首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Agrobacterium tumefaciens harbouring the Ti plasmid incites crown gall tumor on dicotyledonous species. Upon infection of these plants, T-DNA in the Ti plasmid is transferred by unknown mechanisms to plant cells to be integrated into nuclear DNA. WhenAgrobacterium is incubated with protoplasts or seedlings of dicotyledonous plants, circulation of T-DNA and expression ofvir (virulence) genes on the Ti plasmid are induced. The circularization event is efficiently induced by mesophyll protoplasts of tobacco which are highly competent for transformation by the T-DNA, and is also induced by diffusible phenolic compounds excreted from the protoplasts. The circularization and formation of crown gall both require the expression of thevirD locus, one of the induciblevir genes. These results suggest that the circularization of T-DNA reflects one of steps of the T-DNA transfer during formation of crown gall. In contrast to dicotyledonous plants, monocotyledonous plants are thought to be unresponsive to infection byAgrobacterium. We showed that monocotyledonous plants do not excrete diffusible inducers for the expression ofvir genes, while they contain a novel type of a signal substance(s). This inducer is not detected in the exudates of seedlings of monocotyledonous plants, but is found in the extracts from the seedlings, and also those from the seeds, bran and germ of wheat and oats. This finding suggests that T-DNA processing, and possibly its transfer, should take place whenAgrobacterium invades seedlings and seeds of monocotyledonous plants. Recipient of the Botanical Society Award for Young Scientists, 1987.  相似文献   

2.
Summary The formation of crown gall tumours involves the transfer of the T-DNA region of the Ti plasmid from Agrobacterium to plant cells and its subsequent integration into plant chromosomes. When agrobacteria are incubated with plant protoplasts or exudates of plants, the T-DNA region is circularized by recombination or cleavage and rejoining between the 25 bp terminal repeats; the formation of circular T-DNAs is thought to be one step in T-DNA transfer (Koukolikova-Nicola et al. 1985; Machida et al. 1986). We previously showed that the virulence region of the Ti plasmid is required for T-DNA circularization. In the present paper, we examined the circularization event in agrobacteria harbouring octopine Ti plasmids with mutations in various loci of the virulence region. The results clearly demonstrate that the gene(s) encoded in the virD locus are necessary for T-DNA circularization. In particular, the gene(s) present in the region proximal to the virD promoter are essential. We propose that roduct(s) of this gene have recombinase or endonuclease activity which specifically recognizes the 25 bp terminal repeats of T-DNA.  相似文献   

3.
Summary Factors influencing the Agrobacterium-mediated transformation of both monocotyledonous and dicotyledonous plant species have been widely investigated. These factors include manipulating Agrobacterium strains and plasmids, growth conditions for vir gene induction, plant genotype, inoculation and co-culture conditions, and the selection agents and their application regime. We report here a novel physical parameter during co-culture, desiccation of plant cells or tissues post-Agrobacterium infection, which greatly enhances transfer DNA (T-DNA) delivery and increases stable transformation efficiency in wheat. Desiccation during co-culture dramatically suppressed Agrobacterium growth, which is one of the factors known to favor plant cell recovery. Osmotic and abscisic acid treatments and desiccation prior to inoculation did not have the same enhancement effect as desiccation during co-culture on T-DNA delivery in wheat. An efficient transformation protocol has been developed based on desiccation and is suitable for both paromomycin and glyphosate selection. Southern analysis showed approximately 67% of transgenic wheat plants received a single copy of the transgene.  相似文献   

