首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochrome P-450 which catalyzes the 7 alpha-hydroxylation of cholesterol was purified from liver microsomes of untreated rabbits. The minimum molecular weight of the cytochrome P-450 was estimated to be 48,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The preparation contained 7 nmol of cytochrome per mg of protein. The oxidized form of the P-450 showed absorption maxima at 568, 535, and 417 nm, which are characteristic of a low spin hemoprotein, while the reduced form showed maxima at 545 and 413 nm. The carbon monoxide complex of the reduced form showed maxima at 550 and 447 nm. The cholesterol 7 alpha-hydroxylase system of untreated rabbit liver microsomes was reconstituted with the purified P-450, NADPH-cytochrome P-450 reductase, and cytochrome b5. The P-450 catalyzed the 7 alpha-hydroxylation of cholesterol 500 times more efficiently than the starting microsomes. The reconstituted hydroxylase system showed a substantial salt dependency. In the presence of cytochrome b5 the activity was maximum at 0.4 M KCl (4.55 nmol product formed/mg of protein per min), whereas in the absence of cytochrome b5 the activity was marginal (0.65 nmol product formed/mg of protein per min) and inhibited by KCl. Thus, cytochrome b5 stimulated the hydroxylase activity by one order of magnitude. These results indicate that cytochrome b5 is an essential component of the cholesterol 7 alpha-hydroxylase system of untreated rabbit liver microsomes.  相似文献   

2.
Testosterone 15 alpha-hydroxylase activity in kidney microsomes is higher in male mice than in female mice, while in the liver the activity is higher in females than in males. Cytochrome P-450 15 alpha, a specific form of cytochrome P-450 having testosterone 15 alpha-hydroxylase activity, accounts for virtually all of the testosterone 15 alpha-hydroxylase activity in female kidney microsomes, while other isozymes of testosterone 15 alpha-hydroxylase are present in male kidney microsomes. In female kidney, P-450 15 alpha expression is regulated by a single sex-dependent locus, called Rsh for "regulation of steroid hydroxylase." The higher level of P-450 15 alpha expression in male kidneys is dependent on androgens. Of all mice strains, 129/J seems to be the least dependent on androgens to maintain a high expression of P-450 15 alpha in male kidneys. Castration of male mice lowers kidney levels of P-450 15 alpha but in the liver, P-450 15 alpha levels rise after castration. This reciprocal regulation of P-450 15 alpha genes in liver and kidney was investigated by isolating cDNA clones encoding P-450 15 alpha from liver and kidney cDNA libraries. Two highly homologous cDNA clones encoding P-450 15 alpha designated type I and type II were identified, and levels of type I and type II mRNA in liver and kidney were determined by differential restriction mapping of double-stranded cDNA prepared from mRNA from these tissues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
M Noshiro  M Lakso  K Kawajiri  M Negishi 《Biochemistry》1988,27(17):6434-6443
The constitutive expression of phenobarbital-inducible mouse cytochrome P-450 (I-P-450(16 alpha) at the mRNA level and its associated testosterone 16 alpha-hydroxylase activity in liver microsomes was a female characteristic in many inbred mice, including BALB/cJ, A/HeJ, and C57BL/6J. This sex-dependent constitutive expression of the mRNA and enzyme activity was severely reduced in females of mouse strain 129/J. The distribution patterns of the mRNA and activity levels in individual offspring of F1, F2, and F1 backcrosses to progenitors, generated from crosses between 129/J and BALB/cJ mice, indicated that the female-specific expression of I-P-450(16 alpha) is an autosomal dominant trait under the regulation of a sex-limited single locus. It was found that the genotypes of this locus exhibited concordance with that of the coumarin hydroxylase locus (Coh locus) in eight out of nine 9 X A recombinant inbred strains, suggesting the localization of this sex-limited locus on chromosome 7. We propose Rip (regulation of sex-dependent, constitutive expression of phenobarbital-inducible P-450) as the name of this sex-limited locus. With the use of the rat P-450e cDNA probe, a cDNA library from liver poly(A+) RNA of BALB/cJ was screened, and three distinct cDNAs (pf3, pf26, and pf46) were selected on the basis of their restriction patterns. Nucleotide sequences of the cDNAs revealed that pf3 and pf46 are clones overlapped, with the exception that the 27-bp DNA is inserted in the coding region of pf46. The nucleotide sequence (named pf3/46) obtained from the overlapping sequences of pf3 and pf46 contained 1473 or 1500 bp of open-reading frame, and the deduced amino acid sequence shared 93% similarity with those of rat P-450b. The 27-bp insertion resulted in nine extra amino acids just in front of the cysteine residue, the fifth ligand for heme binding. The mRNA with 27-bp insertion was ubiquitously present in other inbred mice such as A/HeJ and C57BL/6J, but not in 129/J. S-1 nuclease analysis estimated a ratio of p46 and pf3 to be 1:50. Nucleotide and deduced amino acid sequences of the 1473-bp open-reading frame in pf26 possessed 83% similarity to those of pf3/46. Hybridizations of oligonucleotide probes (pf26-cu and pf3/46-cu) specific to either pf26 or pf3/46 with liver poly(A+) RNA from males and females of BALB/cJ, 129/F, and F1 offspring demonstrated that the expression of pf26, but not pf3/46, mRNA was associated with the autosomal dominant inheritance of I-P-450(16 alpha).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Rat cytochrome P-450(M-1) cDNA was expressed in Saccharomyces cerevisiae TD1 cells by using a yeast-Escherichia coli shuttle vector consisting of P-450(M-1) cDNA, yeast alcohol dehydrogenase promoter and yeast cytochrome c terminator. The yeast cells synthesized up to 2 X 10(5) molecules of P-450(M-1) per cell. The microsomal fraction prepared from the transformed cells contained 0.1 nmol of cytochrome P-450 per mg of protein. The expressed cytochrome P-450 catalyzed 16 alpha- and 2 alpha-hydroxylations of testosterone in accordance with the catalytic activity of P-450(M-1), but did not hydroxylate vitamin D3 or 1 alpha-hydroxycholecalciferol at the 25 position. The expressed cytochrome P-450 also catalyzed the oxidation of several drugs and did not show 25-hydroxylation activity toward 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol. However, it cross-reacted with the polyclonal and monoclonal antibodies elicited against purified P-450cc25 which catalyzed the 25-hydroxylation of vitamin D3. These results indicated that P-450(M-1) cDNA coded the 2 alpha- and 16 alpha-hydroxylase of testosterone, and that these two positions of testosterone are hydroxylated by a single form of cytochrome P-450. Vitamin D3 25-hydroxylase and testosterone 16 alpha- and 2 alpha-hydroxylase are different gene products, although these two hydroxylase activities are immunochemically indistinguishable.  相似文献   

