首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Net CO2 exchange was monitored through a dark-light-dark transition, under 2% and 21% O2 in the presence and absence of CO2, in Chlamydomonas reinhardtii wild type and the high-CO2-requiring mutant ca-1-12-1C. Upon illumination at 350 l/l CO2, ca-1-12-1C cell exhibited a large decrease in net CO2 uptake following an initial surge of CO2 uptake. Net CO2 uptake subsequently attained a steady-state rate substantially lower than the maximum. A large, O2-enchanced post-illumination burst of CO2 efflux was observed after a 10-min illumination period, corresponding to a minimum in the net CO2 uptake rate. A smaller, but O2-insensitive post-illumination burst was observed following a 30-min illumination period, when net CO2 uptake was at a steady-state rate. These post-illumination bursts appeared to reflect the release of an intracellular pool of inorganic carbon, which was much larger following the initial surge of net CO2 uptake than during the subsequent steady-state CO2 uptake period.With the mutant in CO2-free gas, O2-stimulated, net CO2 efflux was observed in the light, and a small, O2-dependent post-illumination burst was observed. With wild-type cells no CO2 efflux was observed in the light in CO2-free gas under either 2% or 21% O2, but a small, O2-dependent post-illumination burst was observed. These results were interpreted as indicating that photorespiratory rates were similar in the mutant and wild-type cells in the absence of CO2, but that the wild-type cells were better able to scavenge the photorespiratory CO2.  相似文献   

2.
Polypeptides of 21, 36 and 37 kDa are induced in the unicellular green alga Chlamydomonas reinhardtii Dang. when cells are transferred from high (2%) to low (0.03%) CO2 concentrations. The synthesis of these polypeptides is correlated with the induction of the CO2-concentrating mechanism. In this work we studied the effect of the growth conditions on the synthesis of these polypeptides with the aim of clarifying whether the induction of all three of these low-CO2-inducible polypeptides requires the same environmental factor. Our results showed that induction of the 21- and 36-kDa polypeptides under low-CO2 conditions occurred only in the light, while the 37-kDa periplasmic carbonic anhydrase (EC 4.2.1.1) was induced in light, darkness, and in both synchronous and asynchronous cultures. In addition, induction of these polypeptides appeared to be determined more by the O2/CO2 ratio than by the CO2 concentrations. None of these polypeptides could be induced in either of two different mutants of C. reinhardtii, one lacking ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) and the other with inactive enzyme. Our results indicate that the 21- and 36-kDa polypeptides are regulated by a mechanism different from that controlling the 37-kDa polypeptide.Abbreviations pCA (periplasmic) carbonic anhydrase - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - TAP Trisacetate phosphate medium The authors thank Prof. M. Spalding (Iowa State University, USA) for providing antisera to LIP-21 and LIP-36. We thank Prof. S. Bartlett and Dr. J. Moroney (Louisiana State University, USA) for providing antibodies to C. reinhardtii, Rubisco and 37-kDa pCA, respectively. This work was supported by the Instituto Tecnologico de Canarias.  相似文献   

3.
Chloroplasts with high rates of photosynthetic O2 evolution (up to 120 mol O2· (mg Chl)-1·h-1 compared with 130 mol O2· (mg Chl)-1·h-1 of whole cells) were isolated from Chlamydomonas reinhardtii cells grown in high and low CO2 concentrations using autolysine-digitonin treatment. At 25° C and pH=7.8, no O2 uptake could be observed in the dark by high- and low-CO2 adapted chloroplasts. Light saturation of photosynthetic net oxygen evolution was reached at 800 mol photons·m-2·s-1 for high- and low-CO2 adapted chloroplasts, a value which was almost identical to that observed for whole cells. Dissolved inorganic carbon (DIC) saturation of photosynthesis was reached between 200–300 M for low-CO2 adapted chloroplasts, whereas high-CO2 adapted chloroplasts were not saturated even at 700 M DIC. The concentrations of DIC required to reach half-saturated rates of net O2 evolution (Km(DIC)) was 31.1 and 156 M DIC for low- and high-CO2 adapted chloroplasts, respectively. These results demonstrate that the CO2 concentration provided during growth influenced the photosynthetic characteristics at the whole cell as well as at the chloroplast level.Abbreviations Chl chlorophyll - DIC dissolved inorganic carbon - Km(DIC) coneentration of dissolved inorganic carbon required for the rate of half maximal net O2 evolution - PFR photon fluence rate - SPGM silicasol-PVP-gradient medium  相似文献   

