首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on fatty acid and amino acid metabolism in the liver of Walker-256 tumour-bearing rats have revealed several changes. Comparisons, however, have been based on experiments performed with non-physiological, frequently unrealistic, substrate concentrations. The aim of the present work was to examine the influence of physiological substrate concentrations on gluconeogenesis, ketogenesis and related parameters. Isolated livers were perfused and substrates were infused at concentrations that were reported to occur in healthy and tumour-bearing rats. Ketogenesis and the mitochondrial NADH/NAD+ ratio were smaller in the tumour-bearing condition at low (0.2 mM) and high (0.8 mM) oleate concentrations. In the absence of oleate, gluconeogenesis from alanine (0.7 mM) and gluconeogenesis plus the associated changes in oxygen uptake due to lactate/pyruvate (2/0.2 and 6/0.3 mM) were smaller in livers of tumour-bearing rats. However, the response of gluconeogenesis from lactate/pyruvate in livers of tumour-bearing rats to 0.8 mM oleate was more pronounced so that a trend towards normalization was apparent at high substrate and oleate concentrations. Gluconeogenesis from 0.7 mM alanine was not significantly changed by oleate in the tumour-bearing state; in the control condition, stimulation occurred at 0.2 mM oleate and inhibition at 0.8 mM oleate. This diminution almost equalized the hepatic alanine-dependent gluconeogenesis of both control and tumour-bearing rats. Ureogenesis was smaller in the tumour-bearing state and was not affected by oleate. It was concluded that the high concentrations of fatty acids and lactate/pyruvate, which predominate in rats bearing the Walker-256 tumour, could be effective in normalizing the gluconeogenic response of livers from tumour-bearing rats.  相似文献   

2.
The biochemical and functional heterogeneity of hepatocytes in different zones of the liver acinus may be related to the concentrations of hormones within the liver acinus. We examined the effects of hypophysectomy, which causes marked changes in plasma hormone levels and in activities of hepatic enzymes that are normally heterogeneously distributed, on the degree of metabolic zonation within the liver acinus. In hypophysectomized rats the activity of alanine aminotransferase was increased, but its normal zonation (predominance in the periportal zone) was preserved. The activity in cultured periportal and perivenous hepatocytes was increased by dexamethasone, but not by glucagon. Periportal hepatocytes from hypophysectomized rats expressed higher rates of gluconeogenesis in culture than did perivenous hepatocytes, irrespective of the absence or presence of dexamethasone, glucagon or insulin. Similar differences in rates of ketogenesis and in the mitochondrial redox state in response to glucagon were observed between periportal and perivenous hepatocytes from hypophysectomized rats as between cell populations from normal rats. Although hypophysectomy causes marked changes in hepatic enzyme activities, it does not alter the degree of zonation of alanine aminotransferase, gluconeogenesis or the mitochondrial redox state within the liver acinus.  相似文献   

3.
Isolated rat hepatocytes from fed and starved rats synthesized net glucose from various precursors at similar rates. [3-14C]-lactate incorporation into glucose was also similar in hepatocytes from fed and starved rats, as was ketone body formation from oleate and octanoate. Rates of gluconeogenesis in hepatocytes from fed rats compare to rates seen in perfused livers from starved rats rather than perfused livers from fed rats. Thus metabolic rates and possibly controls may be different between perfused livers and isolated hepatocytes when using fed rats.  相似文献   

4.
Dichloroacetate has effects upon hepatic metabolism which are profoundly different from its effects on heart, skeletal muscle, and adipose tissue metabolism. With hepatocytes prepared from meal-fed rats, dichloroacetate was found to activate pyruvate dehydrogenase, to increase the utilization of lactate and pyruvate without effecting an increase in the net utilization of glucose, to increase the rate of fatty acid synthesis, and to decrease slightly [1-14C]oleate oxidation to 14CO2 without decreasing ketone body formation. With hepatocytes isolated from 48-h-starved rats, dichloroacetate was found to activate pyruvate dehydrogenase, to have no influence on net glucose utilization, to inhibit gluconeogenesis slightly with lactate as substrate, and to stimulate gluconeogenesis significantly with alanine as substrate. The stimulation of fatty acid synthesis by dichloroacetate suggests that the activity of pyruvate dehydrogenase can be rate determining for fatty acid synthesis in isolated liver cells. The minor effects of dichloroacetate on gluconeogenesis suggest that the regulation of pyruvate dehydrogenase is only of marginal importance in the control of gluconeogenesis.  相似文献   

