首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the effects of a pentadecapeptide having the 104-118 aminoacid sequence of islet neogenesis-associated protein (INGAP-PP) on insulin secretion, and the morphological characteristics of adult and neonatal pancreatic rat islets cultured in RPMI and 10 mM glucose for 4 days, with or without different INGAP-PP concentrations (0.1-100 mug/ml). A scrambled 15 aminoacid peptide was used as control for the specificity of INGAP-PP effect. Cultured neonatal and adult islets released insulin in response to glucose (2.8-16.7 mM) in a dose-dependent manner, and to leucine and arginine (10 mM). In all cases, the response was greater in adult islets. INGAP-PP added to the culture medium significantly enhanced glucose- and aminoacid-induced insulin release in both adult and newborn rats; however, no changes were observed with the scrambled peptide. Similar results were obtained incubating freshly isolated adult rat islets with INGAP-PP. Whereas INGAP-PP did not induce significant changes in islet survival rate or proportion/number of islet cells, it increased significantly beta-cell size. This first demonstration of the enhancing effect of INGAP-PP on the beta-cell secretory response of adult and newborn islets opens a new avenue to study its production mechanism and potential use to increase the secretory capacity of endogenous islets in intact animals or of islets preserved for future transplants.  相似文献   

2.
The non-tumoral endocrine pancreas from a patient with elevated plasma levels of glucagon due to a malignant glucagonoma was studied immunocytochemically, ultrastructurally and morphometrically. Compared with normal pancreatic islets from control subjects, those of the pancreas from the patient with a glucagonoma showed an almost complete disappearance of A cells, a decrease in immunoreactive insulin in B cells associated with cytological features indicating enhanced synthesis and secretion of this hormone, and an increase in immunoreactive somatostatin and pancreatic polypeptide (PP) accompanied by unusually high numbers of D and PP cells. In addition, numerous B cells were found outside the islets, either forming micro-islets or scattered in the exocrine tissue (nesidioblastosis). The possible mechanisms involved in determining the changes in the secretory activity of B cells and the alterations in the cell composition of the islets are discussed.  相似文献   

3.
The big and secondary islets of sea bass larvae were characterized ultrastructurally from, 25 to 60 days after hatching. From the 25th day, big islets consisted of inner type II and III, external type I and peripheral type IV cells. From the 55th day, type V cells appeared in limited peripheral areas. Secondary islets, first found in 32-day-old larvae, were made up of inner type II and III, external type I, and peripheral either type IV and V cells (type I islets), or only type V cells (type II islets). Type I cells contained secretory granules with a fine granular, low-medium electron-dense material, whereas the secretory granules of type II cells were smaller and had a high electron-dense core with diffused limits; needle and rod-like crystalloid contents were occasionally found. Type III secretory granules posessed a homogeneous, high or medium electron-dense material with or without a clear halo. Type IV cells had secretory granules with a polygonal dense core embedded in a granular matrix and granules containing a high or medium electron-dense material. Type V cells had secretory granules with a fine granular, high or medium electron-dense content. These cell-types correlated with cells previously identified immuno-cytochemically, as regards to their distribution in the islets, and related to those characterized ultrastructurally in adult specimens. Thus, types I, II, III, IV and V correspond to D1, B, D2, A and PP cells, respectively. From the 32nd day onwards, endocrine cells of all the different types were found grouped, type V cells also being observed in isolation close to pancreatic ducts and/or blood vessels. Small groups consisting of type I and II cells were found in 40-day-old larvae. A mitotic centroacinar ductular cell containing some secretory granules similar to those of type I cells, was seen adjacent to a type I cell. As the larvae grew older, the endoplasmic reticulum developed, the number of free ribosomes decreased, and the number and size of the secretory granules increased. Dark type I, II, III, IV and V cells were found in the islets and cell clusters from the 55th day onwards.  相似文献   

