proceed as a two-state reversible process. The denaturation free-energy changes (DeltaG(D)) at 20 degrees C extrapolated from GdnHCl (4.0 +/- 0.6 kcal mol(-1)) or thermal unfolding (4.4 +/- 0.8 kcal mol(-1)) are very close. Moreover, the far-UV CD spectra of the denatured PsbQ registered at 90 degrees C in the absence and presence of 6.0 M GdnHCl superimpose, leading us to conclude that both denatured states of PsbQ are structurally and energetically similar. The thermal unfolding of PsbQ has been also characterized by CD and DSC over a wide pH range. The stability of PsbQ is at its maximum at pH comprised between 5 and 8, being wider than the optimal pH for oxygen evolution in the lumen of thylakoid membranes. In addition, no significant structural changes were detected in PsbQ between 50 and 55 degrees C in the pH range of 3-8, suggesting that PsbQ behaves as a soluble and stable particle in the lumen when it detaches from PSII under physiological stress conditions such as high temperature (45-50 degrees C) or low pH (<5.0). Sedimentation experiments showed that, in solution at 20 degrees C, the PsbQ protein is a monomer with an elongated shape.  相似文献   

7.
Mukaiyama A  Takano K  Haruki M  Morikawa M  Kanaya S 《Biochemistry》2004,43(43):13859-13866
Equilibrium and kinetic studies were carried out under denaturation conditions to clarify the energetic features of the high stability of a monomeric protein, ribonuclease HII, from a hyperthermophile, Thermococcus kodakaraensis (Tk-RNase HII). Guanidine hydrochloride (GdnHCl)-induced unfolding and refolding were measured with circular dichroism at 220 nm, and heat-induced denaturation was studied with differential scanning calorimetry. Both GdnHCl- and heat-induced denaturation are very reversible. It was difficult to obtain the equilibrated unfolding curve of Tk-RNase HII below 40 degrees C, because of the remarkably slow unfolding. The two-state unfolding and refolding reactions attained equilibrium at 50 degrees C after 2 weeks. The Gibbs energy change of GdnHCl-induced unfolding (DeltaG(H(2)O)) at 50 degrees C was 43.6 kJ mol(-1). The denaturation temperature in the DSC measurement shifted as a function of the scan rate; the denaturation temperature at a scan rate of 90 degrees C h(-1) was higher than at a scan rate of 5 degrees C h(-1). The unfolding and refolding kinetics of Tk-RNase HII were approximated as a first-order reaction. The ln k(u) and ln k(r) values depended linearly on the denaturant concentration between 10 and 50 degrees C. The DeltaG(H(2)O) value obtained from the rate constant in water using the two-state model at 50 degrees C, 44.5 kJ mol(-1), was coincident with that from the equilibrium study, 43.6 kJ mol(-1), suggesting the two-state folding of Tk-RNase HII. The values for the rate constant in water of the unfolding for Tk-RNase HII were much smaller than those of E. coli RNase HI and Thermus thermophilus RNase HI, which has a denaturation temperature similar to that of Tk-RNase HII. In contrast, little difference was observed in the refolding rates among these proteins. These results indicate that the stabilization mechanism of monomeric protein from a hyperthermophile, Tk-RNase HII, with reversible two-state folding is characterized by remarkably slow unfolding.  相似文献   