5.
Hepatocytes isolated from the periportal or perivenous zones of livers of fed rats were used to study the long-term (14 h) and short-term (2 h) effects of glucagon on gluconeogenesis and ketogenesis. Long-term culture with glucagon (100 nM) resulted in a greater increase (P less than 0.01) in gluconeogenesis in periportal than in perivenous cells (93 +/- 16 versus 30 +/- 14 nmol/h per mg of protein; 72% versus 30% increase), but short-term incubation (2 h) with glucagon resulted in similar stimulation in the two cell populations. Rates of ketogenesis (acetoacetate and D-3-hydroxybutyrate production) were not significantly higher in periportal cells cultured without glucagon, compared with perivenous cells. However, after long-term culture with glucagon, the periportal cells had a significantly higher rate of ketogenesis (from either palmitate or octanoate as substrate), but a lower 3-hydroxybutyrate/acetoacetate production ratio, suggesting a more oxidized mitochondrial NADH/NAD+ redox state despite the higher rate of beta-oxidation. Periportal hepatocytes had a higher activity of carnitine palmitoyltransferase but a lower activity of citrate synthase than did perivenous cells. These findings suggest that: (i) glucagon elicits greater long-term stimulation of gluconeogenesis in periportal than in perivenous hepatocytes maintained in culture; (ii) after culture with glucagon, the rates of ketogenesis and the mitochondrial redox state differ in periportal and perivenous hepatocytes.  相似文献   

6.
7.
In hepatocytes isolated from meal-fed rats, phorbol 12-myristate 13-acetate as well as phorbol 12,13-didecanoate stimulated de novo fatty acid synthesis in a dose-dependent manner. Moreover, phorbol 12-myristate 13-acetate inhibited ketogenesis from exogenous oleate, but slightly enhanced oleate esterification. The stimulation of esterification was more pronounced with endogenously synthesized fatty acids. In hepatocytes from 24h-starved rats a moderate stimulation of gluconeogenesis and ureogenesis was observed with glutamine as substrate. It is concluded that tumor-promoting phorbol esters mimick the short-term effects of insulin on hepatic fatty acid metabolism.  相似文献   

8.
Clofibrate induces hypertrophy and hyperplasia and marked changes in the activities of various enzymes in rat liver. We examined the effects of treatment of rats with clofibrate on enzyme induction and on rates of metabolic flux in hepatocytes isolated from the periportal and perivenous zones of the liver. Clofibrate induced the activities of carnitine acetyltransferase (90-fold), carnitine palmitoyltransferase (3-fold) and NADP-linked malic enzyme (3-fold) to the same level in periportal as in perivenous hepatocytes, suggesting that these enzymes were induced uniformly throughout the liver acinus. Increased rates of palmitate metabolism and ketogenesis after clofibrate treatment were associated with: a more oxidised mitochondrial redox state; diminished responsiveness to glucagon and loss of periportal/perivenous zonation. Despite the marked liver enlargement and hyperplasia caused by clofibrate, the normal periportal/perivenous zonation of alanine aminotransferase and gluconeogenesis was preserved in livers of clofibrate-treated rats, indicating that clofibrate-induced hyperplasia does not disrupt the normal acinar zonation of these metabolic functions.  相似文献   

9.
1. Regulation of hepatic gluconeogenesis by fatty acid was studied in goat, calf and guinea pig hepatocytes. 2. Fatty acid effects on gluconeogenesis were dependent upon species; fatty acid and gluconeogenic substrate. 3. Oleate and octanoate inhibited gluconeogenesis from propionate in guinea pig hepatocytes and stimulated it in goat hepatocytes. 4. Oleate and octanoate markedly inhibited gluconeogenesis from lactate in guinea pig hepatocytes whereas octanoate, but not oleate, decreased glucose production from lactate in goat hepatocytes. 5. Effects of fatty acids on gluconeogenesis in calf hepatocytes were similar to goat hepatocytes suggesting control of gluconeogenesis is similar among ruminant species but differs from guinea pigs.  相似文献   