4.
Mass-spectrometric measurements of 18O exchange from 13C18O2 were used to follow changes in the intracellular carbonic anhydrase (CA) activity of cells of Chlamydomonas reinhardtii Dang, wild type and the ca-1 mutant during adaptation to air. With intact cells as well as with crude homogenates total intracellular CA activity in wild-type cells increased six to tenfold within 4 h after transferring cells from 5% CO2 (high inorganic carbon, Ci) to ambient air (air adapted). After that time the activity slowly declined to a level similar to that observed with cells which had been continuously grown in air (low-Ci grown). In the ca-1 mutant, total CA was induced to a similar extent during 4 h of adaptation; however, absolute activities were two to three times lower in ca-1 than in the wild type regardless of the CO2 supply. When crude extracts from wild-type cells were separated into soluble and insoluble fractions, each fraction contained about half of the internal CA activity. Within 4 h of adaptation, both forms of CA activity were simultaneously enhanced by nine to tenfold, reaching levels similar to those found in low-Cigrown cells. In contrast, in the ca-1 mutant the soluble CA activity was only enhanced by about eightfold while the level of insoluble CA was very low even in low-Ci cells. After isolation of intact chloroplasts from wild-type cells and further subfractionation, around 70–80% of total chloroplastic CA activity was found to be in the insoluble fraction while 17–20% remained in the soluble fraction. Both chloroplastic CA activities were inducible within the first 4 h of adaptation to air, with each of them being eight to ten times higher than in high-Ci algae. After that time their activities were similar to the corresponding CA values in low-Ci-grown cells. In contrast, plastids from high-Ci cells of the ca-1 mutant showed 40% less insoluble-CA activity compared to the wild type and this insoluble-CA activity was not increased at all by transferring algae to air. In addition, no soluble-CA activity was detected in chloroplasts from high-Ci and air-adapted ca-1 cells. These results indicate the presence of three intracellular CA activities in high-Ci air-adapted and low-Ci cells of the wild type and that two of them are associated with the chloroplasts. All three activities are completely induced within the first 4 h of adaptation to air in wild-type cells. In contrast, it was not possible to induce any of the chloroplastic CA activities in the ca-1 mutant. The possibility that the soluble chloroplastic CA represents a pyrenoid-located CA is discussed.This work is dedicated to Professor A. Wild on the occasion of his 65th birthday  相似文献   

5.
6.
We have isolated very high light resistant nuclear mutants (VHL R) in Chlamydomonas reinhardtii, that grow in 1500–2000 mol photons m–2 s–1 (VHL) lethal to wildtype. Four nonallelic mutants have been characterized in terms of Photosystem II (PS II) function, nonphotochemical quenching (NPQ) and xanthophyll pigments in relation to acclimation and survival under light stress. In one class of VHL R mutants isolated from wild type (S4 and S9), VHL resistance was accompanied by slower PS II electron transfer, reduced connectivity between PS II centers and decreased PS II efficiency. These lesions in PS II function were already present in the herbicide resistant D1 mutant A251L (L *) from which another class of VHL R mutants (L4 and L30) were isolated, confirming that optimal PS II function was not critical for survival in very high light. Survival of all four VHL R mutants was independent of CO2 availability, whereas photoprotective processes were not. The de-epoxidation state (DPS) of the xanthophyll cycle pigments in high light (HL, 600 mol photons m–2 s–1) was strongly depressed when all genotypes were grown in 5% CO2. In S4 and S9 grown in air under HL and VHL, high DPS was well correlated with high NPQ. However when the same genotypes were grown in 5% CO2, high DPS did not result in high NPQ, probably because high photosynthetic rates decreased thylakoid pH. Although high NPQ lowered the reduction state of PS II in air compared to 5% CO2 at HL in wildtype, S4 and S9, this did not occur during growth of S4 and S9 in VHL. L * and VHL R mutants L4 and L30, also showed high DPS with low NPQ when grown air or 5% CO2, possibly because they were unable to maintain sufficiently high pH due to constitutively impaired PS II electron transport. Although dissipation of excess photon energy through NPQ may contribute to VHL resistance, there is little evidence that the different genes conferring the VHL R phenotype affect this form of photoprotection. Rather, the decline of chlorophyll per biomass in all VHL R mutants grown under VHL suggests these genes may be involved in regulating antenna components and photosystem stoichiometries.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