8.
The conformational stability of RNase Rs was determined with chemical and thermal denaturants over the pH range of 1-10. Equilibrium unfolding with urea showed that values of D(1/2) (5.7 M) and DeltaG(H(2)O) (12.8 kcal/mol) were highest at pH 5.0, its pI and the maximum conformational stability of RNase Rs was observed near pH 5.0. Denaturation with guanidine hydrochloride (GdnHCl), at pH 5.0, gave similar values of DeltaG(H(2)O) although GdnHCl was 2-fold more potent denaturant with D(1/2) value of 3.1 M. The curves of fraction unfolded (f(U)) obtained with fluorescence and CD measurements overlapped at pH 5.0. Denaturation of RNase Rs with urea in the pH range studied was reversible but the enzyme denatured irreversibly >pH 11.0. Thermal denaturation of RNase Rs was reversible in the pH range of 2.0-3.0 and 6.0-9.0. Thermal denaturation in the pH range 4.0-5.5 resulted in aggregation and precipitation of the protein above 55 degrees C. The aggregate was amorphous or disordered precipitate as observed in TE micrographs. Blue shift in emission lambda(max) and enhancement of fluorescence intensity of ANS at 70 degrees C indicated the presence of solvent exposed hydrophobic surfaces as a result of heat treatment. Aggregation could be prevented partially with alpha-cyclodextrin (0.15 M) and completely with urea at concentrations >3 M. Aggregation was probably due to intermolecular hydrophobic interaction favored by minimum charge-charge repulsion at the pI of the enzyme. Both urea and temperature-induced denaturation studies showed that RNase Rs unfolds through a two-state F right arrow over left arrow U mechanism. The pH dependence of stability described by DeltaG(H(2)O) (urea) and DeltaG (25 degrees C) suggested that electrostatic interactions among the charged groups make a significant contribution to the conformational stability of RNase Rs. Since RNase Rs is a disulfide-containing protein, the major element for structural stability are the covalent disulfide bonds.  相似文献   

9.
The interactions involved in the denaturation of lysozyme in the presence of urea were examined by thermal transition studies and measurements of preferential interactions of urea with the protein at pH 7.0, where it remains native up to 9.3 M urea, and at pH 2.0, where it undergoes a transition between 2.5 and 5.0 M urea. The destabilization of lysozyme by urea was found to follow the linear dependence on urea molar concentration, M(u), DeltaG(u)(o)=DeltaG(w)(o)-2.1 M(u), over the combined data, where DeltaG(u)(o) and DeltaG(w)(o) are the standard free energy changes of the N right harpoon over left harpoon D reaction in urea and water, respectively. Combination with the measured preferential binding gave the result that the increment of preferential binding, deltaGamma(23)=Gamma(23)(D)-Gamma(23)(N), is also linear in M(u). A temperature dependence study of preferential interactions permitted the evaluation of the transfer enthalpy, DeltaHmacr;(2,tr)(o), and entropy, DeltaSmacr;(2,tr)(o) of lysozyme from water into urea in both the native and denatured states. These values were found to be consistent with the enthalpy and entropy of formation of inter urea hydrogen bonds (Schellman, 1955; Kauzmann, 1959), with estimated values of DeltaHmacr;(2,tr)(o)=ca. -2.5 kcal mol(-1) and DeltaSmacr;(2,tr)(o)=ca. -7.0 e.u. per site. Analysis of the results led to the conclusion that the stabilization of the denatured form was predominantly by preferential binding to newly exposed peptide groups. Combination with the knowledge that stabilizing osmolytes act by preferential exclusion from peptide groups (Liu and Bolen, 1995) has led to the general conclusion that both the stabilization and destabilization of proteins by co-solvents are controlled predominantly by preferential interactions with peptide groups newly exposed on denaturation.  相似文献   

10.
Human tumor necrosis factor-alpha (TNF-alpha) is a trimeric protein consisting primarily of beta-sheet. GdnHCl-induced unfolding of TNF-alpha was investigated at room temperature by circular dichroism (CD) and size exclusion chromatography. The secondary and tertiary structure of TNF-alpha persisted up to 0.9N GdnHCl regardless of incubation time, but, in the range of 1.2 N to 2.1 N GdnHCl, there was loss of tertiary structure accompanied by the formation of an alpha-helix, as revealed by far- and near-UV CD spectra. The structural changes occurred gradually in 1.2 and 2.1 N GdnHCl, but were rapid in 1.5 and 1.8 N GdnHCl. The GdnHCl-induced state of TNF-alpha is an unfolded, alpha-helical aggregate of about 130 monomers, as shown by size exclusion chromatography. We suggest the most likely pathway for the transition from beta-sheet to alpha-helix.  相似文献   