4.
We have developed anAgrobacterium-mediated transformation system, using tobacco cell suspensions, that permits evaluation of factors affecting transformation within seven days of co-cultivation. Tobacco cell transformation was determined by monitoring -glucuronidase (GUS) activity detected in plant cell extracts. The use of a chimeric gene construct, 35S-GUS/INT, containing a portable intron in theuidA reading frame, assured only plant-specific GUS expression. During the co-cultivation period, induction of the bacterialvir-region was monitored using a heterologous gene construct composed of avirB promoter fragment from pTiC58 fused to the chloramphenicol acetyltranferase (CAT) gene ofTn9. Tobacco cell transformants were confirmed by antibiotic selection of transformed plant cells and by X-Gluc staining. Maximum transformation was obtained when plant suspension cultures were growing rapidly which also was coincidental with elevated levels of bacterialvir-region expression. One week after co-cultivation, the transformed cultures exhibited a stable pattern of GUS activity which remained constant without antibiotic selection. The system was used to compare the virulence of a number ofAgrobacterium strains. GUS activity of plant cells co-cultivated with a strain containing a cointegrate plasmid was 3-fold higher than that of one with a binary configuration of the T-DNA. When the co-cultivatingAgrobacterium strain also carried the plasmid used to monitorvir induction, the frequency of transformation was reduced by as much, as 97%.  相似文献   

5.
For successful transformation of a plant by Agrobacterium tumefaciens it is essential that the explant used in cocultivation has the ability to induce Agrobacterium tumour-inducing (Ti) plasmid virulence (vir) genes. Here we report a significant variation in different tissues of Indica rice (Oryza sativa L. cv. Co43) in their ability to induce Agrobacterium tumefaciens vir genes and T-strand generation, using explants preincubated in liquid Murashige and Skoog (MS) medium. An analysis of rice leaf segments revealed that they neither induced vir genes nor inhibited vir gene induction. Of different parts of rice plants of different ages analysed only scutellum from four-day old rice seedlings induced vir genes and generation of T-strands. We observed that the physical presence of preincubated scutella is required for vir gene induction. Conditioned medium from which preincubated scutella were removed did not induce the vir genes. Scutellum-derived calli, cultured for 25 days on medium containing 2,4-D, also induced virE to an appreciable level. These results suggest that scutellum and scutellum-derived calli may be the most susceptible tissues of rice for Agrobacterium-mediated transformation.  相似文献   

6.
Centrifugation-assisted Agrobacterium-mediated transformation (CAAT) protocol, developed using banana cultivars from two economically important genomic groups (AAA and AAB) of cultivated Musa, is described. This protocol resulted in 25-65 plants/50mg of settled cell volume of embryogenic suspension cells, depending upon the Agrobacterium strain used, and gave rise to hundreds of morphologically normal, transgenic plants in two banana cultivars from the two genomic groups. Development of a highly efficient Agrobacterium-mediated transformation protocol for a recalcitrant species like banana, especially the Cavendish group (AAA) cultivars, required the identification and optimisation of the factors affecting T-DNA delivery and subsequent plant regeneration. We used male-flower-derived embryogenic cell suspensions of two banana cultivars (Cavendish and Lady Finger) and Agrobacterium strains AGL1 and LBA4404, harbouring binary vectors carrying hpt (hygromycin phosphotransferase) and gusA (-glucuronidase) or nptII (neomycin phosphotransferase) and a modified gfp (green fluorescent protein) gene in the T-DNA, to investigate and optimise T-DNA delivery and tissue culture variables. Factors evaluated included pre-induction of Agrobacterium, conditions and media used for inoculation and co-cultivation, and the presence of acetosyringone and Pluronic F68 in the co-cultivation media. One factor that led to a significant enhancement in transformation frequency was the introduction of a centrifugation step during co-cultivation. Post co-cultivation liquid-media wash and recovery step helped avoid Agrobacterium overgrowth on filters supporting suspension culture cells. Marker-gene expression and molecular analysis demonstrated that transgenes integrated stably into the banana genome. T-DNA:banana DNA boundary sequences were amplified and sequenced in order to study the integration profile.  相似文献   

7.
We examined the expression of the vir genes of the Agrobacterium tumefaciens Ti plasmid in Rhizobium meliloti, which remains non-tumorigenic on plants after introduction of a Ti- or Ri-plasmid. Both the levels of virulence (vir) gene expression, induced by the plant phenolic compound acetosyringone, and of subsequent T-strand formation were comparable to what is observed in Agrobacterium. In contrast to the situation in Agrobacterium, though, vir induction in R. meliloti did not require a low pH (5.3) of the induction medium and the optimum temperature for induction in R. meliloti was significantly lower than in Agrobacterium. At 37°C no induction of the vir genes was found both in Agrobacterium and R. meliloti. We postulate that the lack of tumorigenicity of Ti carrying R. meliloti strains is due either to a lack of proper attachment of the bacteria to plant cells, or to an improper assembly of a virB-determined essential structure in the cell wall of R. meliloti.  相似文献   