4.
The role of PACAP27, PACAP38 and VIP in the regulation of insulin release from pancreatic islets isolated from rats previously subjected to total parenteral nutrition (TPN) for 10 days was studied. Glucose-stimulated insulin secretion from islets of TPN rats was attenuated in parallel with cyclic AMP production. Immunocytochemistry showed an increased number of VIP-immunoreactive nerve fibers in the pancreatic islets of TPN rats. PACAP27, PACAP38 and VIP dose dependently and to the same magnitude potentiated insulin secretion from the islets of freely fed controls in the presence of a substimulatory glucose concentration (8.3 mmol/l). The secretory response of islets from TPN-treated rats to these neuropeptides was, however, markedly exaggerated compared to the controls. The insulin response of islets from TPN-treated rats to PACAP27 and PACAP38 was much greater than to VIP. With respect to insulin secretion, TPN treatment shifted the PACAP27 and PACAP38 dose-response curve to the left by two orders of magnitude. In the presence of 8.3 mmol/l glucose, cAMP accumulation was slightly higher in islets from TPN rats and the PACAP27, PACAP38 and VIP-stimulated increase in the cAMP production was markedly greater compared to the controls. Additional complementary in vivo experiments showed that PACAP27 normalized the defective glucose-stimulated insulin secretory response of TPN-treated rats. The data suggest that the defective nutrient-stimulated insulin secretion seen after long-term TPN treatment could be normalized by agents stimulating cAMP production possibly through cAMP/PK A-pathway.  相似文献   

5.
Despite documented studies, the exact role of stress on diabetes is still unclear. The present study investigates the effect of chronic psychological stress on insulin release from isolated rat pancreatic islets. Male Wistar rats were divided into two groups of control and stressed (n=8/group). The animals of the stressed group were exposed to restraint stressors (1 h twice daily) for 15 or 30 consecutive days. At the beginning and end of the experimental periods, the animals were weighed and blood samples taken to determine the fasting plasma levels of glucose, insulin and corticosterone. On the following day the pancreatic islets of 5/group of the above animals were isolated and the static release of insulin in the presence of different glucose concentrations (2.8, 5.6, 8.3, 16.7 mM) was assessed. The results showed that in the stressed group, fasting plasma glucose levels were increased significantly on the 15th day as compared to the control group. However there was no significant increase on the 30th day. Fasting plasma insulin was significantly decreased on the 15th and 30th days of the experiment in the stressed group. Stressed rats showed significantly higher fasting plasma corticosterone levels, only on the 15th day, as compared to the control rats. In response to increasing concentrations of glucose, insulin release from islets of the stressed group was increased significantly on the 30th day of the experiment as compared to the control group. We conclude that chronic psychological stress could increase responsiveness of pancreatic beta cells to glucose, in vitro, and thus, low insulin levels of the stressed animals, in vivo, may be due to reason(s) other than the reduction of insulin releasing capacity of pancreatic beta cells.  相似文献   

6.
Gastrin-releasing peptide (GRP) receptors are present in pancreatic islets, though their regulation is unknown except for homologous desensitization. The modulation of binding of GRP to mouse pancreatic islets and INS-1 cells was studied. At 60 min (steady-state), total binding of [(125)I-Tyr(15)] GRP was 1.62 per cent of total radioactivity per 50 islets; non-specific binding (presence of 1 mM unlabelled GRP(1-27)) was 0.05 to 0.61 per cent of total radioactivity. A preincubation with 1000 nM cholecystokinin (CCK(8)) or with 1000 nM glucose-dependent insulinotropic peptide (GIP) augmented the number of GRP binding sites but not their affinity. [(125)I-Tyr(15)]GRP binding to INS-1 cells was saturable (90 min) and specific with respect to compounds that are not chemically related to GRP (e.g. calcitonin gene-regulated peptide-CGRP and atrial natriuretic peptide-ANP). Displacement studies showed one binding site with a K(d) of 0.39 nM and a B(max) of 13.2 fmoles mg(-1) protein. When the cells were pretreated for 24 h with 10 nM GIP or CCK(8), only GIP but not CCK(8) increased the B(max) of the GRP binding site. The affinity (K(d)) was not changed by either compound. This effect of GIP pretreatment was not affected by downregulating PKC by TPA (phorbol ester; long-term pretreatment). These data indicate that: (1) specific binding sites for GRP are present in mouse pancreatic islets and INS-1 cells; (2) the GRP binding is upregulated by GIP in both islets and INS-1 cells and additionally by CCK(8 ), albeit only in islets; and (3) PKC does not seem to be involved in the up-regulation process. Thus a positive interplay between both the incretins GIP and CCK(8) and the neurotransmitter GRP is obvious.  相似文献   

