首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Reduced cellular systems have provided important tools to study complex cellular processes. Here we describe the oxidation, oligomerization, and chaperone binding of the viral glycoprotein influenza hemagglutinin in a cell-free system. The cell-free system, comprised of rough endoplasmic reticulum derived microsomes and a reticulocyte lysate, supported the complete maturation of hemagglutinin from the earliest oxidative intermediate to the mature homo-oligomer. Hemagglutinin disulfide bond formation and oligomerization were found to occur in a time- and temperature-dependent manner. Hemagglutinin's temporal association with the molecular chaperones calnexin and calreticulin was similar to that observed for their association with elongating ribosome-attached nascent chains in live cells. Furthermore, a procedure is described that permits the translocation of protein into microsomes that are depleted of lumenal contents. This cell-free system, therefore, provided an effective means to study the biological maturation processes of a protein that traverses the secretory pathway.  相似文献   

3.
4.
Calnexin and calreticulin are homologous molecular chaperones that promote proper folding, oligomeric assembly, and quality control of newly synthesized glycoproteins in the endoplasmic reticulum (ER). Both are lectins that bind to substrate glycoproteins that have monoglucosylated N-linked oligosaccharides. Their binding to newly translated influenza virus hemagglutinin (HA), and various mutants thereof, was analyzed in microsomes after in vitro translation and expression in live CHO cells. A large fraction of the HA molecules was found to occur in ternary HA– calnexin–calreticulin complexes. In contrast to calnexin, calreticulin was found to bind primarily to early folding intermediates. Analysis of HA mutants with different numbers and locations of N-linked glycans showed that although the two chaperones share the same carbohydrate specificity, they display distinct binding properties; calreticulin binding depends on the oligosaccharides in the more rapidly folding top/hinge domain of HA whereas calnexin is less discriminating. Calnexin's binding was reduced if the HA was expressed as a soluble anchor-free protein rather than membrane bound. When the co- and posttranslational folding and trimerization of glycosylation mutants was analyzed, it was observed that removal of stem domain glycans caused accelerated folding whereas removal of the top domain glycans (especially the oligosaccharide attached to Asn81) inhibited folding. In summary, the data established that individual N-linked glycans in HA have distinct roles in calnexin/calreticulin binding and in co- and posttranslational folding.  相似文献   

5.
ERp57 is a lumenal protein of the endoplasmic reticulum (ER) and a member of the protein disulfide isomerase (PDI) family. In contrast to archetypal PDI, ERp57 interacts specifically with newly synthesized glycoproteins. In this study we demonstrate that ERp57 forms discrete complexes with the ER lectins, calnexin and calreticulin. Specific ERp57/calreticulin complexes exist in canine pancreatic microsomes, as demonstrated by SDS-PAGE after cross-linking, and by native electrophoresis in the absence of cross-linking. After in vitro translation and import into microsomes, radiolabeled ERp57 can be cross-linked to endogenous calreticulin and calnexin while radiolabeled PDI cannot. Likewise, radiolabeled calreticulin is cross-linked to endogenous ERp57 but not PDI. Similar results were obtained in Lec23 cells, which lack the glucosidase I necessary to produce glycoprotein substrates capable of binding to calnexin and calreticulin. This observation indicates that ERp57 interacts with both of the ER lectins in the absence of their glycoprotein substrate. This result was confirmed by a specific interaction between in vitro synthesized calreticulin and ERp57 prepared in solution in the absence of other ER components. We conclude that ERp57 forms complexes with both calnexin and calreticulin and propose that it is these complexes that can specifically modulate glycoprotein folding within the ER lumen.  相似文献   

6.
Tyrosinase is a glycoprotein responsible for the synthesis of melanin in melanocytes. A large number of mutations have been identified in tyrosinase, with many leading to its misfolding, endoplasmic reticulum (ER) retention, and degradation. Here we describe the folding and maturation of human tyrosinase (TYR) using an in vitro translation system coupled with ER-derived microsomes or with semipermeabilized cells, as an intact ER source. TYR remained misfolded as determined by its sensitivity to trypsin digestion and its persistent interaction with the ER resident lectin chaperones calnexin and calreticulin when produced in ER-derived microsomes or nonmelanocytic semipermeabilized cells. However, when TYR was translocated into semipermeabilized melanocytes, chaperone interactions were transient, maturation progressed to a trypsin-resistant state, and a TYR homodimer was formed. The use of semipermeabilized mouse melanocytes defective for tyrosinase or other melanocyte-specific proteins as the ER source indicated that proper TYR maturation and oligomerization were greatly aided by the presence of wild type tyrosinase and tyrosinase-related protein 1. These findings suggested that oligomerization is a step in proper TYR maturation within the ER that requires melanocyte-specific factors.  相似文献   