10.
Carbohydrate metabolism of the perfused rat liver   总被引:17,自引:16,他引:1  
1. The rates of gluconeogenesis from most substrates tested in the perfused livers of well-fed rats were about half of those obtained in the livers of starved rats. There was no difference for glycerol. 2. A diet low in carbohydrate increased the rates of gluconeogenesis from some substrates but not from all. In general the effects of a low-carbohydrate diet on rat liver are less marked than those on rat kidney cortex. 3. Glycogen was deposited in the livers of starved rats when the perfusion medium contained about 10mm-glucose. The shedding of glucose from the glycogen stores by the well-fed liver was greatly diminished by 10mm-glucose and stopped by 13.3mm-glucose. Livers of well-fed rats that were depleted of their glycogen stores by treatment with phlorrhizin and glucagon synthesized glycogen from glucose. 4. When two gluconeogenic substrates were added to the perfusion medium additive effects occurred only when glycerol was one of the substrates. Lactate and glycerol gave more than additive effects owing to an increased rate of glucose formation from glycerol. 5. Pyruvate also accelerated the conversion of glycerol into glucose, and the accelerating effect of lactate can be attributed to a rapid formation of pyruvate from lactate. 6. Butyrate and oleate at 2mm, which alone are not gluconeogenic, increased the rate of gluconeogenesis from lactate. 7. The acceleration of gluconeogenesis from lactate by glucagon was also found when gluconeogenesis from lactate was stimulated by butyrate and oleate. This finding is not compatible with the view that the primary action of glucagon in promoting gluconeogenesis is an acceleration of lipolysis. 8. The rate of gluconeogenesis from pyruvate at 10mm was only 70% of that at 5mm. This ;inhibition' was abolished by oleate or glucagon.  相似文献   

11.
Adrenaline, noradrenaline, vasopressin and angiotensin increased 14CO2 production from [1-14C]oleate by hepatocytes from fed rats but not by hepatocytes from starved rats. The hormones did not increase 14CO2 production when hepatocytes from fed rats were depleted of glycogen in vitro. Increased 14CO2 production from ]1-14C]oleate in response to the hormones was observed when hepatocytes from starved rats were incubated with 3-mercaptopicolinate, an inhibitor of phosphoenolpyruvate carboxykinase. 3-Mercaptopicolinate inhibited uptake and esterification of [1-14C]oleate, slightly increased 14CO2 production from [1-14C]oleate and greatly increased the [3-hydroxybutyrate]/[acetoacetate] ratio. In the presence of 3-mercaptopicolinate 14CO2 production in response to the catecholamines was blocked by the alpha-antagonist phentolamine and required extracellular Ca2+. The effects of vasopressin and angiotensin were also Ca2+-dependent. The actions of the hormones of 14CO2 production from [I-14C]oleate by hepatocytes from starved rats in the presence of 3-mercaptopicolinate thus have the characteristics of the response to the hormones found with hepatocytes from fed rats incubated without 3-mercaptopicolinate. The stimulatory effects of the hormones on 14CO2 production from [1-14C]oleate were not the result of decreased esterification (as the hormones increased esterification) or increased beta-oxidation. It is suggested that the effect of the hormones to increase 14CO2 production from [1-14C]oleate are mediated by CA2+-activation of NAD+-linked isocitrate dehydrogenase, the 2-oxoglutarate dehydrogenase complex, and/or electron transport. The results also demonstrate that when the supply of oxaloacetate is limited it is utilized for gluconeogenesis rather than to maintain tricarboxylic acid-cycle flux.  相似文献   

12.
The characteristics and site of inhibition of gluconeogenesis by endotoxin were investigated in liver cells isolated from control and endotoxin-treated rats. Endotoxin treatment was associated with inhibition (40-50%) of gluconeogenesis from lactate plus pyruvate over a range of concentrations of substrate and of oleate and with or without glucose or glucagon. Similar inhibition was observed with asparagine, proline, glutamine, alanine and a substrate mixture, but not with glycerol, glyceraldehyde, dihydroxyacetone or endogenous substrates. There was no change in cellular ATP content or in the rates of ketogenesis or ureogenesis from asparagine, proline or glutamine. Other effects on isotopic fluxes, metabolite contents, enzyme activities and control coefficients were consistent with the suggestion that the effects of endotoxin on gluconeogenesis are exerted at the level of phosphofructokinase-1, and not at phosphoenolpyruvate carboxykinase, pyruvate kinase, pyruvate carboxylase or glucokinase.  相似文献   

