首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stimulation of muscarinic receptors increases phosphoinositide (PI) hydrolysis in 132-1N1 human astrocytoma cells. To evaluate the subtype of receptors which mediate PI hydrolysis in 132-1N1 cells, the effects of: a) the nonselective M1 agonist, carbachol; b) the selective M1 agonist, 4-hydroxy-2-butynyl-trimethylammonium chloride-m-chlorocarbinilate (McN-343); c) the nonselective antagonists, atropine and scopolamine; d) the relatively selective M1 antagonist, pirenzepine; e) the relatively selective M2 antagonists, AF-DX 116 (11-2-diethylaminomethyl-1-piperidinylacetyl-5, 11-dihydro-6H-pyrido-2,3-b-1,4-benzodiazepine-6-one) and methoctramine and f) the relatively selective M3 antagonist, hexahydrosila-difenidol (HHSiD) on PI hydrolysis in 132-1N1 cells were studied. The cell pools of inositol-phospholipids were prelabelled by incubating 132-1N1 cells in a low inositol containing medium (CMRL-1066) supplemented with [3H]inositol (2 microCi/ml) for 20-24 hours at 37 degrees C. The cells were washed and resuspended in a physiological salt solution, and PI hydrolysis was measured by accumulation of [3H]inositol-1-phosphate (IP) in the presence of 10 mM LiCl. Carbachol produced time and concentration dependent PI hydrolysis (EC50, 37 microM). McN-A343 did not cause significant hydrolysis of PI in 132-1N1 cells indicating that the receptor was not of M1 type. All the above muscarinic antagonists caused a concentration dependent decrease in the level of IP in response to carbachol (100 microM). The rank order of their affinities (pA2 values) was: atropine (8.8) > HHSiD (7.6) > pirenzepine (6.8) > methoctramine (6.0) > AF-DX 116 (5.8). This rank order supports the concept that M3 (other names, M2 beta, glandular M2) receptors are linked to PI hydrolysis in 132-1N1 cells. HHSiD, which is selective for M3 receptors of the smooth muscle has higher affinity for muscarinic receptors in 132-1N1 cells than AF-DX 116 which is selective for M2 receptors in cardiac tissue. If the receptor in 132-1N1 cells had been M2, part of the rank order for affinities would have been methoctramine > AF-DX 116 > HHSiD > pirenzepine. From all of these observations, the muscarinic receptor for PI hydrolysis in 132-1N1 cells is tentatively characterized as of M3 type.  相似文献   

2.
Characterization of muscarinic receptor subtypes in human tissues   总被引:5,自引:0,他引:5  
The affinities of selective, pirenzepine and AF-DX 116, and classical, N-methylscopolamine and atropine, muscarinic cholinergic receptor antagonists were investigated in displacement binding experiments with [3H]Pirenzepine and [3H]N-methylscopolamine in membranes from human autoptic tissues (forebrain, cerebellum, atria, ventricle and submaxillary salivary glands). Affinity estimates of N-methylscopolamine and atropine indicated a non-selective profile. Pirenzepine showed differentiation between the M1 neuronal receptor of the forebrain and the receptors in other tissues while AF-DX 116 clearly discriminated between muscarinic receptors of heart and glands. The results in human tissues confirm the previously described selectivity profiles of pirenzepine and AF-DX 116 in rat tissues. These findings thus reveal the presence also in man of three distinct muscarinic receptor subtypes: the neuronal M1, the cardiac M2 and the glandular M3.  相似文献   

