首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The availability of a complete genome database for the cyanobacterium Synechocystissp. PCC6803 (glucose-tolerant strain) has raised expectations that this organism would become a reference strain for work aimed at understanding the CO2-concentrating mechanism (CCM) in cyanobacteria. However, the amount of physiological data available has been relatively limited. In this report we provide data on the relative contributions of net HCO3 uptake and CO2 uptake under steady state photosynthetic conditions. Cells were compared after growth at high CO2 (2% v/v in air) or limiting CO2 conditions (20 ppm CO2). Synechocystishas a very high dependence on net HCO3 uptake at low to medium concentrations of inorganic carbon (Ci). At high Ci concentrations net CO2 uptake became more important but did not contribute more than 40% to the rate of photosynthetic O2 evolution. The data also confirm that high Ci cells of Synechocystissp. PCC6803 possess a strong capacity for net HCO3 uptake under steady state photosynthetic conditions. Time course experiments show that induction of maximal Ci uptake capacity on a shift from high CO2 to low CO2 conditions was near completion by four hours. By contrast, relaxation of the induced state on return of cells to high CO2, takes in excess of 230 h. Experiments were conducted to determine if Synechocystissp. PCC6803 is able to exhibit a `fast induction' response under severe Ci limitation and whether glucose was capable of causing a rapid inactivation in Ci uptake capacity. Clear evidence for either response was not found. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Two green algal species, Chlamydomonas reinhardtii and Scenedesmus obliquus, exhibited a relative maximum during the decay of luminescence, when adapted to low CO2 conditions that was not observed in high CO2 adapted cells.From the kinetics of transient changes in the level of dark fluorescence, after illumination and parallel to the luminescence maxima, it was concluded that the maximum in Scenedesmus was mainly related to a decrease in nonphotochemical quenching, whereas in Chlamydomonas the maximum was mainly related to a dark reduction of the primary PS II acceptor QA.ATP/ADP ratios from low CO2 adapted Scenedesmus showed transient high levels after a dark/light transition that was not observed in high CO2 adapted cells. After 30 s of illumination the ATP/ADP ratios however stabilized at the same steady state level as in high CO2 adapted cells.Dark addition of HCO3 - to low CO2 adapted cells of Chlamydomonas resulted in a rapid transient quenching of luminescence that was not observed in low CO2 adapted cells of neither species.It is concluded that the luminescence maxima present in both low CO2 adapted Scenedesmus and Chlamydomonas reflect adaptation of the cells to low CO2 conditions. It is further suggested that the difference in mechanistic origin of luminescence maxima in the two species reflects differences in adaptation.Abbreviations ADP adenosine-diphosphate - ATP adenosine-triphosphate - Ci inorganic carbon - FD dark fluorescence recorded under dark adapted conditions - F0 fluorescence with all reaction centers open - FV variable fluorescence - PS I photosystem I - PS II photosystem II - QA the first quinone acceptor of PS II  相似文献   

3.
Populus × euramericana, P. alba, and P. nigra clones were exposed to ambient or elevated (about 550 ppm) CO2 concentrations under field conditions (FACE) in central Italy. After three growing seasons, the plantation was coppiced. FACE was continued and in addition, one-half of each experimental plot was fertilised with nitrogen. Growth and anatomical wood properties were analysed in secondary sprouts. In the three poplar clones, most of the growth and anatomical traits showed no uniform response pattern to elevated [CO2] or N-fertilisation. In cross-sections of young poplar stems, tension wood amounted to 2–10% of the total area and was not affected by elevated CO2. In P. nigra, N-fertilisation caused an about twofold increase in tension wood, but not in the other clones. The formation of tension wood was not related to diameter or height growth of the shoots. In P. × euramericana N-fertilisation resulted in significant reductions in fibre lengths. In all three genotypes, N-fertilisation caused significant decreases in cell wall thickness. In P. × euramericana and P. alba elevated [CO2] also caused decreases in wall thickness, but less pronounced than nitrogen. In P. nigra and P. × euramericana elevated [CO2] induced increases in vessel diameters. These results show that elevated [CO2] and N-fertilisation affect wood structural development in a clone specific manner. However, the combination of these environmental factors resulted in overall losses in cell wall area of 5–12% in all three clones suggesting that in future climate scenarios negative effects on wood quality are to be anticipated if increases in atmospheric CO2 concentration were accompanied by increased N availability.  相似文献   

