首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Halophilic archaea are unique microorganisms adapted to survive under high salt conditions and biomolecules produced by them may possess unusual properties. Haloarchaeal metabolites are stable at high salt and temperature conditions that are useful for industrial applications. Proteins and enzymes of this group of archaea are functional under salt concentrations at which bacterial counterparts fail to be active. Such properties makes haloarchaeal enzymes suitable for salt-based applications and their use under dehydrating conditions. For example, bacteriorhodopsin or the purple membrane protein present in halophilic archaea has the most recognizable applications in photoelectric devices, artificial retinas, holograms etc. Haloarchaea are also useful for bioremediation of polluted hypersaline areas. Polyhydroxyalkanoates and exopolysccharides produced by these microorganisms are biodegradable and have the potential to replace commercial non-degradable plastics and polymers. Moreover, halophilic archaea have excellent potential to be used as drug delivery systems and for nanobiotechnology by virtue of their gas vesicles and S-layer glycoproteins. Despite of possible applications of halophilic archaea, laboratory-to-industrial transition of these potential candidates is yet to be established.  相似文献   

2.
Live bacteria and archaea have been isolated from several rock salt deposits of up to hundreds of millions of years of age from all around the world. A key factor affecting their longevity is the ability to keep their genomic DNA intact, for which efficient repair mechanisms are needed. Polyploid microbes are known to have an increased resistance towards mutations and DNA damage, and it has been suggested that microbes from deeply buried rock salt would carry several copies of their genomes. Here, cultivable halophilic microbes were isolated from a surface sterilized middle-late Eocene (38–41 million years ago) rock salt sample, drilled from the depth of 800 m at Yunying salt mine, China. Eight unique isolates were obtained, which represented two haloarchaeal genera, Halobacterium and Halolamina. We used real-time PCR to show that our isolates are polyploid, with genome copy numbers of 11–14 genomes per cell in exponential growth phase. The ploidy level was slightly downregulated in stationary growth phase, but the cells still had an average genome copy number of 6–8. The polyploidy of halophilic archaea living in ancient rock salt might be a factor explaining how these organisms are able to overcome the challenge of prolonged survival during their entombment.  相似文献   

3.
4.
新疆天山北坡不同盐湖微生物菌群结构及其影响因子   总被引:1,自引:0,他引:1  
李二阳  马雪莉  吕杰  马媛  吕光辉 《生态学报》2021,41(18):7212-7225
新疆分布的众多湖泊由于干旱气候成盐作用强烈,近半数已演化到盐湖发展阶段,不同盐湖中也因此蕴含着丰富的耐盐及嗜盐微生物资源。为更好的掌握新疆盐湖微生物资源分布规律及对环境因子变化的响应规律,利用高通量测序技术对新疆天山北坡5个不同演化阶段盐湖湖底沉积物中细菌、古菌多样性和菌群结构及其主要驱动因子进行研究,探讨盐湖演化过程中原核微生物群落结构变化规律。分别采集5个盐湖湖底沉积物样本,进行理化因子测试与细菌和古菌16S rRNA扩增子测序分析,比较不同盐湖理化性质和原核微生物菌群差异,并对原核微生物丰度与环境因子进行关联分析。实验结果表明:5个盐湖湖底沉积物总盐和Na+含量顺序为:巴里坤湖 > 伊吾湖 > 艾比湖 > 盐湖 > 柴窝堡湖,除艾比湖外其他四个盐湖沉积物均呈碱性。Alpha多样性结果显示5个盐湖细菌richness、chao1、ACE和shannon丰富度指数均大于古菌相应丰富度指数,不同盐湖细菌丰富度指数差异较大,古菌丰富度指数差异相对较小。从5个盐湖湖底沉积物中共检测获得细菌58门、68纲、138目、253科和560属,古菌4门、8纲、12目、21科和60属,细菌以变形菌门为主,古菌以广古菌门为主。不同盐湖细菌和古菌优势属种类均不相同,巴里坤湖主要是一些嗜盐和耐盐细菌属,而伊吾湖主要是嗜盐和耐盐古菌属,PCoA分析结果也表明不同盐湖微生物在OTUs水平有其独特菌群结构类型。RDA和Bioenv分析结果表明,盐湖湖底沉积物中微生物菌群群落结构主要受Na+和总盐(TS)浓度的影响,对细菌菌群结构影响较大,而古菌菌群结构可能受多种理化因子共同调节。此外,盐湖特殊卤水成分会对微生物群落结构产生重大影响。  相似文献   