7.
Using mass-spectrometric measurements of 18O exchange from 13C18O2 intracellular carbonic anhydrase (CA) activity was investigated in the unicellular green algae Dunaliella tertiolecta and Chlamydomonas reinhardtii which were either grown on air enriched with 5% CO2 (high-Ci cells) or on air (low-Ci cells). In D. tertiolecta high- and low-Ci cells had detectable levels of internal CA activity when measured under in-vivo conditions and this activity could be split up into three distinct forms. One CA was not associated with the chloroplasts, while two isozymes were found to be located within the plastids. The activities of all intracellular CAs were always about twofold higher in low than in high-Ci cells of D. tertiolecta and the chloroplastic enzymes were completely induced within 4 h of adaptation to air. One of the chloroplastic CAs was found to be soluble the other was insoluble. In addition to the physical differences, MgSO4 in vitro caused a more than twofold stimulation of the soluble activity while the insoluble form of CA remained rather unaffected. In C. reinhardtii, MgSO4 increased the soluble CA activity by 346% and the concentration of MgSO4 required for half-maximum stimulation was between 10 and 15 mM. Again, the insoluble CA activity was not affected by MgSO4. Furthermore, the soluble isoenzyme was considerably more sensitive to ethoxyzolamide, a potent inhibitor of CA, than the insoluble enzyme. The concentration of inhibitor causing 50% inhibition of soluble CA activity was 110 and 85 μM ethoxyzolamide for D. tertiolecta and C. reinhardtii, respectively. From these data we conclude that the two chloroplast-associated CAs are distinct enzymes.  相似文献   

8.
The unicellular green alga Chlamydomonas reinhardtii possesses a CO2-concentrating mechanism. In order to measure the CO2 permeability coefficients of the plasma membranes (PMs), carbonic anhydrase (CA) loaded vesicles were isolated from C. reinhardtii grown either in air enriched with 50 mL CO2 · L?1} (high-Ci cells) or in ambient air (350 μL CO2 · L?1}; low-Ci cells). Marker-enzyme measurements indicated less than 1% contamination with thylakoid and mitochondrial membranes, and that more than 90% of the PMs from high and low-Ci cells were orientated right-side-out. The PMs appeared to be sealed as judged from the ability of vesicles to accumulate [14C]acetate along a proton gradient for at least 10 min. Carbonic anhydrase-loaded PMs from high and low-Ci cells of C. reinhardtii were used to measure the exchange of 18O between doubly labelled CO2 (13C18O2) and H2O in stirred suspensions by mass spectrometry. Analysis of the kinetics of the 18O depletion from 13C18O2 in the external medium provides a powerful tool to study CO2 diffusion across the PM to the active site of CA which catalyses 18O exchange only inside the vesicles but not in the external medium (Silverman et al., 1976, J Biol Chem 251: 4428–4435). The activity of CA within loaded PM vesicles was sufficient to speed-up the 18O loss to H2O to 45360–128800 times the uncatalysed rate, depending on the efficiency of CA-loading and PM isolation. From the 18O-depletion kinetics performed at pH 7.3 and 7.8, CO2 permeability coefficients of 0.76 and 1.49·10?3} cm·s?1}, respectively, were calculated for high Ci cells. The corresponding values for low-Ci cells were 1.21 and 1.8·10?3} cm·s?1}. The implications of the similar and rather high CO2 permeability coefficients (low CO2 resistance) in high and low-Ci cells for the COi-concentrating mechanism of C. reinhardtii are discussed.  相似文献   

9.
A full-length cDNA clone encoding carbonic anhydrase was isolated from an Arabidopsis thaliana (Columbia) leaf library. Comparison of the derived amino acid sequence obtained from this clone with those of pea and spinach reveals a considerable degree of identity. The carbonic anhydrase cDNA was used to probe the level of RNA encoding this protein in the leaves of plants grown in elevated CO2 (660 ppm). We have found that under these conditions the steady-state level of carbonic anhydrase mRNA was increased in comparison with control plants grown in normal atmospheric concentrations of CO2 (330 ppm). This raises the intruiging possibility that there exists in higher plants a mechanism for perceiving and responding to changes in environmental CO2 concentrations at the genetic level.  相似文献   