4.
A full-length cDNA clone encoding carbonic anhydrase was isolated from an Arabidopsis thaliana (Columbia) leaf library. Comparison of the derived amino acid sequence obtained from this clone with those of pea and spinach reveals a considerable degree of identity. The carbonic anhydrase cDNA was used to probe the level of RNA encoding this protein in the leaves of plants grown in elevated CO2 (660 ppm). We have found that under these conditions the steady-state level of carbonic anhydrase mRNA was increased in comparison with control plants grown in normal atmospheric concentrations of CO2 (330 ppm). This raises the intruiging possibility that there exists in higher plants a mechanism for perceiving and responding to changes in environmental CO2 concentrations at the genetic level.  相似文献   

5.
The activity of two carboxylating enzymes was studied in the green filamentous bacteriumChloroflexus aurantiacus. The carboxylation reaction involving pyruvate synthase was optimized using14CO2 and cell extracts. Pyruvate synthase was shown to be absent from cells ofCfl. aurantiacus OK-70 and present (in a quantity sufficient to account for autotrophic growth) in cells ofCfl. aurantiacus B-3. Differences in the levels of acetyl CoA carboxylase activity were revealed between cells of the strains studied grown under different conditions. The data obtained confirm the operation of different mechanisms of autotrophic CO2 assimilation inCfl. aurantiacus B-3 andCfl. aurantiacus OK-70: in the former organism, it is the reductive cycle of dicarboxylic acids, and in the latter one, it is the 3-hydroxypropionate cycle.  相似文献   

6.
No significant differences were found between four mathematical equations describing the response of CO2 exchange rate to photosynthetic photon flux density in seven poplar clones under laboratory conditions. Choice of an optimal equation for poplar may be based on the contemplated aims. High significant differences (at p<0.001) were found among the clones.Research was supported by the Instituut tot Aanmoediging van het Wetenschappelijk Onderzoek in Nijverheid en Landbouw (I.W.O.N.L.), Brussels.  相似文献   

7.
The CO2-concentrating mechanism (CCM) was induced in the green unicellular alga Chlorella when cells were transferred from high (5% CO2) to low (0.03%) CO2 concentrations. The induction of the CCM correlated with the formation of a starch sheath specifically around the pyrenoid in the chloroplast. With the aim of clarifying whether the starch sheath was involved in the operation of the CCM, we isolated and physiologically characterized a starchless mutant of Chlorella pyrenoidosa, designated as IAA-36. The mutant strain grew as vigorously as the wild type under high and low CO2 concentrations, continuous light and a 12 h light/12 h dark photoperiod. The CO2 requirement for half-maximal rates of photosynthesis [K0.5(CO2)] decreased from 40 μM to 2–3 μM of CO2 when both wild type and mutant were switched from high to low CO2. The high affinity for inorganic carbon indicates that the IAA-36 mutant is able to induce a fully active CCM. Since the mutant does not have the pyrenoid starch sheath, we conclude that the sheath is not involved in the operation of the CCM in Chlorella cells.  相似文献   