3.
The subtype of muscarinic receptor which mediates cAMP attenuation is not established. Therefore, several selective muscarinic antagonists were used to characterize the subtype of muscarinic receptor coupled to the inhibition of hormone-stimulated cAMP accumulation using NG108-15 neuroblastoma x glioma hybrid cells. These cells were prelabeled with [2-3H]-adenine, washed, and resuspended in a culture medium containing the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (0.5 mM). The labeled cells were preincubated with the different antagonists 12-15 min. before they were challenged with agonists. The formation of [3H]-cAMP was activated by PGE1 (1 microM) or forskolin (1 microM). In all cases, [3H]-cAMP formed was separated and measured. Carbachol (100 microM) and McN-A343 (10 mM) were used as standard muscarinic agonists. These studies gave the following results: a) McN-A343 (10 mM), an M1 receptor agonist, was only a partial agonist causing 40% inhibition of cAMP accumulation indicating that this effect was not mediated by an M1 receptor; b) The M1-selective antagonist, pirenzepine, exhibited low affinity (pA2 6.2) further suggesting that an M1 receptor was not coupled to the attenuation of cAMP accumulation; c) Two selective M2 antagonists (AF-DX 116 and methoctramine) and M3 antagonist (HHSiD) were used to further characterize these muscarinic receptors. The order of all antagonists based on their affinities (pA2 values) could be arranged in the following order: atropine (9.0) > methoctramine (7.6) > HHSiD (6.9) > AF-DX 116 (6.6) > pirenzepine (6.2). HHSiD exhibits the same degree of affinity to M2 receptors of other tissues as it does to those of NG cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The muscarinic receptor antagonist atropine (105 mM) dramatically decreased the response to increased CO2 when applied by cotton pledgets to the rostral ventrolateral medulla ventilatory chemosensitive area in anesthetized, paralyzed, vagotomized, glomectomized, and servoventilated cats with integrated phrenic nerve activity used as respiratory center output. Lower dose atropine (4.4 mM) and the M1-muscarinic receptor subtype antagonist pirenzepine (10 mM) also significantly decreased the mean CO2 response slope 48.3 +/- 6.2 and 40.7 +/- 6.0% (SE), respectively, and significantly decreased the maximum response value 26.3 +/- 8.1 and 19.2 +/- 3.2%, respectively, without significant effects on blood pressure or on the phrenic response to carotid sinus nerve stimulation. The M2-muscarinic receptor subtype antagonist AF-DX 116 (10 mM) had no significant effect on phrenic output or blood pressure. Application of carbachol (10 mM) at the rostral area augmented eucapnic phrenic output and the maximum value of the CO2 response but decreased the initial slope, effects blocked by atropine. Carbachol also decreased the response to carotid sinus nerve stimulation, suggesting that the system was saturated by carbachol stimulation. Muscarinic cholinergic receptors accessible to surface application at the rostral ventrolateral medulla antagonized by pirenzepine but not AF-DX 116 appear to be involved in the central chemoreceptor process.  相似文献   

5.
Recent studies have demonstrated that the majority of muscarinic receptors in rabbit peripheral lung homogenates bind pirenzepine with high affinity (putative M1 subtype). In experiments of AF-DX 116 inhibiting [3H](-)quinuclidinyl benzilate or [3H]pirenzepine, we found similar inhibitory constants for AF-DX 116 binding in rat heart and rabbit peripheral lung that were 4-fold smaller (i.e. of higher affinity) than the inhibitory constant for rat cerebral cortex. This result demonstrates heterogeneity of the M1 muscarinic receptor subtype between peripheral lung and cerebral cortex.  相似文献   