7.
The soluble, calcium-binding protein calreticulin shares high sequence homology with calnexin, a transmembrane chaperone of glycoprotein folding. Our experiments demonstrated that calreticulin, like calnexin, associated transiently with numerous newly synthesized proteins in the endoplasmic reticulum. The population of proteins that bound to calreticulin was partially overlapping with those that bound to calnexin. Hemagglutinin (HA) of influenza virus was shown to associate with both calreticulin and calnexin. Using HA as a model substrate, it was found that both calreticulin- and calnexin-bound HA corresponded primarily to incompletely disulfide-bonded folding intermediates and conformationally trapped forms. Binding of all substrates was oligosaccharide-dependent and required the trimming of glucose residues from asparagine-linked core glycans by glucosidases I and II. In vitro, alpha-mannosidase digestion of calreticulin-bound HA indicated that calreticulin was specific for monoglucosylated glycans. Thus, calreticulin appeared to be a lectin with similar oligosaccharide specificity as its membrane-bound homologue, calnexin. Both are therefore likely to play an important role in glycoprotein maturation and quality control in the endoplasmic reticulum.  相似文献   

8.
Calreticulin and calnexin are key components in maintaining the quality control of glycoprotein folding within the endoplasmic reticulum. Although their lectin function of binding monoglucosylated sugar moieties of glycoproteins is well documented, their chaperone activity in suppressing protein aggregation is less well understood. Here, we use a series of deletion mutants of calreticulin to demonstrate that its aggregation suppression function resides primarily within its lectin domain. Using hydrophobic peptides as substrate mimetics, we show that aggregation suppression is mediated through a single polypeptide binding site that exhibits a K(d) for peptides of 0.5-1 μM. This site is distinct from the oligosaccharide binding site and differs from previously identified sites of binding to thrombospondin and GABARAP (4-aminobutyrate type A receptor-associated protein). Although the arm domain of calreticulin was incapable of suppressing aggregation or binding hydrophobic peptides on its own, it did contribute to aggregation suppression in the context of the whole molecule. The high resolution x-ray crystal structure of calreticulin with a partially truncated arm domain reveals a marked difference in the relative orientations of the arm and lectin domains when compared with calnexin. Furthermore, a hydrophobic patch was detected on the arm domain that mediates crystal packing and may contribute to calreticulin chaperone function.  相似文献   

9.
The endoplasmic reticulum (ER) protein GT1 (UDP-glucose: glycoprotein glucosyltransferase) is the central enzyme that modifies N-linked carbohydrates based upon the properties of the polypeptide backbone of the maturing substrate. GT1 adds glucose residues to nonglucosylated proteins that fail the quality control test, supporting ER retention through persistent binding to the lectin chaperones calnexin and calreticulin. How GT1 functions in its native environment on a maturing substrate is poorly understood. We analyzed the reglucosylation of a maturing model glycoprotein, influenza hemagglutinin (HA), in the intact mammalian ER. GT1 reglucosylated N-linked glycans in the slow-folding stem domain of HA once the nascent chain was released from the ribosome. Maturation mutants that disrupted the oxidation or oligomerization of HA also supported region-specific reglucosylation by GT1. Therefore, GT1 acts as an ER quality control sensor by posttranslationally reglucosylating glycans on slow-folding or nonnative domains to recruit chaperones specifically to critical aberrant regions.  相似文献   