11.
To address the role of sequence in the folding of homologous proteins, the folding and unfolding kinetics of the all-helical bacterial immunity proteins Im2 and Im9 were characterised, together with six chimeric derivatives of these proteins. We show that both Im2 and Im9 fold rapidly (k(UN)(H(2)O)) approximately 2000 s(-1) at pH 7.0, 25 degrees C) in apparent two-state transitions, through rate-limiting transition states that are highly compact (beta(TS)0.93 and 0.96, respectively). Whilst the folding and unfolding properties of three of the chimeras (Im2 (1-44)(Im9), Im2 (1-64)(Im9 )and Im2 (25-44)(Im9)) are similar to their parental counterparts, in other chimeric proteins the introduced sequence variation results in altered kinetic behaviour. At low urea concentrations, Im2 (1-29)(Im9) and Im2 (56-64)(Im9) fold in two-state transitions via transition states that are significantly less compact (beta(TS) approximately 0.7) than those characterised for the other immunity proteins presented here. At higher urea concentrations, however, the rate-limiting transition state for these two chimeras switches or moves to a more compact species (beta(TS) approximately 0.9). Surprisingly, Im2 (30-64)(Im9) populates a highly collapsed species (beta(I)=0.87) in the dead-time (2.5 ms) of stopped flow measurements. These data indicate that whilst topology may place significant constraints on the folding process, specific inter-residue interactions, revealed here through multiple sequence changes, can modulate the ruggedness of the folding energy landscape.  相似文献   

12.
The temperature- and solvent-induced denaturation of both the SCP2 wild-type and the mutated protein c71s were studied by CD measurements at 222 nm. The temperature-induced transition curves were deconvoluted according to a two-state mechanism resulting in a transition temperature of 70.5 degrees C and 59.9 degrees C for the wild-type and the c71s, respectively, with corresponding values of the van't Hoff enthalpies of 183 and 164 kJ/mol. Stability parameters characterizing the guanidine hydrochloride denaturation curves were also calculated on the basis of a two-state transition. The transitions of the wild-type occurs at 0.82 M GdnHCl and that of the c71s mutant at 0.55 M GdnHCl. These differences in the half denaturation concentration of GdnHCl reflect already the significant stability differences between the two proteins. A quantitative measure are the Gibbs energies DeltaG(0)(D)(buffer) at 25 degrees C of 15.5 kJ/mol for the wild-type and 8.0 kJ/mol for the mutant. We characterized also the alkyl chain binding properties of the two proteins by measuring the interaction parameters for the complex formation with 1-O-Decanyl-beta-D-glucoside using isothermal titration microcalorimetry. The dissociation constants, K(d), for wild-type SCP2 are 335 microM at 25 degrees C and 1.3 mM at 35 degrees C. The corresponding binding enthalpies, DeltaH(b), are -21. 5 kJ/mol at 25 degrees C and 72.2 kJ/mol at 35 degrees C. The parameters for the c71s mutant at 25 degrees C are K(d)=413 microM and DeltaH(b)=16.6 kJ/mol. These results suggest that both SCP2 wild-type and the c71s mutant bind the hydrophobic compound with moderate affinity.  相似文献   

13.
Xu X  Liu Q  Xie Y 《Biochemistry》2002,41(11):3546-3554
Anticoagulation factor II (ACF II) isolated from the venom of Agkistrodon acutus is an activated coagulation factor X-binding protein in a Ca(2+)-dependent fashion with marked anticoagulant activity. The equilibrium unfolding/refolding of apo-ACF II, holo-ACF II, and Tb(3+)-reconstituted ACF II in guanidine hydrochloride (GdnHCl) solutions was studied by following the fluorescence and circular dichroism (CD). Metal ions were found to increase the structural stability of ACF II against GdnHCl and irreversible thermal denaturation and, furthermore, influence its unfolding/refolding behavior. The GdnHCl-induced unfolding/refolding of both apo-ACF II and Tb(3+)-ACF II is a two-state process with no detectable intermediate state, while the GdnHCl-induced unfolding/refolding of holo-ACF II in the presence of 1 mM Ca(2+) follows a three-state transition with an intermediate state. Ca(2+) ions play an important role in the stabilization of both native and I states of holo-ACF II. The decalcification of holo-ACF II shifts the ending zone of unfolding/refolding curve toward lower GdnHCl concentration, while the reconstitution of apo-ACF II with Tb(3+) ions shifts the initial zone of the denaturation curve toward higher GdnHCl concentration. Therefore, it is possible to find a denaturant concentration (2.1 M GdnHCl) at which refolding from the fully denatured state of apo-ACF II to the I state of holo-ACF II or to the native state of Tb(3+)-ACF II can be initiated merely by adding the 1 mM Ca(2+) ions or 10 microM Tb(3+) ions to the unfolded state of apo-ACF II, respectively, without changing the concentration of the denaturant. Using Tb(3+) as a fluorescence probe of Ca(2+), the kinetic results of metal ion-induced refolding provide evidence for the fact that the first phase of Tb(3+)-induced refolding should involve the formation of the compact metal-binding site regions, and subsequently, the protein undergoes further conformational rearrangements to form the native structure.  相似文献   