10.
A burst of net CO2 uptake was observed during the first 3–4 min after the onset of illumination in both wild-type Chlamydomonas reinhardii in which carbonic anhydrase was chemically inhibited with ethoxyzolamide and in a mutant of C. reinhardii (ca-1-12-1C) deficient in carbonic anhydrase activity. The burst was followed by a rapid decrease in the CO2 uptake rate so that net evolution often occurred. After a 2–3 min period of CO2 evolution, net CO2 uptake again increased and ultimately reached a steady-state, positive rate. From [14CO2]-tracer studies it was determined that CO2 fixation proceeded at a nearly linear rate throughout the period of illumination. Thus, prior to reaching a steady state, there was a rapid accumulation of inorganic carbon inside the cells which apparently reached a supercritical concentration and the excess was excreted, causing a subsequent efflux of CO2. A post illumination burst of net CO2 efflux was also observed in ethoxyzolamide-inhibited wild type and ca-1 mutant cells, but not in the unihibited wild type. [14CO2]-tracer experiments revealed that this burst was the result of a collapse of a large internal inorganic carbon pool at the onset of darkness rather than a photorespiratory post-illumination burst. These results indicate that upon illumination, chemical or genetic inhibition of carbonic anhydrase initially causes an accumulation of excess inroganic carbon in C. reinhardii cells, and that unknown regulatory mechanisms correct for this imbalance by first excreting the excess inorganic carbon and then, after several dampened oscillations, achieving an equilibrium between bicarbonate uptake, bicarbonate dehydration, and CO2 fixation.  相似文献   

11.
The effect of photon flux density on inorganic carbon accumulation and photosynthetic CO2 assimilation was determined by CO2 exchange studies at three, limiting CO2 concentrations with a ca-1 mutant of Chlamydomonas reinhardiii. This mutant accumulates a large internal inorganic carbon pool in the light which apparently is unavailable for photosynthetic assimilation. Although steady-state photosynthetic CO2 assimilation did not respond to the varying photon flux densities because of CO2 limitation, components of inorganic-carbon accumulation were not clearly light saturated even at 1100 mol photons m-2 s-1, indicating a substantial energy requirement for inorganic carbon transport and accumulation. Steady-state photosynthetic CO2 assimilation responded to external CO2 concentrations but not to changing internal inorganic carbon concentrations, confirming that diffusion of CO2 into the cells supplies most of the CO2 for photosynthetic assimilation and that the internal inorganic carbon pool is essentially unavailable for photosynthetic assimilation. The estimated concentration of the internal inorganic carbon pool was found to be relatively insensitive to the external CO2 concentration over the small range tested, as would be expected if the concentration of this pool is limited by the internal to external inorganic carbon gradient. An attempt to use this CO2 exchange method to determine whether inorganic carbon accumulation and photosynthetic CO2 assimilation compete for energy at low photon flux densities proved inconclusive.  相似文献   

12.
Two green algal species, Chlamydomonas reinhardtii and Scenedesmus obliquus, exhibited a relative maximum during the decay of luminescence, when adapted to low CO2 conditions that was not observed in high CO2 adapted cells.From the kinetics of transient changes in the level of dark fluorescence, after illumination and parallel to the luminescence maxima, it was concluded that the maximum in Scenedesmus was mainly related to a decrease in nonphotochemical quenching, whereas in Chlamydomonas the maximum was mainly related to a dark reduction of the primary PS II acceptor QA.ATP/ADP ratios from low CO2 adapted Scenedesmus showed transient high levels after a dark/light transition that was not observed in high CO2 adapted cells. After 30 s of illumination the ATP/ADP ratios however stabilized at the same steady state level as in high CO2 adapted cells.Dark addition of HCO3 - to low CO2 adapted cells of Chlamydomonas resulted in a rapid transient quenching of luminescence that was not observed in low CO2 adapted cells of neither species.It is concluded that the luminescence maxima present in both low CO2 adapted Scenedesmus and Chlamydomonas reflect adaptation of the cells to low CO2 conditions. It is further suggested that the difference in mechanistic origin of luminescence maxima in the two species reflects differences in adaptation.Abbreviations ADP adenosine-diphosphate - ATP adenosine-triphosphate - Ci inorganic carbon - FD dark fluorescence recorded under dark adapted conditions - F0 fluorescence with all reaction centers open - FV variable fluorescence - PS I photosystem I - PS II photosystem II - QA the first quinone acceptor of PS II  相似文献   