8.
Lipid class composition was analysed in the green macroalga Ulva rigida grown under normal (350 ppm) and high (10,000 ppm) CO2 levels, and in nitrate saturated and nitrogen limited conditions. A new protocol for the extraction of lipids has been defined. Culture conditions altered the fate of assimilated carbon, and significant changes were observed in protein and total lipid content in particular. A CO2-enriched atmosphere conditioned the effects of nitrogen limitation on lipid class composition, revealing deep qualitative changes in carbon metabolism. Triglycerides accumulated at high CO2 and under nitrogen limitation, while chloroplast-related lipids showed an inverse response. Changes in phospholipids could be related to carbon availability as they did not respond to nitrogen limitation. The ratio sterols/acetone-mobile polar lipids followed a negative linear relation with the optimum quantum yield for photosynthetic electron transport (Fv/Fm), and was considered as an index of the «light status» of the cell. The specificity of the response of lipid classes to growth conditions in U. rigida emphasizes the potential role of lipid class analyses as a diagnostic tool for environmental stress.  相似文献   

9.
Cech PG  Pepin S  Körner C 《Oecologia》2003,137(2):258-268
We enriched in CO2 the canopy of 14 broad-leaved trees in a species-rich, ca. 30-m-tall forest in NW Switzerland to test whether elevated CO2 reduces water use in mature forest trees. Measurements of sap flux density (JS) were made prior to CO2 enrichment (summer 2000) and throughout the first whole growing season of CO2 exposure (2001) using the constant heat-flow technique. The short-term responses of sap flux to brief (1.5–3 h) interruptions of CO2 enrichment were also examined. There were no significant a priori differences in morphological and physiological traits between trees which were later exposed to elevated CO2 (n=14) and trees later used as controls (n=19). Over the entire growing season, CO2 enrichment resulted in an average 10.7% reduction in mean daily JS across all species compared to control trees. Responses were most pronounced in Carpinus, Acer, Prunus and Tilia, smaller in Quercus and close to zero in Fagus trees. The JS of treated trees significantly increased by 7% upon transient exposure to ambient CO2 concentrations at noon. Hence, responses of the different species were, in the short term, similar in magnitude to those observed over the whole season (though opposite because of the reversed treatment). The reductions in mean JS of CO2-enriched trees were high (22%) under conditions of low evaporative demand (vapour pressure deficit, VPD <5 hPa) and small (2%) when mean daily VPD was greater than 10 hPa. During a relatively dry period, the effect of elevated CO2 on JS even appeared to be reversed. These results suggest that daily water savings by CO2-enriched trees may have accumulated to a significantly improved water status by the time when control trees were short of soil moisture. Our data indicate that the magnitude of CO2 effects on stand transpiration will depend on rainfall regimes and the relative abundance of the different species, being more pronounced under humid conditions and in stands dominated by species such as Carpinus and negligible in mono-specific Fagus forests.  相似文献   

10.
The role of carbon dioxide in glucose metabolism of Bacteroides fragilis   总被引:2,自引:0,他引:2  
The effect of CO2 concentration on growth and glucose fermentation of Bacteroides fragilis was studied in a defined mineral medium. Batch culture experiments were done in closed tubes containing CO2 concentrations ranging from 10% to 100% (with appropriate amounts of bicarbonate added to maintain the pH at 6.7). These experiments revealed that CO2 had no influence on growth rate or cell yield when the CO2 concentration was above 30% CO2 (minimum available CO2–HCO 3 - , 25.5 mM), whereas a slight decrease in these parameters was observed at 20% and 10% CO2 (available CO2–HCO 3 - , 17 and 8.5 mM, respectively). If CO2–HCO 3 - concentrations were below 10 mM, the lag phase lengthened and a decrease in maximal growth rate and cell yield were observed. The amount of acetate made decreased, while d-lactate concentration increased. A net production of CO2 allowed growth under conditions of extremely low concentrations of added CO2.When B. fragilis was grown in continuous culture with 100% CO2 or 100% N2, the dilution rate influenced the concentrations of acetate, succinate, propionate, d-lactate, l-malate and formate formed. Decreasing the dilution rate favored propionate and acetate production under both conditions. When the organism was grown with 100% N2, the amount of propionate formed was greater than the amount of succinate formed at all dilution rates. Except at slow dilution rates the reverse was true when 100% CO2 was used. B. fragilis was unable to grow at dilution rates faster than 0.154 h-1 when grown with 100% N2; the Y glc max was 67.9 g DW cells/mol glucose and m s was 0.064 mmol glucose/g DW·h. If the gas atmosphere was 100% CO2 the organism was washed out of the culture when the dilution rate exceeded 0.38 h-1; the Y glc max was 59.4 g DW cells/mol glucose and m s was 0.094 mmol glucose/g DW·h.Measurement of the phosphoenolpyruvate (PEP) carboxykinase (E.C. 4.1.1.49) with whole, permeabilized cells of B. fragilis showed an increase of specific enzyme activity with decreasing CO2 concentrations. The mechanisms used by B. fragilis to adjust to low levels of CO2 are discussed.  相似文献   