8.
Agrobacterium-mediated transformation is the method of choice to engineer desirable genes into plants. Here we describe a protocol for demonstrating T-DNA transfer from Agrobacterium into the economically important graminaceous plant maize. Expression of the T-DNA-located GUS gene was observed with high efficiency on shoots of young maize seedlings after cocultivation with Agrobacterium.  相似文献   

9.
Summary Since the success of Agrobacterium-mediated transformation of rice in the early 1990s, significant advances in Agrobacterium-mediated transformation of monocotyledonous plant species have been achieved. Transgenic plants obtained via Agrobacterium-mediated transformation have been regenerated in more than a dozen monocotyledonous species, ranging from the most important cereal crops to ornamental plant species. Efficient transformation protocols for agronomically important cereal crops such as rice, wheat, maize, barley, and sorghum have been developed and transformation for some of these species has become routine. Many factors influencing Agrobacterium-mediated transformation of monocotyledonous plants have been investigated and elucidated. These factors include plant genotype, explant type, Agrobacterium strain, and binary vector. In addition, a wide variety of inoculation and co-culture conditions have been shown to be important for the transformation of monocots. For example, antinecrotic treatments using antioxidants and bactericides, osmotic treatments, desiccation of explants before or after Agrobacterium infection, and inoculation and co-culture medium compositions have influenced the ability to recover transgenic monocols. The plant selectable markers used and the promoters driving these marker genes have also been recognized as important factors influencing stable transformation frequency. Extension of transformation protocols to elite genotypes and to more readily available explants in agronomically important crop species will be the challenge of the future. Further evaluation of genes stimulating plant cell division or T-DNA integration, and genes increasing competency of plant cells to Agrobacterium, may increase transformation efficiency in various systems. Understanding mechanisms by which treatments such as desiccation and antioxidants impact T-DNA delivery and stable transformation will facilitate development of efficient transformation systems.  相似文献   

10.
This paper describes the development of a reliable transformation protocol for onion and shallot (Allium cepa L.) which can be used year-round. It is based on Agrobacterium tumefaciens as a vector, with three-week old callus, induced from mature zygotic embryos, as target tissue. For the development of the protocol a large number of parameters were studied. The expression of the uidA gene coding for -glucuronidase was used as an indicator in the optimization of the protocol. Subspecies (onion and shallot) and cultivar were important factors for a successful transformation: shallot was better than onion and for shallot cv. Kuning the best results were obtained. Also, it was found that constantly reducing the size of the calli during subculturing and selection by chopping, thus enhancing exposure to the selective agent hygromycin, improved the selection efficiency significantly. Furthermore, callus induction medium and co-cultivation period showed a significant effect on successful stable transformation. The usage of different Agrobacterium strains, callus ages, callus sources and osmotic treatments during co-cultivation did not influence transformation efficiency. The highest transformation frequency (1.95%), was obtained with shallot cv. Kuning. A total of 11 independent transformed callus lines derived from zygotic embryos were produced: seven lines from shallot and four lines from onion. Large differences in plantlet production were observed among these lines. The best line produced over 90 plantlets. Via PCR the presence of the uidA and hpt (hygromycin phosphotransferase) genes could be demonstrated in these putative transformed plants. Southern hybridization showed that most lines originated from one transformation event. However, in one line plants were obtained indicating the occurrence and rescue of at least three independent transformation events. This suggested that T-DNA integration occurred in different cells within the callus. Most transgenic plants only had one copy of T-DNA integrated into their genomes. FISH performed on 12 plants from two different lines representing two integration events showed that original T-DNA integration had taken place on the distal end of chromosomes 1 or 5. A total of 83 transgenic plants were transferred to the greenhouse and these plants appeared to be diploid and normal in morphology.  相似文献   