10.
The serotonin transporter (SERT) is an N-glycosylated integral membrane protein that is predicted to contain 12 transmembrane regions. SERT is the major binding site in the brain for antidepressant drugs, and it also binds amphetamines and cocaine. The ability of various molecular chaperones to interact with a tagged version of SERT (Myc-SERT) was investigated using the baculovirus expression system. Overexpression of Myc-SERT using the baculovirus system led to substantial quantities of inactive transporter, together with small amounts of fully active and, therefore, correctly folded molecules. The high levels of inactive Myc-SERT probably arose because folding was rate-limiting due, perhaps, to insufficient molecular chaperones. Therefore, Myc-SERT was co-expressed with the endoplasmic reticulum (ER) molecular chaperones calnexin, calreticulin and immunoglobulin heavy chain binding protein (BiP), and the foldase, ERp57. The expression of functional Myc-SERT, as determined by an inhibitor binding assay, was enhanced nearly 3-fold by co-expressing calnexin, and to a lesser degree on co-expression of calreticulin and BiP. Co-expression of ERp57 did not increase the functional expression of Myc-SERT. A physical interaction between Myc-SERT-calnexin and Myc-SERT-calreticulin was demonstrated by co-immunoprecipitation. These associations were inhibited in vivo by deoxynojirimycin, an inhibitor of N-glycan precusor trimming that is known to prevent the calnexin/calreticulin-N-glycan interaction. Functional expression of the unglycosylated SERT mutant, SERT-QQ, was also increased on co-expression of calnexin, suggesting that the interaction between calnexin and SERT is not entirely dictated by the N-glycan. SERT is the first member of the neurotransmitter transporter family whose folding has been shown to be assisted by the molecular chaperones calnexin, calreticulin, and BiP.  相似文献   

11.
Nascent and newly synthesized glycoproteins enter the calnexin (Cnx)/calreticulin (Crt) cycle when two out of three glucoses in the core N-linked glycans have been trimmed sequentially by endoplasmic reticulum (ER) glucosidases I (GI) and II (GII). By analyzing arrested glycopeptides in microsomes, we found that GI removed the outermost glucose immediately after glycan addition. However, although GII associated with singly glycosylated nascent chains, trimming of the second glucose only occurred efficiently when a second glycan was present in the chain. Consistent with a requirement for multiple glycans to activate GII, pancreatic RNase in live cells needed more than one glycan to enter the Cnx/Crt cycle. Thus, whereas GI trimming occurs as an automatic extension of glycosylation, trimming by GII is a regulated process. By adjusting the number and location of glycans, glycoproteins can instruct the cell to engage them in an individually determined folding and quality control pathway.  相似文献   

12.
Substrate-specific requirements for UGT1-dependent release from calnexin   总被引:2,自引:0,他引:2  
Newly synthesized glycoproteins displaying monoglucosylated N-glycans bind to the endoplasmic reticulum (ER) chaperone calnexin, and their maturation is catalyzed by the calnexin-associated oxidoreductase ERp57. Folding substrates are eventually released from calnexin, and terminal glucoses are removed from N-glycans. The UDP-glucose:glycoprotein glucosyltransferase (UGT1, UGGT, GT) monitors the folding state of polypeptides released from calnexin and adds back a glucose residue on N-glycans of nonnative polypeptides, thereby prolonging retention in the calnexin chaperone system for additional folding attempts. Here we show that for certain newly synthesized glycoproteins UGT1 deletion has no effect on binding to calnexin. These proteins must normally complete their folding program in one binding event. Other proteins normally undergo multiple binding events, and UGT1 deletion results in their premature release from calnexin. For other proteins, UGT1 deletion substantially delays release from calnexin, unexpectedly showing that UGT1 activity might be required for a structural maturation needed for substrate dissociation from calnexin and export from the ER.  相似文献   

13.
UDP-glucose:glycoprotein glucosyltransferase (GT) is a key component of the glycoprotein-specific folding and quality control system in the endoplasmic reticulum. By exclusively reglucosylating incompletely folded and assembled glycoproteins, it serves as a folding sensor that prolongs the association of newly synthesized glycoproteins with the chaperone-like lectins calnexin and calreticulin. Here, we address the mechanism by which GT recognizes and labels its substrates. Using an improved inhibitor assay based on soluble conformers of pancreatic ribonuclease in its glycosylated (RNase B) and unglycosylated (RNase A) forms, we found that the protein moiety of a misfolded conformer alone is sufficient for specific recognition by GT in vitro. To investigate the relationship between recognition and glucosylation, we tested a variety of glycosylation mutants of RNase S-Protein and an RNase mutant with a local folding defect [RNase C65S, C72S], as well as a series of loop insertion mutants. The results indicated that local folding defects in an otherwise correctly folded domain could be recognized by GT. Only glycans attached to the polypeptide within the misfolded sites were glucosylated.  相似文献   