13.
Mass spectrometric measurements of 16O2 and 18O2 isotopes were used to compare the rates of gross O2 evolution (E0), O2 uptake (U0) and net O2 evolution (NET) in relation to different concentrations of dissolved inorganic carbon (DIC) by Chlamydomonas reinhardtii cells grown in air (air-grown), in air enriched with 5% CO2 (CO2-grown) and by cells grown in 5% CO2 and then adapted to air for 6h (air-adapted).At a photon fluence rate (PFR) saturating for photosynthesis (700 mol photons m-2 s-1), pH=7.0 and 28°C, U0 equalled E0 at the DIC compensation point which was 10M DIC for CO2-grown and zero for air-grown cells. Both E0 and U0 were strongly dependent on DIC and reached DIC saturation at 480 M and 70 M for CO2-grown and air-grown algae respectively. U0 increased from DIC compensation to DIC saturation. The U0 values were about 40 (CO2-grown), 165 (air-adapted) and 60 mol O2 mg Chl-1 h-1 (air-grown). Above DIC compensation the U0/E0 ratios of air-adapted and air-grown algae were always higher than those of CO2-grown cells. These differences in O2 exchange between CO2- and air-grown algae seem to be inducable since air-adapted algae respond similarly to air-grown cells.For all algae, the rates of dark respiratory O2 uptake measured 5 min after darkening were considerably lower than the rates of O2 uptake just before darkening. The contribution of dark respiration, photorespiration and the Mehler reaction to U0 is discussed and the energy requirement of the inducable CO2/HCO3 - concentrating mechanism present in air-adapted and air-grown C. reinhardtii cells is considered.Abbreviations DIC dissolved inorganic carbon - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - E0 rate of photosynthetic gross O2 evolution - PCO photosynthetic carbon oxidation - PFR photon fluence rate - PS I photosystem I - PS II photosystem II - U0 rate of O2 uptake in the light - MS mass spectrometer  相似文献   

14.
Summary We have developed an efficient procedure for the disruption of Chlamydomonas chloroplast genes. Wild-type C. reinhardtii cells were bombarded with microprojectiles coated with a mixture of two plasmids, one encoding selectable, antibiotic-resistance mutations in the 16S ribosomal RNA gene and the other containing either the atpB or rbcL photosynthetic gene inactivated by an insertion of 0.48 kb of yeast DNA in the coding sequence. Antibiotic-resistant transformants were selected under conditions permissive for growth of nonphotosynthetic mutants. Approximately half of these transformants were initially heteroplasmic for copies of the disrupted atpB or rbcL genes integrated into the recipient chloroplast genome but still retained photosynthetic competence. A small fraction of the transformants (1.1% for atpB; 4.3% for rbcL) were nonphotosynthetic and homoplasmic for the disrupted gene at the time they were isolated. Single cell cloning of the initially heteroplasmic transformants also yielded nonphotosynthetic segregants that were homoplasmic for the disrupted gene. Polypeptide products of the disrupted atpB and rbcL genes could not be detected using immunoblotting techniques. We believe that any nonessential Chlamydomonas chloroplast gene, such as those involved in photosynthesis, should be amenable to gene disruption by cotransformation. The method should prove useful for the introduction of site-specific mutations into chloroplast genes and flanking regulatory sequences with a view to elucidating their function.  相似文献   

15.
Cyanobacteria, algae, aquatic angiosperms and higher plants have all developed their own unique versions of photosynthetic CO2 concentrating mechanisms (CCMs) to aid Rubisco in efficient CO2 capture. An important aspect of all CCMs is the critical roles that the specialised location and function that various carbonic anhydrase enzymes play in the overall process, participating the interconversion of CO2 and HCO3 species both inside and outside the cell. This review examines what we currently understand about the nature of the carbonic anhydrase enzymes, their localisation and roles in the various CCMs that have been studied in detail. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
The maturation of zygotes formed by the fusion of two gametes is the essential part of the diploid phase of the Chlamydomonas reinhardtii sexual life cycle and results in mature zygotes competent to germinate. To understand the molecular mechanisms underlying zygote maturation and the attainment of competence for germination we isolated genomic clones representing three different genes that are specifically expressed in Chlamydomonas reinhardtii zygotes. Accumulation of the RNAs started more than 24 h after mating, setting these genes apart from genes expressed in young zygotes [9]. Upon light-induced germination of zygotes, the mRNAs disappeared. The patterns of RNA accumulation and disappearance were gene-specific and suggested a function of these genes in maturation and/or in initial steps of germination.  相似文献   