5.
Two forms of cytochrome P-450 (P-450 human-1 and P-450 human-2) have been purified from human liver microsomes to electrophoretic homogeneity. P-450 human-1 and P-450 human-2 differ in their apparent molecular weights (52,000 and 56,000, respectively) and Soret peak maxima in the CO-binding reduced difference spectrum (447.6 and 450.3 nm, respectively). In the reconstituted system using rat liver NADPH-cytochrome c (P-450) reductase, P-450 human-2 more effectively oxidized benzo(a)pyrene (80-fold), ethylmorphine (2-fold), and 7-ethoxycoumarin (2-fold) than did P-450 human-1. However, P-450 human-1 showed higher testosterone 6 beta-hydroxylase activity, and the activity was markedly increased by the inclusion of cytochrome b5 or spermine in the reconstituted system. Antibodies raised against P-450 human-1 inhibited more than 80% of microsomal testosterone 6 beta-hydroxylase activity in human liver. Immunoblotting analysis using anti-P-450 human-1 IgG revealed a single immuno-staining band near Mr 52,000 in all human liver samples examined. The amount of immunochemically determined P-450 human-1 varied in parallel with the testosterone 6 beta-hydroxylase activity in human liver. These results indicate that P-450 human-1 is a major form of cytochrome P-450 responsible for microsomal testosterone 6 beta-hydroxylation. Thus, this paper is the first report on human cytochrome P-450 responsible for testosterone 6 beta-hydroxylation, which is the major hydroxylation pathway in human liver microsomes.  相似文献   