6.
Cardioselective profile of AF-DX 116, a muscarine M2 receptor antagonist   总被引:26,自引:0,他引:26  
AF-DX 116 (see chemical name below) is a competitive antagonist of muscarine receptors in peripheral organs. In contrast to pirenzepine, its behaviour in functional experiments indicates selectivity for the M2 muscarinic subtype. In pithed rats AF-DX 116 inhibits vagally-induced bradycardia, an M2 response, (ED50 32 micrograms/kg i.v.) in preference to the M1-mediated pressor response to McN-A-343 (ED50 211 micrograms/kg i.v.). AF-DX 116 further discriminates among M2 receptors, showing a high affinity for the cardiac muscarine receptors. In isolated preparations, AF-DX 116 has a tenfold higher affinity for the muscarine receptors of the heart (pA2 7.33) than for those in smooth muscles (pA2 6.39-6.44). The same profile appears from animal studies, where the compound is a more potent antagonist of either endogenously or exogenously activated cardiac muscarine responses as compared to vascular, smooth muscle or secretory responses. In general, the ratios of potencies (ED50) observed in cardiac vs. other muscarine mediated functions ranged between 30 and 50. Atropine showed no discrimination, inhibiting all muscarine responses in the same range of doses. In the conscious dog intravenous AF-DX 116 increased basal heart rate, and completely reversed the reflex bradycardia induced by clonidine. Tachycardia was dose-related (ED50 79 micrograms/kg i.v.), and occurred independently of background sympathetic tone. AF-DX 116 clearly distinguishes between M1- and M2-mediated responses; it also emphasizes the long-recognized heterogeneity among the peripheral M2 subtypes. AF-DX 116, for its pronounced cardioselectivity, may have a therapeutic potential in the treatment of sinus bradycardia.  相似文献   

7.
In vitro competition binding experiments with the selective muscarinic antagonists AF-DX 116 and pirenzepine (PZ) vs 3H-N-methylscopolamine as radioligand revealed a characteristic distribution of muscarinic receptor subtypes in different regions of rat brain. Based on non linear least squares analysis, the binding data were compatible with the presence of three different subtypes: the M1 receptor (high affinity for PZ), the cardiac M2 receptor (high affinity for AF-DX 116) and the glandular M2 receptor (low affinity for PZ and AF-DX 116). The highest proportion of M1 receptors was found in the hippocampus, whilst the cerebellum and the hypothalamus were the regions with the largest fraction of the cardiac M2 and glandular M2 receptors, respectively. In certain brain areas, depending on the relative proportions of the subtypes, flat binding curves were seen for AF-DX 116 and PZ. Based on these data, an approximate distribution pattern of the subtypes in the various brain regions is presented.  相似文献   

8.
The in vitro binding properties of the novel muscarinic antagonist [3H]AF-DX 116 were studied using a rapid filtration technique. Association and dissociation rates of [3H]AF-DX 116 binding were rapid at 25 degrees C (2.74 and 2.70 X 10(7) min-1 M-1 for K+1; 0.87 and 0.93 min-1 for k-1) but 20-40 times slower at 0-4 degrees C (0.13 and 0.096 X 10(7) min-1 M-1 for k+1; 0.031 and 0.022 min-1 for k-1 in cerebral cortical and cardiac membranes, respectively). Kinetic dissociation constants (Kds) were estimated to be 31.8 nM and 30.9 nM at 25 degrees C; 23.1 nM and 0-4 degrees C for the cerebral cortex and heart, respectively. In saturation studies, [3H]AF-DX 116 labeled 29 percent of the total [3H](-)QNB binding sites in the cerebral cortical membranes and 87 percent in the cardiac membranes, with Kd values of 28.9 nM and 17.9 nM, respectively. Muscarinic antagonists inhibited [3H]AF-DX 116 binding in a rank order of potency of atropine greater than dexetimide greater than AF-DX 116 greater than PZ greater than levetimide in both tissues. Except for PZ/[3H]AF-DX 116 and AF-DX 116/[3H]AF-DX 116 in the cerebral cortex, all the antagonist competition curves had Hill coefficients close to one. Carbachol and oxotremorine produced shallow inhibition curves against [3H]AF-DX 116 binding in both tissues. Regional distribution studies with [3H](-)QNB, [3H]PZ and [3H]AF-DX 116 showed that most of the muscarinic receptors in the cerebral cortex, hippocampus, nucleus accumbens and corpus striatum are of the M1 subtype while those in the brainstem, cerebellum and other lower brain regions are of the M2 subtype. These results indicate that [3H]AF-DX 116 is a useful probe for the study of heterogeneity of muscarinic cholinergic receptors.  相似文献   