5.
嗜盐古菌是一类生活于极端高盐环境的化能异养型原核微生物,其所分泌的胞外酶(外泌酶)具有在高盐条件下仍能保持活性的特点,在制革工业、高盐有机废水处理和泡菜加工等腌制食品方面发挥重要用途。本文对嗜盐古菌的胞外蛋白酶、淀粉酶、酯酶等几种常见胞外酶的来源和基本酶学性质的最新研究进展进行综述,为更好地开发利用嗜盐古菌胞外酶资源提供参考。  相似文献   

6.
基于高通量测序研究青藏高原茶卡盐湖微生物多样性   总被引:6,自引:0,他引:6  
【目的】茶卡盐湖(Chaka Salt Lake,CSL)是青藏高原有名的天然结晶盐湖,具有独特的石盐盐湖矿床,盛产青盐。盐湖卤水环境中存在丰富的嗜盐菌资源和潜在的新种,细菌和古菌的群落结构特征和物种多样性尚不明确。【方法】采用Illumina高通量测序平台对茶卡盐湖水样和底泥混合物中的细菌和古菌群落进行16S r RNA基因(V3-V5区)高通量测序,检测4个样本的群落结构差异和微生物多样性。【结果】获得细菌和古菌总有效序列分别为117 192和110 571条。结果分析表明细菌和古菌的物种注释(Operational taxonomic unit,OTU)数目分别为421和317,获得分类地位明确的细菌种类为14门28纲170属,古菌为5门4纲34属。细菌的优势类群是厚壁菌门(Firmicutes),所占比例为68.37%,其次为变形菌门Proteobacteria(20.49%);优势种属依次为芽孢杆菌属Bacillus(41.94%)、海洋芽孢杆菌属Oceanobacillus(8.03%)、假单胞菌属Pseudomonas(7.67%)、盐厌氧菌属Halanaerobium(7.42%)和乳球菌属Lactococcus(7.38%);古菌的优势类群以广古菌门(Euryarchaeota)盐杆菌纲(Halobacteria)为主,优势菌是Halonotius(17.21%)和盐红菌属Halorubrum(16.23%)。【结论】揭示了茶卡盐湖中细菌和古菌的群落结构及物种多样性,为嗜盐菌的开发及后续微生物资源的挖掘提供了理论依据。  相似文献   