14.
We present circular dichroism (CD), steady state fluorescence and multidimensional NMR investigations on the equilibrium unfolding of monomeric dynein light chain protein (DLC8) by urea and guanidine hydrochloride (GdnHCl). Quantitative analysis of the CD and fluorescence denaturation curves reveals that urea unfolding is a two-state process, whereas guanidine unfolding is more complex. NMR investigations in the native state and in the near native states created by low denaturant concentrations enabled residue level characterization of the early structural and dynamic perturbations by the two denaturants. Firstly, (15)N transverse relaxation rates in the native state indicate that the regions around N10, Q27, the loop between beta2 and beta4 strands, and K87 at the C-terminal are potential unfolding initiation sites in the protein. Amide and (15)N chemical shift perturbations indicate different accessibilities of the residues along the chain and help identify locations of the early perturbations by the two denaturants. Guanidine and urea are seen to interact at several sites some of which are different in the two cases. Notable among the common interaction site is that around K87 which is in close proximity to W54 on the protein structure, but the interaction modes of the two denaturants are different. The secondary chemical shifts indicate that the structural perturbation by 1M urea is small, compared to that by guanidine which is more encompassing over the length of the chain. The probable (phi, psi) changes at the individual residues have been calculated using the TALOS algorithm. It appears that the helices in the protein are significantly perturbed by guanidine. Further, comparison of the spectral density functions of the native and the two near native states in the two denaturants implicate greater loosening of the structure by guanidine as compared to that by urea, even though the structures are still in the native state ensemble. These differences in the early perturbations of the native state structure and dynamics by the two denaturants might direct the protein along different pathways, as the unfolding progresses on further increasing the denaturant concentration.  相似文献   

15.
In recent years, many advances have been made in the understanding of functional and structural characteristics of protein evolution from denaturant-based studies that subject the protein to a change in the microenvironment. This paper reports the chemical denaturation of purified goat muscle cystatin (GMC) a thiol-proteinase inhibitor, using urea and guanidine hydrochloride (GdnHCl). The subtle conformational changes of GMC were monitored by intrinsic fluorescence, extrinsic fluorescence, and CD spectroscopic techniques. Further, the activity of GMC as a function of increasing concentration of denaturants was also studied. It was found that increasing the concentration of GdnHCl significantly enhances the inactivation and unfolding of the inhibitor (GMC). In urea-induced denaturation, the intrinsic and extrinsic fluorescence intensity reveals significant structural changes in the inhibitor. Further, it was found that at low concentrations of urea, up to 0.5–1.0 M, there was quenching of fluorescence intensity compared with the native form and a red shift of 5 nm was observed up to 5–8 M. The results presented in this paper suggest that GdnHCl-induced denaturation of GMC follows a simple two-state rule in which native → denatured state transition occurs in a single step. However denaturation with urea proceeds through an intermediate or non-native state.  相似文献   