14.
Calnexin and calreticulin are lectin-like molecular chaperones that promote folding and assembly of newly synthesized glycoproteins in the endoplasmic reticulum. While it is well established that they interact with substrate monoglucosylated N-linked oligosaccharides, it has been proposed that they also interact with polypeptide moieties. To test this notion, glycosylated forms of bovine pancreatic ribonuclease (RNase) were translated in the presence of microsomes and their folding and association with calnexin and calreticulin were monitored. When expressed with two N-linked glycans in the presence of micromolar concentrations of deoxynojirimycin, this small soluble protein was found to bind firmly to both calnexin and calreticulin. The oligosaccharides were necessary for association, but it made no difference whether the RNase was folded or not. This indicated that unlike other chaperones, calnexin and calreticulin do not select their substrates on the basis of folding status. Moreover, enzymatic removal of the oligosaccharide chains using peptide N-glycosidase F or removal of the glucoses by ER glucosidase II resulted in dissociation of the complexes. This indicated that the lectin-like interaction, and not a protein-protein interaction, played the central role in stabilizing RNase-calnexin/calreticulin complexes.  相似文献   

15.
Jakob  CA; Burda  P; te Heesen  S; Aebi  M; Roth  J 《Glycobiology》1998,8(2):155-164
In higher eukaryotes a quality control system monitoring the folding state of glycoproteins is located in the ER and is composed of the proteins calnexin, calreticulin, glucosidase II, and UDP-glucose: glycoprotein glucosyltransferase. It is believed that the innermost glucose residue of the N- linked oligosaccharide of a glycoprotein serves as a tag in this control system and therefore performs an important function in the protein folding pathway. To address this function, we constructed Saccharomyces cerevisiae strains which contain nonglucosylated (G0), monoglucosylated (G1), or diglucosylated (G2) glycoproteins in the ER and used these strains to study the role of glucose residues in the ER processing of glycoproteins. These alterations of the oligosaccharide structure did not result in a growth phenotype, but the induction of the unfolded protein response upon treatment with DTT was much higher in G0 and G2 strains as compared to wild-type and G1 strains. Our results provide in vivo evidence that the G1 oligosaccharide is an active oligosaccharide structure in the ER glycoprotein processing pathway of S.cerevisiae. Furthermore, by analyzing N- linked oligosaccharides of the constructed strains we can directly show that no general glycoprotein glucosyltransferase exists in S. cerevisiae.   相似文献   

16.
Calnexin and calreticulin are membrane-bound and soluble chaperones, respectively, of the endoplasmic reticulum (ER) which interact transiently with a broad spectrum of newly synthesized glycoproteins. In addition to sharing substantial sequence identity, both calnexin and calreticulin bind to monoglucosylated oligosaccharides of the form Glc(1)Man(5-9)GlcNAc(2), interact with the thiol oxidoreductase, ERp57, and are capable of acting as chaperones in vitro to suppress the aggregation of non-native proteins. To understand how these diverse functions are coordinated, we have localized the lectin, ERp57 binding, and polypeptide binding sites of calnexin and calreticulin. Recent structural studies suggest that both proteins consist of a globular domain and an extended arm domain comprised of two sequence motifs repeated in tandem. Our results indicate that the primary lectin site of calnexin and calreticulin resides within the globular domain, but the results also point to a much weaker secondary site within the arm domain which lacks specificity for monoglucosylated oligosaccharides. For both proteins, a site of interaction with ERp57 is centered on the arm domain, which retains approximately 50% of binding compared with full-length controls. This site is in addition to a Zn(2+)-dependent site located within the globular domain of both proteins. Finally, calnexin and calreticulin suppress the aggregation of unfolded proteins via a polypeptide binding site located within their globular domains but require the arm domain for full chaperone function. These findings are integrated into a model that describes the interaction of glycoprotein folding intermediates with calnexin and calreticulin.  相似文献   