7.
Wang  Ruiliang 《Hydrobiologia》1998,381(1-3):59-76
Acyclic isoprenoid hydrocarbons are found to be the predominant components in the organic matter extracted from sedimentary cores and oils of various hypersaline settings, including Tertiary Janghan salt lake basin, Cretaceous Taian salt lake basin, and Triassic, Permian and Cambrian Yangtze evaporitic marine platform. Inland saline lake basins are characterized by tremendous predominance of phytane (iC20) ranging up to 15% of the total extract. While the evaporitic marine sediments are unique for their complete series of super-long-chain acyclic isoprenoids, up to C40. These isoprenoids possess head-to-head, tail-to-tail or regular linkages and generally are indicators of the significant contribution from various archaea (archaebacteria), i.e. halophiles, methanogens and acidothermophiles. According to the great discrepancy of distribution and composition of isoprenoids, these modern and Cenozoic inland salt lake sediments are likely dominated by halophilic archaea, while the studied Mesozoic and Paleozoic evaporitic marine sediments are predominantly distinguished by methanogens and acidothermophiles. Concentration of chlorine salt is more directly proportional to the abundance of phytane than sulfate. Reduced species of sulfur, sulfide, S0 and organic sulfur compounds (OSC), however, may have played a key role in the preservation and formation of the highly abundant phytane observed in the inland salt lake basins. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The ecology of the extremely halophilic archaea   总被引:12,自引:0,他引:12  
Abstract: The extremely halophilic archaea (family Halobacteriaceae) are the dominant heterotrophic organisms in hypersaline environments in which salt concentrations exceed 250–300 g l−1. During the last decades our knowledge on the taxonomy, physiology and biochemistry of the Halobacterium group has greatly increased. However, our understanding of the ecology of the halophilic archaea lags far behind the progess made in the study of other aspects of their biology. A few hypersaline environments, such as the Dead Sea and solar salterns, have been studied more in depth, using techniques such as lipid analysis to obtain information on the types of organisms present and measurement of uptake of labeled substrates to quantify the dynamics of bacterial processes. The results of these studies, in combination with the information obtained from laboratory studies of representative isolates of the Halobacteriaceae, enable the beginning of an understanding of the functioning of the halophilic archaea in nature.  相似文献   

9.
The unique DNA topology and DNA topoisomerases of hyperthermophilic archaea   总被引:6,自引:0,他引:6  
Abstract: Hyperthermophilic archaea exhibit a unique pattern of DNA topoisomerase activities. They have a peculiar enzyme, reverse gyrase, which introduces positive superturns into DNA at the expense of ATP. This enzyme has been found in all hyperthermophiles tested so far (including Bacteria) but never in mesophiles. Reverse gyrases are formed by the association of a helicase-like domain and a 5'-type I DNA topoisomerase. These two domains might be located on the same polypeptide. However, in the methanogenic archaeon Methanopyrus kandleri , the topoisomerase domain is divided between two subunits. Besides reverse gyrase, Archaea contain other type I DNA topoisomerases; in particular, M. kandleri harbors the only known procaryotic 3'-type I DNA topoisomerase (Topo V). Hyperthermophilic archaea also exhibit specific type II DNA topoisomerases (Topo II), i.e. whereas mesophilic Bacteria have a Topo II that produces negative supercoiling (DNA gyrase), the Topo II from Sulfolobus and Pyrococcus lack gyrase activity and are the smallest enzymes of this type known so far. This peculiar pattern of DNA topoisomerases in hyperthermophilic archaea is paralleled by a unique DNA topology, i.e. whereas DNA isolated from Bacteria and Eucarya is negatively supercoiled, plasmidic DNA from hyperthermophilic archaea are from relaxed to positively supercoiled. The possible evolutionary implications of these findings are discussed in this review. We speculate that gyrase activity in mesophiles and reverse gyrase activity in hyperthermophiles might have originated in the course of procaryote evolution to balance the effect of temperature changes on DNA structure.  相似文献   

10.
Archaeal habitats--from the extreme to the ordinary   总被引:2,自引:0,他引:2  
The domain Archaea represents a third line of evolutionary descent, separate from Bacteria and Eucarya. Initial studies seemed to limit archaea to various extreme environments. These included habitats at the extreme limits that allow life on earth, in terms of temperature, pH, salinity, and anaerobiosis, which were the homes to hyper thermo philes, extreme (thermo)acidophiles, extreme halophiles, and methanogens. Typical environments from which pure cultures of archaeal species have been isolated include hot springs, hydrothermal vents, solfataras, salt lakes, soda lakes, sewage digesters, and the rumen. Within the past two decades, the use of molecular techniques, including PCR-based amplification of 16S rRNA genes, has allowed a culture-independent assessment of microbial diversity. Remarkably, such techniques have indicated a wide distribution of mostly uncultured archaea in normal habitats, such as ocean waters, lake waters, and soil. This review discusses organisms from the domain Archaea in the context of the environments where they have been isolated or detected. For organizational purposes, the domain has been separated into the traditional groups of methanogens, extreme halophiles, thermoacidophiles, and hyperthermophiles, as well as the uncultured archaea detected by molecular means. Where possible, we have correlated known energy-yielding reactions and carbon sources of the archaeal types with available data on potential carbon sources and electron donors and acceptors present in the environments. From the broad distribution, metabolic diversity, and sheer numbers of archaea in environments from the extreme to the ordinary, the roles that the Archaea play in the ecosystems have been grossly underestimated and are worthy of much greater scrutiny.  相似文献   