16.
The thermodynamic and spectroscopic properties of a cysteine-free variant of Escherichia coli dihydrofolate reductase (AS-DHFR) were investigated using the combined effects of urea and temperature as denaturing agents. Circular dichroism (CD), absorption, and fluorescence spectra were recorded during temperature-induced unfolding at different urea concentrations and during urea-induced unfolding at different temperatures. The first three vectors obtained by singular-value decomposition of each set of unfolding spectra were incorporated into a global analysis of a unique thermodynamic model. Although individual unfolding profiles can be described as a two-state process, a simultaneous fit of 99 vectors requires a three-state model as the minimal scheme to describe the unfolding reaction along both perturbation axes. The model, which involves native (N), intermediate (I), and unfolded (U) states, predicts a maximum apparent stability, DeltaG degrees (NU), of 6 kcal mol(-)(1) at 15 degrees C, an apparent m(NU) value of 2 kcal mol(-)(1) M(-)(1), and an apparent heat capacity change, DeltaC(p)()(-NU), of 2.5 kcal mol(-)(1) K(-)(1). The intermediate species has a maximum stability of approximately 2 kcal mol(-)(1) and a compactness closer to that of the native than to that of the unfolded state. The population of the intermediate is maximal ( approximately 70%) around 50 degrees C and falls below the limits of detection of > or =2 M urea or at temperatures of <35 or >65 degrees C. The fluorescence properties of the equilibrium intermediate resemble those of a transient intermediate detected during refolding from the urea-denatured state, suggesting that a tryptophan-containing hydrophobic cluster in the adenosine-binding domain plays a key role in both the equilibrium and kinetic reactions. The CD spectroscopic properties of the native state reveal the presence of two principal isoforms that differ in ligand binding affinities and in the packing of the adenosine-binding domain. The relative populations of these species change slightly with temperature and do not depend on the urea concentration, implying that the two native isoforms are well-structured and compact. Global analysis of data from multiple spectroscopic probes and several methods of unfolding is a powerful tool for revealing structural and thermodynamic properties of partially and fully folded forms of DHFR.  相似文献   

17.
We present a comparative analysis of the unfolding and inactivation of three cutinases in the presence of guanidine hydrochloride (GdnHCl) and bis(2-ethylhexyl) sodium sulfosuccinate (AOT). Previous investigations have focused on the cutinase from Fusarium solani pisi (FsC). In addition to FsC, the present study includes the cutinase from Humicola insolens (HiC) and a mutant variant of HiC (muHiC) with increased activity and decreased surfactant sensitivity. Equilibrium and time-resolved denaturation by AOT were studied in aqueous solution and reverse micelles, and were compared with GdnHCl denaturation. The far-UV CD and fluorescence denaturation profiles obtained in the aqueous solutions of the two denaturants coincide for all three cutinases, indicating that unfolding is a co-operative two-state process under these conditions. In reverse micelles, the cutinases unfold with mono-exponential rates, again indicating a two-state process. The free energy of denaturation in water was calculated by linear extrapolation of equilibrium data, yielding very similar values for the three cutinases with averages of -11.6 kcal mol(-1) and -2.6 kcal mol(-1) for GdnHCl and AOT, respectively. Hence, the AOT denatured state (D(AOT)) is less destabilised than the GdnHCl denatured state (D(GdnHCl)), relative to the native state in water. Far-UV CD spectroscopy revealed that D(AOT) retains some secondary structure, while D(GdnHCl) is essentially unstructured. Similarly, fluorescence data suggest that D(AOT) is more compact than D(GdnHCl). Activity measurements reveal that both D(AOT) and D(GdnHCl) are practically inactive (catalytic activity <1% of that of the native enzyme). The fluorescence spectrum of D(AOT) in reverse micelles did not differ significantly from that observed in aqueous AOT. NMR studies of D(AOT) in reverse micelles indicated that the structure is characteristic of a molten globule, consistent with the CD and fluorescence data.  相似文献   