9.
Mucus glycoproteins (MGP) are high-molecular-weight glycoconjugates that are released from submucosal glands and epithelial goblet cells in the respiratory tract. Muscarinic receptors have an important role in the regulation of human nasal glandular secretion and mucus production, but it is not known which of the five muscarinic receptor subtypes are involved. The effect of nonselective and M1-, M2-, and M3-selective muscarinic antagonists on methacholine (MCh)-induced MGP secretion from human nasal mucosal explants was tested in vitro. MGP was assayed by enzyme-linked immunosorbent assay using a specific anti-MGP monoclonal antibody (7F10). MCh (100 microM) induced MGP secretion up to 127% compared with controls. MCh-induced MGP release was significantly inhibited by atropine (100 microM), the M, receptor antagonist pirenzepine (10-100 microM), and the M3 receptor antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP; 1-100 microM). 4-DAMP significantly inhibited MCh-induced MGP release at a lower concentration (1 microM) than pirenzepine (10 microM). The M2 receptor antagonists AF-DX 116 and gallamine (both at 100 microM) had no effect. No antagonist alone had a significant effect on MGP release. These results indicate that the M1 and M3 muscarinic receptor subtypes regulate MGP secretion from human nasal mucosa and suggest that the M3 receptor has the predominant effect.  相似文献   

10.
According to molecular biological and pharmacological criteria, rat heart membranes normally express only one muscarinic receptor subtype. The selective antagonists pirenzepine and AF-DX 116 bind to this receptor with a single affinity: low and high, respectively. We report here that an endogenous, intracellular factor alters the affinity of selective antagonists for muscarinic receptors in the heart. Thus, when the intracellular fluid is added back to rat heart membranes, both pirenzepine and AF-DX 116 bind to two receptor sites. Approximately 30% of the receptors bind pirenzepine with high affinity and AF-DX 116 with low affinity. Thus, while cardiac muscarinic receptors are coded for by a single mRNA and are therefore genetically homogeneous, the resulting receptor protein might behave like a mixture of receptor subtypes in intact tissues due to the influence of intracellular factors on receptor conformation.  相似文献   

11.
The M1-selective (high affinity for pirenzepine) muscarinic acetylcholine receptor (mAChR) antagonist pirenzepine displaced both N-[3H]methylscopolamine [( 3H]NMS) and [3H]quinuclidinylbenzilate from intact human SK-N-SH neuroblastoma cells with a low affinity (Ki = 869-1,066 nM), a result indicating the predominance of the M2 or M3 (low affinity for pirenzepine) receptor subtype in these cells. Whereas a selective M2 agent, AF-DX 116 [11-2[[2-[(diethylamino)methyl]-1-piperidinyl]- acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepin-6-one) bound to the mAChRs with a very low affinity (Ki = 6.0 microM), 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP), an agent that binds with high affinity to the M3 subtype, potently inhibited [3H]NMS binding (Ki = 7.2 nM). 4-DAMP was also 1,000-fold more effective than AF-DX 116 at blocking stimulated phosphoinositide (PPI) hydrolysis in these cells. Covalent labeling studies (with [3H]propylbenzilycholine mustard) suggest that the size of the SK-N-SH mAChR (Mr = 81,000-98,000) distinguishes it from the predominant mAChR species in rat cerebral cortex (Mr = 66,000), an M1-enriched tissue. These results provide the first demonstration of a neural M3 mAChR subtype that couples to PPI turnover.  相似文献   

12.
The presynaptic muscarinic autoreceptor of Torpedo marmorata electric organ has been characterised by radioligand binding studies using the subtype-selective antagonists pirenzepine, (+)-telenzepine, methoctramine, and AF-DX 116. The presynaptic receptor had relatively high affinity for the M1 antagonists pirenzepine and (+)-telenzepine (Ki = 35 and 7 nM, respectively) and lower affinities for the M2 antagonists AF-DX 116 and methoctramine (Ki = 311 and 277 nM, respectively). Comparison of these binding data with those from an M2 receptor (rat heart membranes) assayed under identical conditions and with data in the recent literature suggests that the Torpedo muscarinic autoreceptor has a pharmacology most similar to the M1 pharmacological subtype of muscarinic acetylcholine receptor.  相似文献   