11.
Summary

Red algae have the highest known selectivity factor (Srel) for CO2 over O2 of ribulose bisphosphate carboxylase-oxygenase (RUBISCO). This allows the prediction that a red alga relying on diffusive supply of CO2 to RUBISCO from air-equilibrated solution should have less O2 inhibition of photosynthesis than would an otherwise similar non-red alga with a lower Srel of RUBISCO. Furthermore, RUBISCO shows an increased Srel values at low temperatures. The prediction that O 2inhibition of photosynthesis should be small for marine red algae relying on diffusive CO2 entry growing in the North Sea with an annual temperature range of 4–16°C was tested in O2 electrode experiments at 12°C. Phycodrys rubens and Plocamium cartilagineum, which rely on diffusive CO2 entry showed, as predicted, only a small inhibition at lower inorganic C concentrations. Palmaria palmata, which has a CO2 concentrating mechanism, had the expected negligible O 2 inhibition of photosynthesis at any inorganic C concentration except (non-significantly) for saturating inorganic C.  相似文献   

12.
R. Wayne  T. Mimura  T. Shimmen 《Protoplasma》1994,180(3-4):118-135
Summary The hydraulic resistance of the plasma membrane was measured on single internodal cells ofChara corallina using the method of transcellular osmosis. The hydraulic resistance of the plasma membrane of high CO2-grown cells was significantly higher than the hydraulic resistance of the plasma membrane in low CO2-grown cells. Therefore we tested the possibility that the bicarbonate transport system, postulated to be present in low CO2-grown cells, serves as a water channel that lowers the hydraulic resistance of the plasma membrane. We were unable to find any correlation between agents that inhibited the bicarbonate transport system and agents that increased the hydraulic resistance of low CO2-grown cells. We did, however, find a correlation between the permeability of the cell to water and CO2. We propose that the reduced hydraulic resistance of the plasma membrane of the low CO2-grown cells is a function of a change in either the structural properties of the lipid bilayer or the activity of a CO2 transport protein so that under conditions of reduced inorganic carbon, the plasma membrane becomes more permeable to CO2, and consequently to other small molecules, including H2O, methanol and ethanol.Dedicated to our teacher, Professor Masashi Tazawa, on the occasion of his 65th birthday  相似文献   

13.
Physiological responses to elevated CO2 at the leaf and canopy-level were studied in an intact pine (Pinus taeda) forest ecosystem exposed to elevated CO2 using a free-air CO2 enrichment (FACE) technique. Normalized canopy water-use of trees exposed to elevated CO2 over an 8-day exposure period was similar to that of trees exposed to current ambient CO2 under sunny conditions. During a portion of the exposure period when sky conditions were cloudy, CO2-exposed trees showed minor (7%) but significant reductions in relative sap flux density compared to trees under ambient CO2 conditions. Short-term (minutes) direct stomatal responses to elevated CO2 were also relatively weak (5% reduction in stomatal aperture in response to high CO2 concentrations). We observed no evidence of adjustment in stomatal conductance in foliage grown under elevated CO2 for nearly 80 days compared to foliage grown under current ambient CO2, so intrinsic leaf water-use efficiency at elevated CO2 was enhanced primarily by direct responses of photosynthesis to CO2. We did not detect statistical differences in parameters from photosynthetic responses to intercellular CO2 (A net-C i curves) for Pinus taeda foliage grown under elevated CO2 (550 mol mol–1) for 50–80 days compared to those for foliage grown under current ambient CO2 from similar-sized reference trees nearby. In both cases, leaf net photosynthetic rate at 550 mol mol–1 CO2 was enhanced by approximately 65% compared to the rate at ambient CO2 (350 mol mol–1). A similar level of enhancement under elevated CO2 was observed for daily photosynthesis under field conditions on a sunny day. While enhancement of photosynthesis by elevated CO2 during the study period appears to be primarily attributable to direct photosynthetic responses to CO2 in the pine forest, longer-term CO2 responses and feedbacks remain to be evaluated.  相似文献   