11.
12.
Enzymes from many archaea colonizing extreme environments are of great interest because of their potential for various biotechnological processes and scientific value of evolution. Many enzymes from archaea have been reported to catalyze promiscuous reactions or moonlight in different functions. Here, we summarize known archaeal enzymes of both groups that include different kinds of proteins. Knowledge of their biochemical properties and three-dimensional structures has proved invaluable in understanding mechanism, application, and evolutionary implications of this manifestation. In addition, the review also summarizes the methods to unravel the extra function which almost was discovered serendipitously. The study of these amazing enzymes will provide clues to optimize protein engineering applications and how enzymes might have evolved on Earth.  相似文献   

13.
Numerous proteases have been shown to catalyze the precisely-timed and rapid turnover of key cellular proteins. Often these regulatory proteases are either energy-dependent or intramembrane-cleaving. In archaea, two different types of energy-dependent proteases have been characterized: 20S proteasomes associated with proteasome-activating nucleotidases and membrane-associated Lon proteases. Interestingly, homologs of all three mechanistic classes of intramembrane-cleaving proteases are widely distributed in archaea. Similar to their eucaryal and bacterial counterparts, members of these uncharacterized proteases might promote the controlled release of membrane-anchored regulatory proteins or liberate small peptide reporters and/or effectors that function in cell signaling.  相似文献   

14.
The accumulation of organic solutes is a prerequisite for osmotic adjustment of all organisms. Archaea synthesize unusual solutes such as beta-amino acids, Nepsilon-acetyl-beta-lysine, mannosylglycerate and di-myo-inositol phosphate but, as in other cells, uptake of solutes such as glycine betaine is preferred over de novo synthesis. Study of the molecular basis of osmoadaptation and its regulation in archaea is still in its infancy, but genomics and functional genome analyses combined with classical biochemistry shed light on the processes that confer osmoadaptation in archaea. Most interestingly, some solutes are not only produced in response to salt but also to temperature stress.  相似文献   

15.
Xiaohui C  Jin W 《Gene》2004,327(1):75-79
Searching for unique features of archaeal genome may shed light on the mechanism of gene regulation in primitive life forms. Statistical analysis of ATG frequency on the complete genome sequences of 16 archaea, 20 bacteria and 2 eukaryotes revealed that most of the archaeal genomes have a remarkably high ATG frequency at the position of nine nucleotide (nt) downstream of the translation initiation site (the first nucleotide of the translation initiation codon is designated as 0). To understand the role of this unique ATG in archaea, we further analyzed the ATG-initiated genes and non-ATG-initiated genes separately, and the results indicated that only the non-ATG-initiated genes contribute to the high ATG frequency at position +9. This led us to speculate that the in-frame ATG at +9 may serve as a remedial initiation site for archaea in case of initiation failure at the regular site. In addition, it seems that this phenomenon does not result from the harsh environment that archaea are usually viable according to the fact that no considerably high ATG frequency at +9 was observed in all the four thermophilic bacteria that also live in harsh environment. We proposed that the high ATG frequency at position +9 might reflect the decreased efficiency of the translation initiation machinery in archaea. Since archaea evolve very slowly, this unique characteristic of high ATG frequency at position +9 may present the primitive state of the Universal Ancestor.  相似文献   