18.
Anticoagulation factor I (ACF I) isolated from the venom of Agkistrodon acutus is an activated coagulation factor X-binding protein in a Ca(2+)-dependent fashion with marked anticoagulant activity. The equilibrium unfolding/refolding of apo-ACF I, holo-ACF I, and Tb(3+)-reconstituted ACF I in guanidine hydrochloride (GdnHCl) solutions was studied by following the fluorescence and circular dichroism. Metal ions were found to increase the structural stability of ACF I against GdnHCl and thermal denaturation and, furthermore, influence its unfolding/refolding behavior. The GdnHCl-induced unfolding/refolding of both apo-ACF I and Tb(3+)-ACF I is a two-state process with no detectable intermediate state(s), whereas the GdnHCl-induced unfolding/refolding of holo-ACF I in the presence of 1 mM Ca(2+) follows a three-step transition, with intermediate state a (Ia) and intermediate state b (Ib). Ca(2+) ions play an important role in the stabilization of the Ia and Ib states. The decalcification of holo-ACF I shifts the ending zone of unfolding/refolding curve toward lower GdnHCl concentration, whereas the reconstitution of apo-ACF I with Tb(3+) ions shifts the initial zone of denaturation curve toward higher GdnHCl concentration. Therefore, it is possible to find a denaturant concentration (2.0 M GdnHCl) at which refolding from the fully denatured state of apo-ACF I to the Ib state of holo-ACF I or to the native state of Tb(3+)-ACF I can be initiated merely by adding the 1 mM Ca(2+) ions or 10 microM Tb(3+) ions to the unfolded state of apo-ACF I, respectively, without changing the concentration of the denaturant. Using Tb(3+) as a fluorescence probe of Ca(2+), the kinetic results of metal ions-induced refolding provide evidence that the compact Tb(3+)-binding region forms first, and subsequently, the protein undergoes further conformational rearrangements to form the native structure.  相似文献   

19.
Standard methods for measuring free energy of protein unfolding by chemical denaturation require complete folding at low concentrations of denaturant so that a native baseline can be observed. Alternatively, proteins that are completely unfolded in the absence of denaturant can be folded by addition of the osmolyte trimethylamine N-oxide (TMAO), and the unfolding free energy can then be calculated through analysis of the refolding transition. However, neither chemical denaturation nor osmolyte-induced refolding alone is sufficient to yield accurate thermodynamic unfolding parameters for partly folded proteins, because neither method produces both native and denatured baselines in a single transition. Here we combine urea denaturation and TMAO stabilization as a means to bring about baseline-resolved structural transitions in partly folded proteins. For Barnase and the Notch ankyrin domain, which both show two-state equilibrium unfolding, we found that DeltaG degrees for unfolding depends linearly on TMAO concentration, and that the sensitivity of DeltaG degrees to urea (the m-value) is TMAO independent. This second observation confirms that urea and TMAO exert independent effects on stability over the range of cosolvent concentrations required to bring about baseline-resolved structural transitions. Thermodynamic parameters calculated using a global fit that assumes additive, linear dependence of DeltaG degrees on each cosolvent are similar to those obtained by standard urea-induced unfolding in the absence of TMAO. Finally, we demonstrate the applicability of this method to measurement of the free energy of unfolding of a partly folded protein, a fragment of the full-length Notch ankyrin domain.  相似文献   

20.
Acidic fibroblast growth factors from human (hFGF-1) and newt (nFGF-1) (Notopthalamus viridescens) are 16-kDa, all beta-sheet proteins with nearly identical three-dimensional structures. Guanidine hydrochloride (GdnHCl)-induced unfolding of hFGF-1 and nFGF-1 monitored by fluorescence and far-UV circular dichroism (CD) shows that the FGF-1 isoforms differ significantly in their thermodynamic stabilities. GdnHCl-induced unfolding of nFGF-1 follows a two-state (Native state to Denatured state(s)) mechanism without detectable intermediate(s). By contrast, unfolding of hFGF-1 monitored by fluorescence, far-UV circular dichroism, size-exclusion chromatography, and NMR spectroscopy shows that the unfolding process is noncooperative and proceeds with the accumulation of stable intermediate(s) at 0.96 M GdnHCl. The intermediate (in hFGF-1) populated maximally at 0.96 M GdnHCl has molten globule-like properties and shows strong binding affinity to the hydrophobic dye, 1-Anilino-8-naphthalene sulfonate (ANS). Refolding kinetics of hFGF-1 and nFGF-1 monitored by stopped-flow fluorescence reveal that hFGF-1 and nFGF-1 adopts different folding mechanisms. The observed differences in the folding/unfolding mechanisms of nFGF-1 and hFGF-1 are proposed to be either due to differential stabilizing effects of the charged denaturant (Gdn(+) Cl(-)) on the intermediate state(s) and/or due to differences in the structural interactions stabilizing the native conformation(s) of the FGF-1 isoforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号