14.
蒋延玲  周广胜  王玉辉  王慧  石耀辉 《生态学报》2015,35(14):4559-4569
收集了1992—2013年关于模拟CO2浓度升高及气候变化(温度升高、降水变化)对内蒙古地带性草原群落的5个建群种针茅植物(贝加尔针茅、本氏针茅、大针茅、克氏针茅、短花针茅)影响的实验研究结果表明,模拟CO2浓度升高、增温和增雨将提高针茅植物的光合作用和株高生长,但CO2处理时间延长会导致光合适应;温度和降雨变化将改变针茅植物的物候进程,但物种之间反应有差异;CO2浓度升高有助于针茅植物生物量增加,增温和干旱则相反,CO2浓度升高对干旱的影响具有补偿作用;干旱和涝渍胁迫将提高针茅植物植株C/N,CO2浓度升高将加剧水分胁迫下针茅植物植株C/N的增加效应,导致牧草品质下降。由于当前在适应性指标、针茅植物对气候变化协同作用的适应机理及其敏感性研究等方面存在的不足,导致目前无法全面比较各针茅植物对CO2和温度、降水变化的响应差异及其敏感性,因而无法预测未来在全球变化背景下,这几种针茅植物的动态变化及其在地理分布上的迁移替代规律。为科学应对气候变化,未来应加强内蒙古地带性针茅植物的适应性指标、针茅植物对多因子协同作用的适应机理及敏感性研究。  相似文献   

15.
Abstract

Ecological aspects of C3, C4 and CAM photosynthetic pathways. - Three different photosynthetic CO2 fixation pathways are known to occur in higher plants. However all three pathways ultimately depend on the Calvin-Benson cycle for carbon reduction. The oxygenase activity of RuBP carboxilase is responsible for photorespiratory CO2 release. Both C4 and CAM pathways behave as a CO2 concentrating mechanism which prevent photorespiration. The CO2-concentrating mechanism in C4 plants is based on intracellular symplastic transport of C4 dicarboxylic acids from mesophyll-cells to the adjacent bundle-sheath cells. On the contrary in CAM plants the CO2-concentrating mechanism is based on the intracellular transport of malic acid into and out of the vacuole.

The C4 photosynthetic pathway as compared to the C3 pathway permits higher rates of CO2 fixation in high light and high temperature environments at low costs in terms of water loss, given the stability of the photosynthetic apparatus under such conditions.

CAM is interpreted as an adaptation to arid environments because it enables carbon assimilation to take place at very low water costs during the night when the evaporative demand is low. Nevertheless many aquatic species of Isoetes and some relatives are CAM, suggesting the adaptive role of CAM to environments which become depleted in CO2.

The photosynthetic carbon fixation pathway certainly contributes to the ecological success of plants in different environments. However the distribution of plants may also reflect their biological history. On the other hand plants with different photosynthetic pathways coexist in many communities and tend to share resources in time. In any case some generalizations are possible: C4 plants enjoy an ecological advantage in hot, moist, high light regions while the majority of species in desert environments are C3; CAM plants are more frequent in semiarid regions with seasonal rainfall, coastal fog deserts, and in epiphytic habitats in tropical rain forests.  相似文献   