7.
Development of human pancreas   总被引:2,自引:0,他引:2  
The developmental sequence of human pancreatic secretory proteins has not previously been studied in detail. We applied immunohistochemistry to study 20 fetal and neonatal pancreas' (8th to 39th gestational weeks) using antisera against the following pancreatic secretory proteins: pancreatic secretory trypsin inhibitor (PSTI), serine proteinases (trypsin, chymotrypsin, and elastase I), and amylase. PSTI was first detected in developing buds of the pancreas during the 8th gestational week, and proteinases were observed in acinar cells during the 14th week of gestation. Immunoreactivity for both PSTI and proteinases was found in most acinar cells soon after their appearance. Immunoreactivity for amylase could not be detected in fetal or neonatal pancreas tissue. PSTI was also found in developing islets during the 14th gestational week, but the number of immunoreactive cells had decreased by term. Cells positive for serine proteinases were occasionally in contact with islets in second-trimester fetuses. In discussing these results, we give particular attention to the nonparallel appearance of secretory products in the fetal pancreas, and the significance of cells immunoreactive for secretory proteins in endocrine islets.  相似文献   

8.
Monoamine oxidase (MAO) is regarded as a mitochondrial enzyme. This enzyme localizes on the outer membrane of mitochondria. There are two kinds of MAO isozymes, MAO type A (MAOA) and type B (MAOB). Previous studies have shown that MAOB activity is found in the pancreatic islets. This activity in the islets is increased by the fasting-induced decrease of plasma glucose level. Islet B cells contain monoamines in their secretory granules. These monoamines inhibit the secretion of insulin from the B cells. MAOB is active in degrading monoamines. Therefore, MAOB may influence the insulin-secretory process by regulating the stores of monoamines in the B cells. However, it has not been determined whether MAOB is localized on B cells or other cell types of the islets. In the present study, we used both double-labeling immunofluorescence histochemical and electron microscopic immunohistochemical methods to examine the subcellular localization of MAOB in rat pancreatic islets. MAOB was found in the mitochondrial outer membranes of glucagon-secreting cells (A cells), insulin-secreting cells (B cells), and some pancreatic polypeptide (PP)-secreting cells (PP cells), but no MAOB was found in somatostatin-secreting cells (D cells), nor in certain other PP cells. There were two kinds of mitochondria in pancreatic islet B cells: one contains MAOB on their outer membranes, but a substantial proportion of them lack this enzyme. Our findings indicate that pancreatic islet B cells contain MAOB on their mitochondrial outer membranes, and this enzyme may be involved in the regulation of monoamine levels and insulin secretion in the B cells.  相似文献   

9.
Alterations in the somatostatin (SRIF)-, insulin- and glucagon-containing cells were examined in two strains of spontaneously diabetic mice, KK and newly inbred non-obese diabetic (NOD) mice, using radioimmunoassay and immunohistochemical methods. The total pancreatic content and concentration of SRIF was decreased in male KK mice compared to their male controls aged 12-18 weeks. These results were consistent with the immunohistochemical findings. Pancreatic glucagon concentration and number of glucagon-containing cells were also decreased in KK mice, but pancreatic insulin concentrations were increased in KK mice. On the other hand, NOD mice aged 12-38 weeks within 15 days after onset of diabetes had increased concentrations of pancreatic SRIF. The pancreatic islets in NOD mice were decreased both in number and in size and were characterized by lymphocyte infiltration. SRIF-containing cells occupied the major part of the endocrine cells of the islets. Insulin-containing cells significantly decreased in number, but the number of glucagon-containing cells was fairly well preserved. These results and previous work concerning obob and dbdb mice indicate a parallel relationship between pancreatic SRIF and glucagon. The pancreatic glucagon thus as well as the pancreatic insulin may be an important determinant of pancreatic SRIF concentration in these diabetic animals.  相似文献   

10.
We have previously described a preferential reduction in the secretory response to nutrient secretagogues in pancreatic mouse islets maintained in culture after in vitro exposure to streptozotocin (SZ). This reduction was associated with an impaired substrate metabolism at the mitochondrial level. To further clarify this issue, mouse pancreatic islets were exposed in vitro to 2.2 mM SZ for 30 min. At 4 h after SZ treatment ultrastructural changes were apparent in the endoplasmic reticulum and Golgi areas of the B-cells. However, 2 and 6 days following SZ exposure the B-cells appeared well preserved, except for a marked decrease in the number of insulin-containing secretory granules. A morphometric analysis of the B-cells 6 days after SZ exposure showed a normal B-cell size and a normal volume fraction of B-cell mitochondria. However, there was a decrease in total islet size and a 13% decrease in the volume fraction of B-cells in the islets. These mouse islets exhibited a decreased content of the mitochondrial DNA-encoded cytochrome b mRNA, as evaluated by dot-blot analysis. As a whole, the data obtained indicate that SZ treatment does not induce a decrease in the number of mitochondria or long-lasting ultrastructural damage to this organelle. However, there is a clear decrease in the cytochrome b mRNA, suggesting that SZ can induce damage to the mitochondrial DNA.  相似文献   