13.
Muscarinic receptors in brain membranes from honey bees, houseflies, and the American cockroach were identified by their specific binding of the non-selective muscarinic receptor antagonist [3H]quinuclidinyl benzilate ([3H]QNB) and the displacement of this binding by agonists as well as subtype-selective antagonists, using filtration assays. The binding parameters, obtained from Scatchard analysis, indicated that insect muscarinic receptors, like those of mammalian brains, had high affinities for [3H]QNB (KD = 0.47 nM in honey bees, 0.17 nM in houseflies and 0.13 nM in the cockroach). However, the receptor concentration was low (108, 64.7, and 108 fmol/mg protein for the three species, respectively). The association and dissociation rates of [3H]QNB binding to honey bee brain membranes, sensitivity of [3H]QNB binding to muscarinic agonists, and high affinity for atropine were also features generally similar to muscarinic receptors of mammalian brains. In order to further characterize the three insect brain muscarinic receptors, the displacement of [3H]QNB binding by subtype-selective antagonists was studied. The rank order of potency of pirenzepine (PZ), the M1 selective antagonist, 11-[2-[dimethylamino)-methyl)1-piperidinyl)acetyl)-5,11- dihydro-6H-pyrido(2,3-b)-(1,4)-benzodiazepin-6 one (AF-DX 116), the M2-selective antagonist, and 4-DAMP (4-diphenylacetoxy-N-methylpiperidine methiodide) the M3-selective antagonist, was also the same as that of mammalian brains, i.e., 4-DAMP greater than PZ greater than AF-DX 116. The three insect brain receptors had 27-50-fold lower affinity for PZ (Ki 484-900 nM) than did the mammalian brain receptor (Ki 16 nM), but similar to that reported for the muscarinic receptor subtype cloned from Drosophila. Also, the affinity of insect receptors for 4-DAMP (Ki 18.9-56.6 nM) was much lower than that of the M3 receptor, which predominates in rat submaxillary gland (Ki of 0.37 nM on [3H]QNB binding). These drug specificities of muscarinic receptors of brains from three insect species suggest that insect brains may be predominantly of a unique subtype that is close to, though significantly different from, the mammalian M3 subtype.  相似文献   

14.
R M Santos  E Rojas 《FEBS letters》1989,249(2):411-417
Acetylcholine (1-10 microM) depolarized the membrane and stimulated glucose-induced bursts of electrical activity in mouse pancreatic B-cells. The acetylcholine effects were mimicked by muscarine while nicotine had no effect on membrane potential. Pirenzepine, an antagonist of the classical M1-type muscarinic receptors, but not gallamine (1-100 microM), an antagonist of the classical M2-type receptors, antagonized the acetylcholine action on glucose-induced electrical activity (IC50 = 0.25 microM). Bethanechol, an agonist of the classical M2-type muscarinic receptors, was approximately 100 times less effective than acetylcholine in stimulating the electrical activity. In addition, acetylcholine (1 microM) induced a marked increase (25%) in input resistance to the B-cell membrane. The results indicate that acetylcholine exerted its effects on the B-cell membrane by inhibiting K+ conductance via activation of a muscarinic receptor subtype distinct from the classical M2-type receptor.  相似文献   