16.
Net CO2 exchange was monitored through a dark-light-dark transition, under 2% and 21% O2 in the presence and absence of CO2, in Chlamydomonas reinhardtii wild type and the high-CO2-requiring mutant ca-1-12-1C. Upon illumination at 350 l/l CO2, ca-1-12-1C cell exhibited a large decrease in net CO2 uptake following an initial surge of CO2 uptake. Net CO2 uptake subsequently attained a steady-state rate substantially lower than the maximum. A large, O2-enchanced post-illumination burst of CO2 efflux was observed after a 10-min illumination period, corresponding to a minimum in the net CO2 uptake rate. A smaller, but O2-insensitive post-illumination burst was observed following a 30-min illumination period, when net CO2 uptake was at a steady-state rate. These post-illumination bursts appeared to reflect the release of an intracellular pool of inorganic carbon, which was much larger following the initial surge of net CO2 uptake than during the subsequent steady-state CO2 uptake period.With the mutant in CO2-free gas, O2-stimulated, net CO2 efflux was observed in the light, and a small, O2-dependent post-illumination burst was observed. With wild-type cells no CO2 efflux was observed in the light in CO2-free gas under either 2% or 21% O2, but a small, O2-dependent post-illumination burst was observed. These results were interpreted as indicating that photorespiratory rates were similar in the mutant and wild-type cells in the absence of CO2, but that the wild-type cells were better able to scavenge the photorespiratory CO2.  相似文献   

17.
This study examined the effects of carbon dioxide (CO2)-, ozone (O3)-, and genotype-mediated changes in quaking aspen (Populus tremuloides) chemistry on performance of the forest tent caterpillar (Malacosoma disstria) and its dipteran parasitoid (Compsilura concinnata) at the Aspen Free-Air CO2 Enrichment (FACE) site. Parasitized and non-parasitized forest tent caterpillars were reared on two aspen genotypes under elevated levels of CO2 and O3, alone and in combination. Foliage was collected for determination of the chemical composition of leaves fed upon by forest tent caterpillars during the period of endoparasitoid larval development. Elevated CO2 decreased nitrogen levels but had no effect on concentrations of carbon-based compounds. In contrast, elevated O3 decreased nitrogen and phenolic glycoside levels, but increased concentrations of starch and condensed tannins. Foliar chemistry also differed between aspen genotypes. CO2, O3, genotype, and their interactions altered forest tent caterpillar performance, and differentially so between sexes. In general, enriched CO2 had little effect on forest tent caterpillar performance under ambient O3, but reduced performance (for insects on one aspen genotype) under elevated O3. Conversely, elevated O3 improved forest tent caterpillar performance under ambient, but not elevated, CO2. Parasitoid larval survivorship decreased under elevated O3, depending upon levels of CO2 and aspen genotype. Additionally, larval performance and masses of mature female parasitoids differed between aspen genotypes. These results suggest that host-parasitoid interactions in forest systems may be altered by atmospheric conditions anticipated for the future, and that the degree of change may be influenced by plant genotype.  相似文献   

18.
In the green marine alga Dunaliella tertiolecta, a CO2-concentrating mechanism is induced when the cells are grown under low-CO2 conditions (0.03% CO2). To identify proteins induced under low-CO2 conditions the cells were labelled with 35SO4 2–, and seven polypeptides with molecular weights of 45, 47, 49, 55, 60, 68 and 100 kDa were detected. The induction of these polypeptides was observed when cells grown in high CO2 (5% CO2 in air) were switched to low CO2, but only while the cultures were growing in light. Immunoblot analysis of total cell protein against pea chloroplastic carbonic anhydrase polyclonal antibodies showed immunoreactive 30-kDa bands in both high- and low-CO2-grown cells and an aditional 49-kDa band exclusively in low-CO2-grown cells. The 30-kDa protein was shown to be located in the chloroplast. Western blot analysis of the plasmamembrane fraction against corn plasma-membrane AT-Pase polyclonal antibodies showed 60-kDa bands in both high- and low-CO2 cell types as well as an immunoreactive 100-kDa band occurring only in low-CO2-grown cells. These results suggest that there are two distinct forms of both carbonic anhydrase and plasma-membrane ATPase, and that one form of each of them can be regulated by the CO2 concentration.Abbreviations CA carbonic anhydrase - DIC dissolved inorganic carbon (CO2+ HCO3 ) - CCM CO2-concentrating mechanism - low CO2 air containing 0.03% CO2 - high CO2 air supplemented with 5% CO2 (v/v) We thank Prof. John Coleman for providing antibodies raised against pea chloroplast CA, Dr. James V. Moroney for providing antibodies raised against the 37-kDa periplasmic carbonic anhydrase of CO2 Chlamydomonas reinhardtii, and Prof. Leonard T. Robert for a gift of corn plasma-membrane 100-kDa ATPase antibodies. We thank Dr. Jeanine Olsen (University of Groningen, the Netherlands) for style comments. This work was supported by the Institute Tecnológico de Canarias (Spain).  相似文献   