13.
1. Neither alloxan-diabetes nor starvation affected the rate of glucose production in hepatocytes incubated with lactate, pyruvate, propionate or fructose as substrates. In contrast, glucose synthesis with either alanine or glutamine was increased nearly 3- and 12-fold respectively, in comparison with that in fed rabbits. 2. The addition of amino-oxyacetate resulted in about a 50% decrease in glucose formation from lactate in hepatocytes isolated from fed, alloxan-diabetic and starved rats, suggesting that both mitochondrial and cytosolic forms of rabbit phosphoenolpyruvate carboxykinase function actively during gluconeogenesis. 3. Alloxan-diabetes resulted in about 2-3-fold stimulation of urea production from either amino acid studied or NH4Cl as NH3 donor, whereas starvation caused a significant increase in the rate of ureogenesis only in the presence of alanine as the source of NH3. 4. As concluded from changes in the [3-hydroxybutyrate]/[acetoacetate] ratio, in hepatocytes from diabetic animals the mitochondrial redox state was shifted toward oxidation in comparison with that observed in liver cells isolated from fed rabbits.  相似文献   

14.
Isolated hepatocytes from fasted rats were perifused with glycerol as gluconeogenic substrate. Stimulation of gluconeogenesis with phenylephrine (10(-5) M) as alpha-adrenergic agonist consisted of two distinct phases. The first phase was a transient stimulation of gluconeogenesis and was accompanied by transient changes in cytosolic and mitochondrial redox state; this phase was abolished by the transaminase inhibitor aminooxyacetate. The second phase was a stable stimulation of less magnitude, without change in redox state and insensitive to addition of aminooxyacetate. It is concluded that the first phase is due to a transient enhancement of flux through the malate/aspartate shuttle and that the stable phase is probably due to a stimulation of mitochondrial glycerol-3-phosphate dehydrogenase and glycerol kinase.  相似文献   

15.
1. In 48 h-starved 6-week-old rats the 14C incorporation in vivo into blood glucose from a constant-specific-radioactivity pool of circulating [14c]actateconfirmed that lactate is the preferred gluconeogenic substrate. 2. Increasing the blood [alanine] to that occurrring in the fed state increased 14C incorporation into blood glucose 2.3-fold from [14c]alanine and 1.7-fold from [14c]lactate. 3. When the blood [alanine] was increased to that in the fed state, the 14C incorporation into liver glycogen from circulating [14c]alanine or [14c]lactate increased 13.5- and 1.7-fold respectively. 4. The incorporation of 14C into blood acetoacetate and 3-hydroxybutyrate from a constant-specific-radioactivity pool of circulating [14c]oleate was virtually abolished by increasing the blood [alanine] to that existing in the fed state. However, the [acetoacetate] remained unchanged, whereas [3-hydroxybutyrate] decreased, although less rapidly than did its radiochemical concentration. 5. It is concluded that during starvation in 6-week-old rats, the blood [alanine] appears to influence ketogenesis for circulating unesterfied fatty acids and inversely affects gluconeogenesis from either lactate or alanine. A different pattern of gluconeogenesis may exist for alanine and lactate as evidenced by comparative 14C incorporation into liver glycogen and blood glucose.  相似文献   

16.
Possible effects of adrenaline, noradrenaline, vasopressin, and angiotensin II to increase 14CO2 production from [1-14C]oleate were examined in hepatocytes from fed L-triiodothyronine (T3)-treated or control rats. Rates of 14CO2 production were decreased and rates of ketogenesis increased in hepatocytes from T3-treated rats. These changes were accompanied by a marked shift of the 3-hydroxybutyrate:acetoacetate concentration ratio towards acetoacetate. Rates of glucose and lactate release were decreased. Whereas the Ca2+-mobilizing hormones increased 14CO2 production from [1-14C]oleate by 64-84% with hepatocytes from control rats, they increased 14CO2 production from [1-14C]oleate by on 24-32% with hepatocytes from T3-treated rats. The magnitude of the response to the Ca2+-mobilizing hormones in hepatocytes from T3-treated rats was increased by the addition of 3-mercaptopicolinate, an inhibitor of phosphoenolpyruvate carboxykinase, to the incubation medium (increases of 52-88%). In the presence of 3-mercaptopicolinate, the 3-hydroxybutyrate:acetoacetate concentration ratio in hepatocytes from fed, T3-treated rats was similar to that in hepatocytes from control rats in the absence of 3-mercaptopicolinate. The results demonstrate that hyperthyroidism per se does not lead to a loss of sensitivity, in terms of oleate oxidation, either to the catecholamines or to vasopressin and angiotensin II. The impaired ability of hepatocytes from T3-treated rats to respond to these hormones is a consequence of decreased net glycolytic flux or a more oxidized mitochondrial redox state.  相似文献   