6.
E J Squires  M Negishi 《Biochemistry》1986,25(17):4913-4918
P-450(15)alpha is a form of cytochrome P-450 purified from liver microsomes of female 129/J mice that is specific for oxidation of testosterone to its 15 alpha-hydroxylated product. Testosterone 15 alpha-hydroxylase activity that was inhibited by anti-P-450(15)alpha antibody was approximately 50 times higher in renal microsomes from 129/J than in BALB/cJ females. Western blots of renal microsomes using anti-P-450(15)alpha antibody showed the presence of immunoreactive protein with a molecular weight identical with that of hepatic P-450(15)alpha in 129/J but not in BALB/cJ female mice. To investigate the genetic basis for the strain differences in this activity, the distribution of P-450(15)alpha-dependent testosterone 15 alpha-hydroxylase activity in renal microsomes from individual females of 129/J and BALB/cJ, of F1 offspring of these strains, and of F1 back-crosses to the progenitor strains were determined. The results were consistent with a sex-related autosomal dominant regulation of the higher activity in 129/J females by a single locus, designated Rsh (regulation of steroid hydroxylase). The amounts of immunochemically cross-reactive P-450(15)alpha protein were linearly correlated with testosterone 15 alpha-hydroxylase activities in renal microsomes from Rsh heterozygotes and homozygotes. At least twice as much mRNA, which hybridized with the cDNA clone for hepatic P-450(15)alpha, was detected in 129/J and 129CF1/J compared to BALB/cJ female kidneys. The evidence suggests a pretranslational regulation of the P-450(15)alpha isozyme in the female mouse kidney by the Rsh locus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
K Devore  N Harada  M Negishi 《Biochemistry》1985,24(20):5632-5637
Cytochrome P-450 (I-P-450(16) alpha), which is associated with phenobarbital-induced testosterone 16 alpha-hydroxylation activity, was purified from livers of phenobarbital-treated female 129/J mice on the basis of the specific hydroxylation activity in fractions eluted from columns of octylamino-Sepharose 4B, hydroxylapatite, DEAE-Bio-Gel A, and isobutyl-Sepharose 4B. The specific cytochrome P-450 content of the purified I-P-450(16) alpha fraction was 12.4 nmol/mg of protein, and it had an apparent molecular weight of 54K. The specific activity of reconstituted testosterone 16 alpha-hydroxylation activity with the purified I-P-450(16) alpha fraction was 6-8 nmol min-1 (nmol of cytochrome P-450)-1. Rabbit antibody raised against the purified I-P-450(16) alpha fraction inhibited nearly 100% of the 16 alpha-hydroxylation activity in liver microsomes of phenobarbital-treated female 129/J mice but did not affect hepatic microsomal 16 alpha-hydroxylation activity of untreated male and female 129/J mice at all. In hepatic microsomes of phenobarbital-treated male 129/J mice, 70% of the 16 alpha-hydroxylation activity, at most, was catalyzed by I-P-450(16) alpha, and the residual 30% of the activity was catalyzed by C-P-450(16) alpha. The increase of I-P-450(16) alpha by phenobarbital was due to de novo synthesis of I-P-450(16) alpha, and this induction was not sexually regulated in 129/J mice. Anti-C-P-450(16) alpha [Harada, N., & Negishi, M. (1984) J. Biol. Chem. 259, 12285-12290] did not inhibit the 16 alpha-hydroxylation catalyzed by I-P-450(16) alpha; thus, I-P-450(16) alpha and C-P-450(16) alpha are immunochemically distinct isozymes of testosterone 16 alpha-hydroxylase.  相似文献   

8.
A procedure for the separation and purification of two distinct P-450 cytochromes, termed P-450scc and P-45011β, solubilized from bovine adrenal cortex mitochondria is reported. Important features of the purification procedure are uses of aniline-substituted Sepharose chromatography and utilization of the markedly different characteristics in stability and solubility of each cytochrome. Polyacrylamide gel electrophoresis of the two purified preparations in sodium dodecyl sulfate reveals single protein bands. The P-450scc, which catalyzes the formation of pregnenolone from cholesterol, has a turnover number of 16 mol of pregnenolone formed per minute per mole of P-450-heme. The P-45011β catalyzes the hydroxylation of deoxycorticosterone at 11β- and 18-positions with turnover numbers of 110 and 18, and of 4-androstene-3,17-dione at 11β- and 19-positions with turnover numbers of 41 and 12, respectively. The recoveries of the P-450scc and P-45011β, in terms of the catalytic activities, are 20% and 15%, respectively, from the crude extract which contains the two activities in a ratio of roughly 2:1. Each rabbit antibody prepared against the two purified P-450-proteins interacts with respective, but not alternative cytochrome P-450, whether in the crude mitochondrial preparation or in the purified preparation. The observed patterns of immunoprecipitation and inhibition of catalytic activity indicated that the two P-450 proteins are immunochemically different from each other. Neither antibody immunoprecipitates with a highly purified bacterial cytochrome P-450, P-450cam.  相似文献   