11.
Transformation frequencies were determined for 1n, 2n, and 4n Nicotiana plumbaginifolia protoplast cultures inAgrobacterium-mediated gene transfer experiments. An unexpected large drop (50%) in plating efficiencies was observed in the non-selected (control) 1n populations after transformation treatment with virulent strains. This effect was not observed in the 2n or 4n cultures or in the 1n cultures when treated with avirulent bacteria. The mortality was disproportionally high and could not be explained by the low (0.1–0.5%) transformation efficiency in the 1n population, indicating mutagenesis of the cell populations independently from the T-DNA insertions. Mutagenesis was also indicated in gene tagging experiments where nitrate reductase-deficient (NR) mutants were selected from haploidNicotiana plumbaginifolia protoplasts, as well as from leaf disc cultures or protoplasts of diploid plants that were heterozygotic for a mutation either in the NR apoenzyme gene (nia/wt) or one of the molybdenum-containing cofactor genes (cnxA/wt), afterAgrobacterium co-cultivation. The chlorate-resistant isolates were tested for the T-DNA-specific kanamycin resistance trait only after NR-deficiency had been established. Thirty-nine independent NR-deficient mutants were analysed further by Southern blot hybridization. There was no indication of integrated T-DNA sequences in the mutated NR genes, despite the fact that NR-deficient cells were found more frequently in cell populations which became transformed during the treatment than in the populations which did not. These observations suggest that transformation-competent cells undergo mutagenesis during theAgrobacterium gene transfer process not only as a result of stable integration events, but also through accompanying events that do not result in major changes in the mutated loci. The nature of these changes at the molecular level remains to be elucidated.  相似文献   

12.
Different factors involved in the early steps of the T-DNA transfer process were studied by using a -glucuronidase gene (gusA) as a reporter in Nicotiana glauca leaf disc transformation experiments. The levels of transient expression of the gusA gene in leaf discs infected with several strains or vir mutants correlated well with their virulence phenotype, except for virC mutants. The rate of T-DNA transfer was shown to be stimulated in the case of non-oncogenic strains by the co-transfer of small amounts of oncogenic genes. It was found that the location of the T-DNA in the Agrobacterium genome affected the T-DNA transfer rate especially in virC mutants. The virC mutants transferred the gusA-containing T-DNA located on a binary vector more efficiently than the oncogenic T-DNA of the Ti plasmid. Although wild-type strains induced high levels of gusA expression early after infection, the gusA expression appeared to be lost late after infection in the infected leaf discs. In contrast, in leaf discs infected by virC mutants the level of gusA expression increased steadily in time. A model explaining these results is presented.  相似文献   

13.
A high throughput genetic transformation system in maize has been developed with Agrobacterium tumefaciens mediated T-DNA delivery. With optimized conditions, stable callus transformation frequencies for Hi-II immature embryos averaged approximately 40%, with results in some experiments as high as 50%. The optimized conditions include N6 medium system for Agrobacterium inoculation, co-cultivation, resting and selection steps; no AgNo3 in the infection medium and adding AgNo3 in co-cultivation, resting and selection medium; Agrobacterium concentration at 0.5×109 c.f.u. ml–1 for bacterium inoculation; 100 mg l–1 carbenicillin used in the medium to eliminate Agrobacterium after inoculation; and 3 days for co-cultivation and 4 days for resting. A combination of all of these conditions resulted in establishing a high throughput transformation system. Over 500 T0 plants were regenerated and these plants were assayed by transgene expression and some of them were also analyzed by Southern hybridization. T1 plants were analyzed and transmission of transgenes to the T1 generation was verified. This represents a highly reproducible and reliable system for genetic transformation of maize Hi-II.  相似文献   

14.
Agrobacterium tumefaciens VirD2 protein is one of the key elements of Agrobacterium-mediated plant transformation, a process of transfer of T-DNA sequence from the Agrobacterium tumour inducing plasmid into the nucleus of infected plant cells and its integration into the host genome. The VirD2 protein has been shown to be a substrate for a plant caspase-like protease activity (PCLP) in tobacco. We demonstrate here that mutagenesis of the VirD2 protein to prevent cleavage by PCLP increases the efficiency of reporter gene transfer and expression. These results indicate that PCLP cleavage of the Agrobacterium VirD2 protein acts to limit the effectiveness of T-DNA transfer and is a novel resistance mechanism that plants utilise to combat Agrobacterium infection. Brian Reavy and Svetlana Bagirova contributed equally to this work.  相似文献   