19.
The future capacity of forest ecosystems to sequester atmospheric carbon is likely to be influenced by CO2-mediated shifts in nutrient cycling through changes in litter chemistry, and by interactions with pollutants like O3. We evaluated the independent and interactive effects of elevated CO2 (560 μl l−1) and O3 (55 nl l l−1) on leaf litter decomposition in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera) at the Aspen free air CO2 enrichment (FACE) site (Wisconsin, USA). Fumigation treatments consisted of replicated ambient, +CO2, +O3, and +CO2 + O3 FACE rings. We followed mass loss and litter chemistry over 23 months, using reciprocally transplanted litterbags to separate substrate quality from environment effects. Aspen decayed more slowly than birch across all treatment conditions, and changes in decomposition dynamics of both species were driven by shifts in substrate quality rather than by fumigation environment. Aspen litter produced under elevated CO2 decayed more slowly than litter produced under ambient CO2, and this effect was exacerbated by elevated O3. Similarly, birch litter produced under elevated CO2 also decayed more slowly than litter produced under ambient CO2. In contrast to results for aspen, however, elevated O3 accelerated birch decay under ambient CO2, but decelerated decay under enriched CO2. Changes in decomposition rates (k-values) were due to CO2- and O3-mediated shifts in litter quality, particularly levels of carbohydrates, nitrogen, and tannins. These results suggest that in early-successional forests of the future, elevated concentrations of CO2 will likely reduce leaf litter decomposition, although the magnitude of effect will vary among species and in response to interactions with tropospheric O3.  相似文献   

20.
In order to investigate the possible impacts of increased atmospheric CO2 levels on algal growth and photosynthesis, the influence of CO2 concentration was tested on three planktonic algae (Chlamydomonas reinhardtii, Chlorella pyrenoidosa, and Scenedesmus obliquus). Increased CO2 concentration enhanced significantly the growth rate of all three species. Specific growth rates reached maximal values at 30, 100, and 60 M CO2 in C. reinhardtii, C. pyrenoidosa, and S. obliquus, respectively. Such significant enhancement of growth rate with enriched CO2 was also confirmed at different levels of inorganic N and P, being more profound at limiting levels of N inC. pyrenoidosa and P in S. obliquus. The maximal rates of net photosynthesis, photosynthetic efficiency and light-saturating point increased significantly (p < 0.05) in high-CO2-grown cells. Elevation of the CO2 levels in cultures enhanced the photoinhibition of C. reinhardtii, but reduced that of C. pyrenoidosa and S. obliquus when exposed to high photon flux density. The photoinhibited cells recovered to some extent (from 71% to 99%) when placed under dim light or in darkness, with better recovery in high-CO2-grownC. pyrenoidosa and S. obliquus. Although pH and pCO2 effects cannot be distinguished from this study, it can be concluded that increased CO2 concentrations with decreased pH could affect the growth rate and photosynthetic physiology of C. reinhardtii, C. pyrenoidosa, and S. obliquus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号