15.
Abstract: : Muscarinic acetylcholine receptor expression and function in cultured rat neostriatal neurons were examined. All experiments were performed on intact neurons grown in vitro for 12-14 days. The muscarinic antagonist N-[3H]methylscopolamine ([3H]NMS) binds to a single site in cultures with a KD of 89 pM and a Bmax of 187 fmol/mg of protein, or 32,000 sites/neuron. Competition studies using [3H]NMS were performed to determine what receptor sur > types were present. Nonlinear analysis of competition curves was best described with a single binding site for atropine, pirenzepine, and AF-DX 116 {11-[[2-[(diethylamino)-methyl]-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepine-6-one}, with Ki values of 0.6, 62, and 758 nM, respectively. These results indicate that the muscarinic receptors present in neostriatal cultures are of the M1subtype, having high affinity for pirenzepine and low affinity for AF-DX 116. In contrast with antagonists, carbachol displaced [3H]NMS from two sites with Ki values of 6.5 and 147 μM, with the higher-affinity form predominant (83% of sites). The M1 receptor subtype was linked to phosphoinositide turnover. Carbachol stimulated the formation of phosphoinositides with an EC50 of 37 μM and was antagonized by atropine. At equimolar doses, pirenzepine was more potent than AF-DX 116 at antagonizing the response.  相似文献   

16.
To investigate the pharmacological effect of a novel compound YM796, we performed radioligand binding experiments and correlative biochemical experiments using the transfected murine fibroblast B82 cells which expressed the m1 and m2 muscarinic receptor genes (cloned cell lines designated as LK3-3 and M2LKB2-2, respectively). [3H](-)methyl-3-quinuclidinyl benzilate [( 3H](-)MQNB) binding in these transfected cell lines was inhibited by different optical isomers of YM796 and other muscarinic drugs, atropine, pirenzepine, AF-DX 116, as well as selected agonists. (-)YM796, (+)YM796 and (+/-)YM796 inhibited [3H](-)MQNB binding in LK3-3 cells with Ki values of 16.4 microM, 30.1 microM and 21.8 microM and in M2LKB2-2 cells with Ki values of 52.0 microM, 108 microM and 77.1 microM, respectively. From functional assays we found the two isomers, (-)YM796 and (+)YM796 had different intrinsic activities for the M1 and M2 muscarinic receptors. (-)YM796 revealed agonistic activity: stimulation of [3H]IP1 accumulation in LK3-3 cells with an EC50 value of 26.5 microM, which was less efficacious (the Emax value was 5.6 times basal) than carbachol, a full agonist (the Emax value was 17.2 times basal). Interestingly, (-)YM796 did not show significant inhibition of cAMP formation in M2LKB2-2 cells except at extremely high concentrations (greater than 1mM). (+)YM796 exhibited no significant efficacy for the M1 and M2 muscarinic receptors. These results suggest that (-)YM796 represents a muscarinic partial agonist with functional selectivity for the M1 muscarinic receptors whereas (+)YM796 shows no efficacy for either M1 or M2 muscarinic receptors in these transfected cells.  相似文献   

17.
乙酰胆碱对小鼠胰岛B细胞电活动作用的分析   总被引:1,自引:0,他引:1  
陶锋  苏清芬 《生理学报》1994,46(2):105-111
用细胞内电位记录和细胞外微电泳技术,研究乙酰胆碱对小鼠胰岛B细胞电活动的作用,微电泳ACh使B细胞胞膜去极化5-10mV和锋电位电位发放数增加11-17/30s。这种效应具有葡萄糖依赖性,并被阿托品完全阻断,而哌仓西平可阻抑ACh效应的70%。ACh的膜去极化作用不依赖于细胞外Ca^2+,而可被河豚毒阻断;ACh增加锋电位数的效应依赖于细胞外Ca^2+,但不被异捕定阻断。结果表明:ACh增强B细胞  相似文献   