15.
Huang X  Huang XL  Xiao W  Zhao JT  Dai XM  Chen YF  Li XJ 《Plant cell reports》2007,26(10):1755-1762
A high efficient protocol of Agrobacterium-mediated transformation of Musa acuminata cv. Mas (AA), a major banana variety of the South East Asia region, was developed in this study. Male-flower-derived embryogenic cell suspensions (ECS) were co-cultivated in liquid medium with Agrobacterium strain EHA105 harboring a binary vector pCAMBIA2301 carrying nptII and gusA gene in the T-DNA. Depending upon conditions and duration of co-cultivation in liquid medium, 0–490 transgenic plants per 0.5 ml packed cell volume (PCV) of ECS were obtained. The optimum duration of inoculation was 2 h, and the highest transformation frequency was achieved when infected ECS were co-cultivated in liquid medium first for 12 h at 40 rpm and then for 156 h at 100 rpm on a rotary shaker. Co-cultivation for a shorter duration (72 h) or shaking constantly at 100 rpm at the same duration gave 1.6 and 1.8 folds lower transformation efficiency, respectively. No transgenic plants were obtained in parallel experiments carried on semi-solid media. Histochemical GUS assay and molecular analysis in several tissues of the transgenic plants demonstrated that foreign genes were stably integrated into the banana genome. Compared to semi-solid co-cultivation transformation in other banana species, it is remarkable that liquid co-cultivation was much more efficient for transformation of the Mas cultivar, and was at least 1 month faster for regenerating transgenic plants.  相似文献   

16.
We present a series of 14 binary vectors suitable for Agrobacterium-mediated transformation of dicotyledonous plants and adaptable for biolistic transformation of monocotyledonous plants. The vector size has been minimized by eliminating all non-essential elements from the vector backbone and T-DNA regions while maintaining the ability to replicate independently. The smallest of the vector series is 6.3 kb and possesses an extensive multiple cloning site with 21 unique restriction endonuclease sites that are compatible with common cloning, protein expression, yeast two-hybrid and other binary vectors. The T-DNA region was engineered using a synthetic designer oligonucleotide resulting in an entirely modular system whereby any vector element can be independently exchanged. The high copy number ColE1 origin of replication has been included to enhance plasmid yield in Escherichia coli. FRT recombination sites flank the selectable marker cassette regions and allow for in planta excision by FLP recombinase. The pORE series consists of three basic types; an ‘open’ set for general plant transformation, a ‘reporter’ set for promoter analysis and an ‘expression’ set for constitutive expression of transgenes. The sets comprise various combinations of promoters (P HPL, P ENTCUP2 and P TAPADH), selectable markers (nptII and pat) and reporter genes (gusA and smgfp).  相似文献   

17.
Transgenic plants of the aromatic shrub Lavandula latifolia (Lamiaceae) were produced using Agrobacterium tumefaciens-mediated gene transfer. Leaf and hypocotyl explants from 35–40-day old lavender seedlings were inoculated with the EHA105 strain carrying the nptII gene, as selectable marker, and the reporter gusA gene with an intron. Some of the factors influencing T-DNA transfer to L. latifolia explants were assessed. Optimal transformation rates (6.0 ± 1.6% in three different experiments) were obtained when leaf explants precultured for 1 day on regeneration medium were subcultured on selection medium after a 24 h co-cultivation with Agrobacterium. Evidence for stable integration was obtained by GUS assay, PCR and Southern hybridisation. More than 250 transgenic plants were obtained from 37 independent transformation events. Twenty-four transgenic plants from 7 of those events were successfully established in soil. -glucuronidase activity and kanamycin resistance assays in greenhouse-grown plants from two independent transgenic lines confirmed the stable expression of both gusA and nptII genes two years after the initial transformation. Evidence from PCR data, GUS assays and regeneration in the presence of kanamycin demonstrated a 1:15 Mendelian segregation of both transgenes among seedlings of the T1 progeny of two plants from one transgenic L. latifolia line.  相似文献   