9.
Purification and characterization of diabetes-inducible cytochrome P-450   总被引:1,自引:0,他引:1  
A diabetes-inducible form of cytochrome P-450, termed P-450DM, was purified to electrophoretical homogeneity (MW 51,000) by high-performance liquid chromatography from liver microsomes of diabetic rats induced with streptozotocin. The CO-reduced absorption maximum of P-450DM was at 452 nm and the oxidized heme iron appeared to be predominately in the high-spin state as deduced from the Soret maximum at 395 nm. P-450DM was active in aniline hydroxylation and N-nitrosodimethylamine demethylation. The dealkylation activity toward 7-ethoxycoumarin by P-450DM was much enhanced by the addition of cytochrome b5.  相似文献   

10.
Experimental hepatomas induced with 5,9-dimethyldibenzo[c,g]carbazole in female XVIInc/Z mice display a strong microsomal steroid 15 alpha-hydroxylation activity. A cytochrome P-450 isoenzyme (cytochrome P-450tu), specific for this activity, has been isolated by an HPLC derived method using various Fractogel TSK and hydroxyapatite supports. On SDS polyacrylamide gel electrophoresis the purified protein appeared as one major band with an apparent Mr of 50,000. Its specific cytochrome P-450 content was 7.55 nmol/mg protein. As deduced from the visible spectrum, the heme iron of the isolated P-450tu was to 72% in the high-spin state. The CO-bound reduced form showed an absorption maximum at 450 nm. In addition to the stereospecific 15 alpha-hydroxylation of progesterone (2.3 min-1) and testosterone (2.5 min-1), the enzyme catalyzed also 7-ethoxycoumarin O-deethylation, benzphetamine N-demethylation and aniline 4-hydroxylation. Its N-terminal amino-acid sequence (21 residues) was identical to that of cytochrome P-450(15) alpha, isolated by Harada and Negishi from liver microsomes of 129/J mice. P-450tu differed from P-450(15) alpha by its higher molecular weight, its 40-times lower steroid 15 alpha-hydroxylation and its 4-times higher benzphetamine N-demethylation.  相似文献   