11.
We have previously described a preferential reduction in the secretory response to nutrient secretagogues in pancreatic mouse islets maintained in culture after in vitro exposure to streptozotocin (SZ). This reduction was associated with an impaired substrate metabolism at the mitochondrial level. To further clarify this issue, mouse pancreatic islets were exposed in vitro to 2.2 mM SZ for 30 min. At 4 h after SZ treatment ultrastructural changes were apparent in the endoplasmic reticulum and Golgi areas of the B-cells. However, 2 and 6 days following SZ exposure the B-cells appeared well preserved, except for a marked decrease in the number of insulin-containing secretory granules. A morphometric analysis of the B-cells 6 days after SZ exposure showed a normal B-cell size and a normal volume fraction of B-cell mitochondria. However, there was a decrease in total islet size and a 13% decrease in the volume fraction of B-cells in the islets. These mouse islets exhibited a decreased content of the mitochondrial DNA-encoded cytochrome b mRNA, as evaluated by dot-blot analysis. As a whole, the data obtained indicate that SZ treatment does not induce a decrease in the number of mitochondria or long-lasting ultrastructural damage to this organelle. However, there is a clear decrease in the cytochrome b mRNA, suggesting that SZ can induce damage to the mitochondrial DNA.  相似文献   

12.
Chromogranins are acidic secretory glycoproteins with a widespread but specific distribution in neuroendocrine tissues. The chromogranin family is heterogenous, consisting of propeptides such as chromogranin-A, chromogranin-B and secretogranin II, which can either elicit an effect themselves, or serve as precursors to a large number of peptides, which are biologically more active. Chromogranin processing varies in different neuroendocrine tissues. Furthermore, it is more marked in pancreatic islets than in many other tissues. Chromogranin-A and chromogranin-B are expressed in all types of pancreatic islet cells, whereas secretogranin II has not been found in pancreatic tissue. The aim of the present mini review is to focus on chromogranin-A, chromogranin-B and their derived peptides, in the function of pancreatic islets.  相似文献   

13.
The present study aimed at comparing the effects of glucose on ionic and secretory events in freshly isolated and 5-7 day cultured rat pancreatic islets. The capacity of glucose to provoke insulin release was severely reduced in islets maintained in culture. Whether in freshly isolated or cultured islets, glucose provoked a marked and sustained decrease in 45Ca2+ outflow from islets deprived of extracellular Ca2+. In the presence of extracellular Ca2+ throughout, the magnitude of the glucose-induced secondary rise in 45Ca2+ outflow was reduced in cultured islets. Glucose provoked a weaker increase in [Ca2+]i in islet cells obtained from cultured islets than in islet cells dissociated from freshly isolated pancreatic islets. On the other hand, the stimulatory effect of carbamylcholine on 45Ca2+ outflow was unaffected by tissue culture. Lastly, in islet cells obtained from cultured islets, the increase in [Ca2+]i evoked by K+ depolarization averaged half of that observed in control experiments. These results indicate that the reduced secretory potential of glucose in cultured pancreatic islets can be ascribed to the inability of the nutrient secretagogue to provoke a suitable increase in Ca2+ influx.  相似文献   

14.
The present study describes the cytopathology of the pancreatic islets in 18-old male eSS rats with spontaneous diabetes mellitus as compared to aged-matched normal animals. Light-microscopic immunocytochemical and morphometric techniques were used to study islet-cell populations, while quantitative methods were employed specifically for the analysis of B-cell ultrastructure. The diabetic rats showed disruption of the islet structure and fibrosis in the stroma. The volume density (Vvi) of endocrine tissue and the Vvi and percentage of B cells were diminished, whereas the Vvi of exocrine tissue and the Vvi and percentage of D cells were increased. The number of medium and large islets as well as their mean volume (micron3) decreased in these animals. Pancreatic B cells from eSS rats showed an increase in the Vvi of endoplasmic reticulum, immature secretory granules and lysosomes. Conversely, the Vvi of total secretory granules and microtubules appeared diminished. The current observations contribute to our understanding of this useful animal model of diabetes mellitus, in the attempt to clarify the pathogenesis of the disease.  相似文献   