18.
During the past decade, the molecular mechanisms of crown gall and hairy root development have been elucidated in considerable detail. It now appears that the genetic colonization of plant cells by Agrobacterium evolved by continual adaptation of groups of genes that existed long before the evolution of this plant-microbe association. This is most evident for the signal transduction system leading to vir gene induction, and for the early steps of T-DNA transfer to plant cells which have probably evolved from the bacterial conjugation and protein export machinery. However, the later steps, i.e. nuclear targeting of the T-DNA-protein complex, and integration into the host genome by illegitimate recombination are reminiscent of viral infection, where the T-complex resembles a viral particle. The present article reviews the current knowledge of the molecular basis of crown gall and hairy root tumorigenesis, with some emphasis on the mechanisms of signal exchange between plants and bacteria, as well as of T-DNA excision, transfer, integration and expression.The authors are with Plant Molecular Biology, Department of Biology, Biozentrum, Marie-Curie-Str. 9, University of Frankfurt am Main, D-60439 Frankfurt, Germany  相似文献   

19.
Kenaf(Hibiscus cannabinus)is a fast growing annual with tremendous potential as a source of fiber for ropes, textiles and paper. Kenaf is an environmentally friendly crop; however, commercial production of kenaf is hindered by weed competition at the seedling stage. Herbicide resistant kenaf cultivars would reduce seedling weed competion and make growing kenaf more profitable. Factors that are important in establishing a transformation system for kenaf were examined. The influence of Agrobacterium strain, temperature, host tissue wounding, acetosyringone, virG/virE genes and host cell division on T-DNA expression in the kenaf shoot apex were investigated. Three Agrobacterium strains were tested, and A. tumefaciens LBA4404 significantly (α=0.05) yielded a high number of shoots surviving on selection medium; no shoots survived with EHA101S or Z707S. There was no significant difference (α=0.05) in transient T-DNA expression between 28 °C and 25 °C; however, shoots did not survive 16 °C or 19 °C co-cultivation temperatures. Shoot apex survival was increased significantly (α=0.05) when virulence genes and a cytokinin, TDZ, were combined. Sonicated shoots showed an increase in transient expression and shoot survival. Optimal conditions for shoot apex T-DNA transfer and expression were sonication for 5 s, co-cultivation with LBA4404 containingvirG/virEat room temperature, and 200 μmol/L acetosyringone.  相似文献   

20.

Background

Agrobacterium-mediated transformation is widely used to produce insertions into plant genomes. There are a number of well-developed Agrobacterium-mediated transformation methods for dicotyledonous plants, but there are few for monocotyledonous plants.

Methods

Three hydrolase genes were transiently expressed in Brachypodium distachyon plants using specially designed vectors that express the gene product of interest and target it to the plant cell wall. Expression of functional hydrolases in genotyped plants was confirmed using western blotting, activity assays, cell wall compositional analysis and digestibility tests.

Key Results

An efficient, new, Agrobacterium-mediated approach was developed for transient gene expression in the grass B. distachyon, using co-cultivation of mature seeds with bacterial cells. This method allows transformed tissues to be obtained rapidly, within 3–4 weeks after co-cultivation. Also, the plants carried transgenic tissue and maintained transgenic protein expression throughout plant maturation. The efficiency of transformation was estimated at around 5 % of initially co-cultivated seeds. Application of this approach to express three Aspergillus nidulans hydrolases in the Brachypodium cell wall successfully confirmed its utility and resulted in the expected expression of active microbial proteins and alterations of cell wall composition. Cell wall modifications caused by expression of A. nidulans α-arabinofuranosidase and α-galactosidase increased the biodegradability of plant biomass.

Conclusions

This newly developed approach is a quick and efficient technique for expressing genes of interest in Brachypodium plants, which express the gene product throughout development. In the future, this could be used for broad functional genomics studies of monocots and for biotechnological applications, such as plant biomass modification for biofuel production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号