18.
This study was conducted to investigate the subtypes of muscarinic receptors involved in the action of cholinergic agents on prostacyclin synthesis in the rabbit aorta. Prostacyclin production measured as 6-keto-PGF1 alpha was assessed after exposing the aortic rings to different cholinergic agents. Acetylcholine (ACh) (M1 and M2 agonist) (1-10 microM) and arecaidine proparagyl ester (APE) (M2 selective agonist) (1-10 microM) enhanced 6-keto-PGF1 alpha output in a concentration-dependent manner. A selective M1 receptor agonist, McN-A-343, at 1 microM-1 mM did not alter 6-keto-PGF1 alpha output. ACh- and APE induced increases in 6-keto-PGF1 alpha output were attenuated by the M1/M2 antagonist atropine (0.1 microM), M2 alpha antagonist (AF-DX 116), (0.1-1.0 microM), and by selective M2 beta antagonist, hexahydro-sila-difendiol (HHSiD) (0.1-1.0 microM), but not by the M1 antagonist pirenzepine (1.0 microM). 6-Keto-PGF1 alpha output elicited by ACh- or APE was not altered by the adrenergic receptor antagonists phentolamine and propranolol or by the nicotinic receptor blocker hexamethonium. Similarly, the arachidonic acid- or norepinephrine induced 6-keto-PGF1 alpha accumulation was not altered by these muscarinic receptor antagonists. Indomethacin, a cyclooxygenase inhibitor, prevented arachidonic acid, ACh- or APE induced 6-keto-PGF1 alpha output. Removal of the endothelium abolished the production of 6-keto-PGF1 alpha elicited by ACh, APE, bradykinin, and calcium ionophore A 23187, but not that induced by angiotensin II, K+ or norepinephrine. These data suggest that vascular prostaglandin generation elicited by cholinergic agonists is mediated via activation of M2 alpha and M2 beta but not M1 muscarinic receptors, which are most likely located on the endothelium.  相似文献   

19.
Cholinergic dopamine release from the in vitro rabbit carotid body.   总被引:1,自引:0,他引:1  
The aim of this study was to test whether cholinergic mechanisms regulate dopamine (DA) release from the carotid body (CB) and interact with DA D(2) autoreceptors. One hundred forty-two CBs from adult rabbits were infused in vitro in a surviving medium bubbled with O(2) (Bairam A, Marchal F, Cottet-Emard JM, Basson H, Pequignot JM, Hascoet JM, and Lahiri S. J Appl Physiol 80: 20-24, 1996). CB DA content and release were measured after 1 h of exposure to various treatments: control, cholinergic agonist (0.1-50 microM carbachol), full muscarinic antagonist (1 and 10 microM atropine), antagonists of M(1) and M(2) muscarinic receptors (1 and 10 microM pirenzepine and 10 microM AFDX-116, respectively), and the DA D(2) receptor antagonist domperidone (1 microM), alone and with carbachol (1 microM). Compared with control, the release of DA was significantly increased by carbachol (1-50 microM), AFDX-116, and domperidone and decreased by atropine (10 microM) and pirenzepine (10 microM). The effects of domperidone and carbachol were not significantly different but were clearly additive. It is concluded that, in the rabbit CB, M(1) and M(2) muscarinic receptor subtypes may be involved in the control of DA release, in addition to the DA D(2) autoreceptors.  相似文献   

20.
Summary Studies with the atypical muscarinic antagonist pirenzepine provide convincing evidence for the classification of muscarinic acetylcholine receptors (mAChRs) into two subtypes, M1 and M2. The present study examines the heterogeneity of the M2 subtype employing the newly developed competitive muscarinic antagonist, AFDX-116. Comparison of the binding affinities of pirenzepine, atropine, and AFDX-116 to mAChRs in microsomes from the rabbit cerebral cortex, heart, and iris smooth muscle shows that iris mAChRs, which are pharmacologically of the M2 subtype, can be distinguished from M2 cardiac receptors based on their affinity for AFDX-116. These results are consistent with the hypothesis that the M2 receptor subtype consists of a heterogeneous population of receptors.Abbreviations mAChRs Muscarinic Acetylcholine Receptors - CCh Carbachol - NMS N-Methylscopolamine - AFDX-116 11-[[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5,11-dihydro-6Hpyrido[2,3-b][1,4]benzodiazepine-6-one  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号