17.
For proteins that traverse the secretory pathway, folding commences cotranslationally upon translocation into the endoplasmic reticulum. In this study, we have comprehensively analyzed the earliest maturation steps of the model glycoprotein influenza hemagglutinin (HA). These steps include cleavage of the signal sequence, glycosylation, binding by the chaperones calnexin and calreticulin, and the oxidoreductase ERp57, and oxidation. Our results show that the molecular choreography of the nascent HA chain is largely directed by multiple glycans that are strategically placed to elicit the binding of lectin chaperones. These chaperones are recruited to specific nascent chain locations to regulate and facilitate glycoprotein folding, thereby suggesting that the positioning of N-linked glycans in critical regions has evolved to optimize the folding process in the cell.  相似文献   

18.
N-Glycosylation starts in the endoplasmic reticulum (ER) where a 14-sugar glycan composed of three glucoses, nine mannoses, and two N-acetylglucosamines (Glc(3)Man(9)GlcNAc(2)) is transferred to nascent proteins. The glucoses are sequentially trimmed by ER-resident glucosidases. The Glc(3)Man(9)GlcNAc(2) moiety is the substrate for oligosaccharyltransferase; the Glc(1)Man(9)GlcNAc(2) and Man(9)GlcNAc(2) intermediates are signals for glycoprotein folding and quality control in the calnexin/calreticulin cycle. Here, we report a novel membrane-anchored ER protein that is highly conserved in animals and that recognizes the Glc(2)-N-glycan. Structure determination by nuclear magnetic resonance showed that its luminal part is a carbohydrate binding domain that recognizes glucose oligomers. Carbohydrate microarray analyses revealed a uniquely selective binding to a Glc(2)-N-glycan probe. The localization, structure, and binding specificity of this protein, which we have named malectin, open the way to studies of its role in the genesis, processing and secretion of N-glycosylated proteins.  相似文献   

19.
Newly synthesized glycoproteins interact during folding and quality control in the ER with calnexin and calreticulin, two lectins specific for monoglucosylated oligosaccharides. Binding and release are regulated by two enzymes, glucosidase II and UDP-Glc:glycoprotein:glycosyltransferase (GT), which cyclically remove and reattach the essential glucose residues on the N-linked oligosaccharides. GT acts as a folding sensor in the cycle, selectively reglucosylating incompletely folded glycoproteins and promoting binding of its substrates to the lectins. To investigate how nonnative protein conformations are recognized and directed to this unique chaperone system, we analyzed the interaction of GT with a series of model substrates with well defined conformations derived from RNaseB. We found that conformations with slight perturbations were not reglucosylated by GT. In contrast, a partially structured nonnative form was efficiently recognized by the enzyme. When this form was converted back to a nativelike state, concomitant loss of recognition by GT occurred, reproducing the reglucosylation conditions observed in vivo with isolated components. Moreover, fully unfolded conformers were poorly recognized. The results indicated that GT is able to distinguish between different nonnative conformations with a distinct preference for partially structured conformers. The findings suggest that discrete populations of nonnative conformations are selectively reglucosylated to participate in the calnexin/calreticulin chaperone pathway.  相似文献   

20.
Swanton E  High S  Woodman P 《The EMBO journal》2003,22(12):2948-2958
The endoplasmic (ER) quality control apparatus ensures that misfolded or unassembled proteins are not deployed within the cell, but are retained in the ER and degraded. A glycoprotein-specific system involving the ER lectins calnexin and calreticulin is well documented, but very little is known about mechanisms that may operate for non-glycosylated proteins. We have used a folding mutant of a non- glycosylated membrane protein, proteolipid protein (PLP), to examine the quality control of this class of polypeptide. We find that calnexin associates with newly synthesized PLP molecules, binding stably to misfolded PLP. Calnexin also binds stably to an isolated transmembrane domain of PLP, suggesting that this chaperone is able to monitor the folding and assembly of domains within the ER membrane. Notably, this glycan-independent interaction with calnexin significantly retards the degradation of misfolded PLP. We propose that calnexin contributes to the quality control of non-glycosylated polytopic membrane proteins by binding to misfolded or unassembled transmembrane domains, and discuss our findings in relation to the role of calnexin in the degradation of misfolded proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号