15.
16.
17.
The biosynthesis of somatostatin has been studied at the ultrastructural level in pancreatic islets by using rabbit antiserum against synthetic somatostatin. To document that the antiserum specifically bound preprosomatostatin, we have tested the ability of the antiserum to precipitate the product synthesized in vitro. Poly(A) enriched RNA isolated from catfish islets was translated in both the wheat germ extract and nuclease-treated reticulocyte lysate systems. It was found that the in vitro translation product, preprosomatostatin, could be recognized by the antibody against synthetic somatostatin. The morphological study was then performed by immunoelectron microscopy by using the Fab-peroxidase conjugate technique. In dog pancreatic islets, somatostatin immunoreactive reaction product was seen only in the delta cells. In these cells, they were detected on bound ribosomes, in the cisternae of the rough endoplasmic reticulum (ER) and Golgi apparatus, in the Golgi associated vesicles, and in secretory vesicles. These findings suggest that somatostatin precursor molecules are synthesized on bound ribosomes and discharged into the cisternae of the rough ER. They are then transported to the Golgi apparatus and transferred to the secretory vesicles for secretion. The different staining intensities in the secretory vesicles would suggest that the processing of the precursor molecules of somatostatin probably takes place in the secretory vesicles.  相似文献   

18.
The effect of prolonged thyroxine administration (0.001 mg/g BW) on pancreatic islets has been studied on 64 Wistar male rats by means of radioautographic, morphometric and electron microscopic methods. The phase response in the amount of the DNA-synthesising cells of the middle class islets has been revealed: the initial increase (5 days) is followed by a decrease (30 days) and then by a return to the control levels (60 days). The level of metabolism in sulphur-containing proteins has decreased in both A- and B-cells. After 30 days of the experiment, B/A cell volume ratio has been shown to increase. Electron microscopic studies have revealed ultrastructural reorganization of B-cells from "resting" B-cells into "dark" B-cells at increased excretion of secretory material.  相似文献   

19.
Mitochondrial metabolism plays a pivotal role in the pancreatic beta cell by generating signals that couple glucose sensing to insulin secretion. We have demonstrated previously that mitochondrially derived glutamate participates directly in the stimulation of insulin exocytosis. The aim of the present study was to impose altered cellular glutamate levels by overexpression of glutamate decarboxylase (GAD) to repress elevation of cytosolic glutamate. INS-1E cells infected with a recombinant adenovirus vector encoding GAD65 showed efficient overexpression of the GAD protein with a parallel increase in enzyme activity. In control cells glutamate levels were slightly increased by 7.5 mm glucose (1.4-fold) compared with the effect at 15 mm (2.3-fold) versus basal 2.5 mm glucose. Upon GAD overexpression, glutamate concentrations were no longer elevated by 15 mm glucose as compared with controls (-40%). Insulin secretion was stimulated in control cells by glucose at 7.5 mm (2.5-fold) and more efficiently at 15 mm (5.2-fold). INS-1E cells overexpressing GAD exhibited impaired insulin secretion on stimulation with 15 mm glucose (-37%). The secretory response to 30 mm KCl, used to raise cytosolic Ca(2+) levels, was unaffected. Similar results were obtained in perifused rat pancreatic islets following adenovirus transduction. This GAD65-mediated glutamate decarboxylation correlating with impaired glucose-induced insulin secretion is compatible with a role for glutamate as a glucose-derived factor participating in insulin exocytosis.  相似文献   

20.
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) regulates several cellular functions, but its physiological role in pancreatic islet cells remains to be investigated. In this study, we confirmed the presence of PPAR-gamma in rat isolated islets and examined its role on insulin and glucagon secretion by using PPAR-gamma-overexpressed islets. PPAR-gamma overexpression significantly suppressed insulin secretion induced by stimulatory concentration of glucose (p<0.05). In addition, insulin secretion evoked by high potassium depolarization also was significantly decreased from PPAR-gamma-overexpressed islets (p<0.05). On the other hand, no significant change in glucagon release was observed after high potassium depolarization between PPAR-gamma-overexpressed and control islets. Insulin and glucagon content in islets was not statistically different between the two groups. In addition, the expression of uncoupling protein-2 (UCP-2) was found to be induced in PPAR-gamma-overexpressed islets. This result clearly indicates that the deteriorative effect of PPAR-gamma overexpression on the secretory machinery is selective for pancreatic beta-cells. And it is possible that its site of action can be located in the energy-consuming exocytotic process of insulin secretory granules, and that the reduction of ATP production through increased UCP-2 reduces insulin exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号