11.
12.
Cytochrome P450a was purified to electrophoretic homogeneity from liver microsomes from immature male Long-Evans rats treated with Aroclor 1254. Rabbit polyclonal antibody raised against cytochrome P450a cross-reacted with cytochromes P450b, P450e, and P450f (which are structurally related to cytochrome P450a). The cross-reacting antibodies were removed by passing anti-P450a over an N-octylamino-Sepharose column containing these heterologous antigens. The immunoabsorbed antibody recognized only a single protein (i.e., cytochrome P450a) in liver microsomes from immature male rats treated with Aroclor 1254 (i.e., the microsomes from which cytochrome P450a was purified). However, the immunoabsorbed antibody recognized three proteins in liver microsomes from mature male rats, as determined by Western immunoblot. As expected, one of these proteins (Mr 48,000) corresponded to cytochrome P450a. The other two proteins did not correspond to cytochromes P450b, P450e, or P450f (as might be expected if the antibody were incompletely immunoabsorbed), nor did they correspond to cytochromes P450c, P450d, P450g, P450h, P450i, P450j, P450k, or P450p. One of these proteins was designated cytochrome P450m (Mr approximately 49,000), the other cytochrome P450n (Mr approximately 50,000). Like cytochrome P450a, cytochrome P450n was present in liver microsomes from both male and female rats. However, whereas cytochrome P450a was detectable in liver microsomes from 1-week-old rats, cytochrome P450n was barely detectable until the rats were at least 3 weeks old. Furthermore, in contrast to cytochrome P450a, the levels of cytochrome P450n did not decline appreciably with age in postpubertal male rats. Cytochrome P450m was detectable only in liver microsomes from postpubertal (greater than 4 week-old) male rats. Cytochromes P450m and P450n were isolated from liver microsomes from mature male rats and purified to remove cytochrome P450a. When reconstituted with NADPH-cytochrome P450 reductase and lipid, cytochrome P450n exhibited little testosterone hydroxylase activity, whereas cytochrome P450m catalyzed the 15 alpha-, 18-, 6 beta-, and 7 alpha-hydroxylations of testosterone at 10.8, 4.6, 2.0, and 1.9 nmol/nmol P450/min, respectively. The ability of cytochrome P450m to catalyze the 7 alpha-hydroxylation of testosterone was not due to contamination with cytochrome P450a, which catalyzed this reaction at approximately 25 nmol/nmol P450a/min. Cytochrome P450m also converted testosterone to several minor metabolites, including androstenedione and 15 beta-, 14 alpha-, and 16 alpha-hydroxytestosterone.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The pulmonary cytochrome P-450, P450 L-2, was purified 460-fold from pulmonary microsomes of untreated male rats. Its specific content was 10.6 nmol/mg of protein. The monomeric molecular weight was 54,000 on SDS-polyacrylamide gel electrophoresis. The CO-reduced absorption maximum of P450 L-2 was at 451 nm, and the oxidized heme iron appeared to be in the low-spin state, as deduced from the Soret maximum at 421 nm. P450 L-2 had high lauric acid omega- and (omega-1)-hydroxylation activities, but low prostaglandin A1 omega- and (omega-1)-hydroxylation activities. It catalyzed the O-dealkylation of 7-ethoxycoumarin, but was not efficient in the hydroxylation of testosterone or the N-demethylation of aminopyrine. The NH2-terminal amino acid sequence of P450 L-2 was V-L-N-F-L-X-P-X-L (X being an unidentified residue). The catalytic properties of P450 L-2 resembled those of P450 K-5, the major rat renal cytochrome P-450. However, anti-P450 K-5 antibody did not cross-react with P450 L-2, and these forms had different NH2-terminal sequences. To judge from the results of NH2-terminal sequence analysis, P450 L-2 seems to be placed in the IVB gene family. Also, P-450 IIB1 was detected by immunoblotting in one of the peaks on ion-exchange HPLC during the purification of P450 L-2, suggesting the presence of P-450 IIB1 in rat pulmonary microsomes.  相似文献   

14.
1. Two cytochrome P-450 isozymes (P-450 PB-A, PB-B) and cytochrome b5 were purified from livers of phenobarbital-treated adult hens. 2. Both the enzymes exhibited the same apparent molecular weight (54,000). 3. They could be distinguished on the basis of immunochemical properties, spectral properties, peptide pattern after partial proteolysis, tryptic peptide pattern, and N-terminal sequence. 4. The antibodies raised against P-450 PB-A and PB-B did not cross-react with microsomal P-450s of rat, mice, cat, or catfish species by immunoblotting.  相似文献   

15.
16.
A full-length cDNA complementary to mouse liver mRNA coding for one of the cytochromes P-450 (P-450) in the P-450IIIA family, namely P-450IIIM1, was isolated and completely sequenced. The sequence of this cDNA clone, pMDex13, revealed that it encoded a polypeptide of 504 deduced amino acid residues (Mr = 57,853). The deduced amino acid sequence showed 87.3 and 84.9% identity with rat P-450IIIA1 and P-450IIIA2, respectively. The NH2-terminal 24 amino acid sequences of P-450IIIAM1 were completely identical with purified mouse P-450UT protein. RNA blot analysis showed that mRNA content of hepatic P-450IIIAM1 was remarkably increased by treatment of mice with dexamethasone.  相似文献   