16.
Central to the different forms of taxis are methyl‐accepting chemotaxis proteins (MCPs). The increasing number of genome sequences reveals that MCPs differ enormously in sequence, topology and genomic abundance. This work is a one‐by‐one bioinformatic analysis of the almost‐totality of MCP genes available and a classification of motile bacteria according to their lifestyle. On average, motile archaea have 6.7 MCP genes per genome whereas motile bacteria have more than twice as much. We show that the number of MCPs per genome depends on bacterial lifestyle and metabolic diversity, but weakly on genome size. Signal perception at an MCP occurs at the N‐terminal ligand binding region (LBR). Here we show that around 88% of MCPs possess an LBR that remains un‐annotated in SMART. MCPs can be classified into two clusters according to the size of the LBR. Cluster I receptors have an LBR between 120 and 210 amino acids whereas cluster II receptors have larger LBRs of 220–299 amino acids. There is evidence that suggests that some cluster II LBRs are composed of two cluster I LBRs. Further evidence indicates that other cluster II LBRs might harbour novel sensor domains. Cluster II receptors are dominant in archaea whereas cluster I receptors are prevalent in bacteria. MCPs can be classified into six different receptor topologies and this work contains a first estimation of the relative abundance of different receptor topologies in bacteria and archaea. Topologies involving extracytoplasmic sensing are prevalent in bacteria whereas topologies with cytosolic signal recognition are abundant in archaea.  相似文献   

17.
新疆两盐湖可培养嗜盐古菌多样性研究   总被引:16,自引:1,他引:15  
从新疆地区艾比盐湖和艾丁盐湖卤水及泥土样品中分离到86株嗜盐古菌。16S rRNA基因序列分析结果表明,分离自艾比湖的嗜盐古菌分别属于Haloarcula、Halobacterium、Halorubrum、Haloterrigena、Natrinema和Natronorubrum6个属的11个分类单元,而分离自艾丁湖的嗜盐古菌分别属于Haloarcula、Halobiforma、Halorubrum、Haloterrigena、Natrialba、Natrinema6个属的8个分类单元,这一结果表明艾比湖可培养嗜盐古菌生物多样性稍高于艾丁湖。基于16S rRNA基因序列的系统发育分析表明代表菌株ABH15应为Natronorubrum属的中性嗜盐古菌新种,代表菌株ABH07、ABH12、ABH17、ABH19、ABH51和AD30可能是Halobacterium、Halorubrum、Haloterrigena、Haloarcula的新成员。  相似文献   

18.

Background

Possession of gas vesicles is generally considered to be advantageous to halophilic archaea: the vesicles are assumed to enable the cells to float, and thus reach high oxygen concentrations at the surface of the brine.

Results

We studied the possible ecological advantage of gas vesicles in a dense community of flat square extremely halophilic archaea in the saltern crystallizer ponds of Eilat, Israel. We found that in this environment, the cells' content of gas vesicles was insufficient to provide positive buoyancy. Instead, sinking/floating velocities were too low to permit vertical redistribution.

Conclusion

The hypothesis that the gas vesicles enable the square archaea to float to the surface of the brines in which they live was not supported by experimental evidence. Presence of the vesicles, which are mainly located close to the cell periphery, may provide an advantage as they may aid the cells to position themselves parallel to the surface, thereby increasing the efficiency of light harvesting by the retinal pigments in the membrane.  相似文献   

19.
Current research on inositols mainly focuses on myo-inositol (Ins) derivatives in eukaryotic cells, and in particular on the many roles of Ins phospholipids and polyphosphorylated Ins derivatives. However, inositols and their derivatives are more versatile than this--they have acquired diverse functions over the course of evolution. Given the central involvement of primordial bacteria and archaea in the emergence of eukaryotes, what is the status of inositol derivatives in these groups of organisms, and how might inositol, inositol lipids and inositol phosphates have become ubiquitous constituents of eukaryotes? And how, later, might the multifarious functions of inositol derivatives have emerged during eukaryote diversification?  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号