17.
18.
The oxygen evolved by Chlamydomonas reinhardtii in the light is measured simultaneously with a Clark electrode and with the nitrosodimethylaniline-imidazole colorimetric method which is specific for singlet oxygen. Experiments with wild-type and FuD7 mutant cells (unable to synthesize the D1 protein of Photosystem II), with dichlorophenyldimethylurea (which blocks electron transfer from Photosystem II to Photosystem I) and with dibromothymoquinone (which diverts electrons from their normal path between the two photosystems), as well as with hydroxylamine (an inactivator of the water-splitting part of Photosystem II and a competitor of water for electron donation to it), all point to the dependence of detected singlet oxygen on photolysis of water by Photosystem II.Abbreviations DBMIB Dibromothymoquinone - DCMU Dichlorophenyldimethylurea - PS I and PS II Photosystems I and II - RNO para-nitrosodimethylaniline Contribution of the Centre interdisciplinaire de Biochimie de Oxygène.  相似文献   

19.
The pyrenoid is a prominent proteinaceous structure found in the stroma of the chloroplast in unicellular eukaryotic algae, most multicellular algae, and some hornworts. The pyrenoid contains the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase and is sometimes surrounded by a carbohydrate sheath. We have observed in the unicellular green alga Chlamydomonas reinhardtii Dangeard that the pyrenoid starch sheath is formed rapidly in response to a decrease in the CO2 concentration in the environment. This formation of the starch sheath occurs coincidentally with the induction of the CO2-concentrating mechanism. Pyrenoid starch-sheath formation is partly inhibited by the presence of acetate in the growth medium under light and low-CO2 conditions. These growth conditions also partly inhibit the induction of the CO2-concentrating mechanism. When cells are grown with acetate in the dark, the CO2-concentrating mechanism is not induced and the pyrenoid starch sheath is not formed even though there is a large accumulation of starch in the chloroplast stroma. These observations indicate that pyrenoid starch-sheath formation correlates with induction of the CO2-concentrating mechanism under low-CO2 conditions. We suggest that this ultrastructural reorganization under lowCO2 conditions plays a role in the CO2-concentrating mechanism C. reinhardtii as well as in other eukaryotic algae.  相似文献   

20.
Abstract

Carbonic anhydrase (CA) is the most effective CO2 hydratase catalyst, but the poor storage stability and repeatability of CA limit its development. Therefore, CA was immobilized on the epoxy magnetic composite microspheres to enhance the CO2 absorption into N-methyldiethanolamine (MDEA) aqueous solution in this work. In the presence of immobilized CA, the CO2 absorption rate of MDEA solution (10?wt%) (0.63?mmol·min?1) was greatly improved by almost 40%, and their reaction equilibrium time was shortened from 150?min to 90?min compared with that into MDEA solution. The results indicated that the absorption of CO2 into MDEA solution had been significantly enhanced by using CA. After the 7th reuse recycle, the activity of the immobilized CA was still closed to its initial value at 313.15?K. Moreover, enzyme catalytic kinetics of immobilized CA was investigated using the p-nitrophenyl acetate (p-NPA) as substrate. The values of Michaelis–Menten constant (Km) and the maximum velocity (Vmax) of the immobilized CA were calculated to be 27.61?mmol/L and 20.14?×?10?3?mmol·min?1·mL?1, respectively. Besides, the kinetics of CO2 reaction into MDEA with or without CA were also compared. The results showed that CO2 absorption into CA/MDEA aqueous solution obeyed the pseudo first order regime and the second order kinetics rate constant (k2) was calculated to be 929?m3·kmol?1·s?1, which was twice higher than that of MDEA aqueous solution without immobilized CA (k2=414 m3·kmol?1·s?1) at 313.15?K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号