17.
G Wong  K Kawajiri  M Negishi 《Biochemistry》1987,26(26):8683-8690
The cDNA clone p16 alpha-1 for the male-specific isozyme (C-P-450(16) alpha)1 of testosterone 16 alpha-hydroxylase in livers of 129/J mice [Harada, N., & Negishi, M. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 2024-2028] and two additional full-length cDNAs overlapping with p16 alpha-1 (p16 alpha-2 and p16 alpha-16) were sequenced. p16 alpha-2 contained a single open reading frame of 1512 nucleotides, consisting of 71 base pairs of the 5'-noncoding region and 63 base pairs of the 3'-noncoding region with an additional poly(A) tract. From this DNA sequence, C-P-450(16) alpha was deduced to contain 504 amino acids with a calculated molecular mass of 56,948 daltons. p16 alpha-1 showed a nucleotide sequence identical with that of p16 alpha-2 but lacked nine amino acid residues from the N-terminus. Another cDNA clone, p16 alpha-16, also exhibited the same coding sequence with the exception of a 142 base pair deletion spanning from nucleotide 853 to nucleotide 994 of p16 alpha-2. This deletion seems to be a whole exon of this gene, resulting in a shift of reading frame and an early termination codon at 10 amino acid residues from the deletion. The expected translation product of this mRNA is calculated to be 294 amino acids and 33,300 daltons. The putative poly(A) addition signal AATAAA is present for all three clones, but there are polymorphisms in the start sites of polyadenylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A novel human liver cytochrome P-450 isozyme (P-450-AA), which catalyzes arachidonic acid epoxidation, has been purified to electrophoretic homogeneity from human liver. As judged spectrally, the newly described isozyme is low spin in the oxidized state, with a soret band at 415 nm and an increased maximum at 451 nm in the CO-difference spectrum. Cytochrome P-450-AA appeared homogeneous as judged by the appearance of a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an estimated molecular weight of 53,100. Although cytochrome P-450-AA had a relatively low specific content of 10.8 nmol/mg, it possessed a high activity of arachidonic acid epoxidation. The P-450-AA oxidized arachidonic acid in a reconstituted system into the four regioisomeric epoxyeicosatrienoic acids (EETs) (5, 6-, 8, 9-, 11, 12-, 14, 15-EETs) at a rate of 2,010 pmol/nmol/min, a rate which is 37-fold higher than that observed with the crude microsomal preparation. Moreover, the purified cytochrome P-450-AA catalyzed the de-ethylation of 7-ethoxyresorufin at the rate of 2970 pmol/nmol/min, whereas other cytochrome P-450-dependent reactions were carried out at 23-2,000-fold lower rates and ranged between 0.3-130 pmol/nmol/min. The amino acid composition is different from that of other cytochrome P-450 isozymes. The NH2-terminal sequence of 20-amino acid residues was compared to that of LM2 and PB2-B2, the phenobarbital-induced forms in rabbit and rats, respectively. Comparison was also made with two forms of human cytochrome P-450, HLc and HLd. There were 7/20 identical residues for P-450-AA and LM2 and 4/20 for P-450-AA and PB2-B2. There were 2/20 identical residues for P-450-AA and HLd, and no identical residues were found for HLc. We conclude that the biologically active EETs, are formed by a distinct and unique P-450 isozyme from human liver and that arachidonic acid can serve as a screen for detection of the novel P-450 isozyme.  相似文献   

19.
Aromatase cytochrome P-450, which catalyzes the conversion of androgens to estrogens, was purified from human placental microsomes. The enzyme was extracted with sodium cholate, fractionated by ammonium sulfate precipitation, and subjected to column chromatography in the presence of its substrate, androstenedione, and the nonionic detergent, Nonidet P-40. The preparation exhibits a single major band when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and has a specific content of 11.5 nmol of P-450/mg of protein. The purified enzyme displays spectroscopic properties typical of the ferric and ferrous forms of cytochrome P-450. Full enzymatic activity can be reconstituted with rabbit liver microsomal cytochrome P-450 reductase and Nonidet P-40. Purified aromatase cytochrome P-450 displays catalytic characteristics similar to the enzyme in intact microsomes in the aromatization of androstenedione, 19-hydroxyandrostenedione and 19-oxoandrostenedione. Testosterone and 16 alpha-hydroxytestosterone are aromatized at maximal rates similar to androstenedione, and all substrates exhibit relative affinities corresponding to those observed in microsomes. We have raised rabbit antibodies to the purified enzyme which show considerable specificity and sensitivity on immunoblots.  相似文献   

20.
cDNA for chimeric P-450 consisting of the amino-terminal 462 residues of P-450 (laurate (omega-1)-hydroxylase) and the remaining 28 residues of P-450 (testosterone 16 alpha-hydroxylase) was constructed and expressed in yeast cells. The resulting chimera could catalyze laurate (omega-1)-hydroxylation and benzphetamine N-demethylation at much higher rates than the parental P-450s, but exhibited the same specificity towards fatty acid substrates as the wild-type laurate hydroxylase. When testosterone was examined as a substrate, the 16 beta-hydroxylated product, which cannot be formed by either of the parental P-450s, was detected, suggesting that the laurate hydroxylase contains a structure that is capable of binding testosterone at a proper orientation so that it can be hydroxylated at the 16 beta position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号