17.
1. Liver from hyper- and hypo-thyroid male fed rats were perfused with whole blood and their metabolism was compared with euthyroid controls. 2. Hyperthyroid livers produced more bile than controls and hypothyroid livers produced less. 3. Glucose output by all livers was similar; glycogen declined only during perfusion of hyperthyroid livers. Lactate uptake increased in hyperthyroid but decreased in hypothyroid livers. These results may be explained by changes in oxidation of carbohydrate rather than in gluconeogenesis. 4. Secretion of triacylglycerol was decreased in hyperthyroid and not changed significantly in hypothyroid livers. 5. Fractional extraction of infused [1-14C]oleate was unaltered. Hyperthyroid livers oxidized more oleate to CO2 and ketone bodies, esterified less and incorporated less into lipoproteins of d less than 1.006. Hypothyroid livers oxidized and esterified oleate to the same extent as controls; their decreased O2 consumption was due to diminished oxidation of other (non-lipid) substrates; 14C-labelled ketone-body formation was increased, but at the expense of 14CO2 production. 6. Lipogenesis (measured with 3H2O) was unaltered in hyperthyroid but was decreased in hypothyroid livers. Incorporation of 3H and 14C into triacylglycerol relative to phospholipid decreased in hyperthyroid and increased in hypothyroid livers. Cholesterol synthesis was similar in all perfusions. 7. During oleate infusion, the cytosolic redox state, as indicated by the perfusate [lactate]/[pyruvate] ratio, was decreased in hyperthyroid and increased in hypothyroid livers. No change in [3-hydroxybutyrate]/[acetoacetate] was detected. 8. The importance of relating the concentration of plasma non-esterified fatty acids to the interpretation of metabolic data obtained under differing thyroid status is emphasized.  相似文献   

18.
The development of gluconeogenesis in rat liver. Experiments in vivo   总被引:14,自引:12,他引:2       下载免费PDF全文
1. The injection of substrate amounts of lactate into newborn rats produced an increase in the concentration of phosphoenolpyruvate in liver. Similar experiments with foetal rats showed no increase in phosphoenolpyruvate concentration although pyruvate formation was observed. 2. The administration of pyruvate to foetal rats was also without effect on the hepatic phosphoenolpyruvate concentration, although a 20-fold increase in this was observed when pyruvate was injected into newborn animals. 3. Analogous experiments with aspartate produced qualitatively similar differences between foetal and newborn rats. 4. When [(14)C]-lactate, -pyruvate or -aspartate was injected into foetal or newborn rats incorporation of radioactivity into liver glucose was observed only in the newborn animals. 5. Lactate/pyruvate ratios of 213 in foetal liver and 13.5 in the livers of newborn rats indicated a relatively reduced environment in the cytosol of foetal liver. This difference in redox state was illustrated experimentally by a greater conversion of pyruvate into lactate and an increased formation of malate in foetal liver. 6. Although both the substrate-loading and tracer experiments indicated a block in gluconeogenesis in foetal liver at the stage of conversion of oxaloacetate into phosphoenolpyruvate, gluconeogenesis was also hindered by a highly reduced environment.  相似文献   

19.
A technique is described for isolation of adult rat hepatocytes from micronodular cirrhotic livers based on a collagenase digestion procedure. Hepatocytes from normal livers and those chronically injured by thioacetamide did not differ with respect to the viability measured by the trypan blue exclusion test or to the cellular concentrations of protein and glycogen, but the triglyceride content of cells from cirrhotic livers was significantly reduced. Hepatocytes isolated from cirrhotic livers are ultrastructurally in a good state of preservation but they appear to be poorer than controls in RER membranes, although the well-preserved mitochondria are somewhat richer in cristae. No differences were detected between the cell preparations in rates of gluconeogenesis and total de novo fatty acid synthesis, but the secretion of newly synthesized fatty acids was significantly reduced in cells from cirrhotic livers. Thus adult rat hepatocytes can be isolated from thioacetamide-induced micronodular cirrhotic livers with high yield and morphological integrity. Differentiated functions are maintained in suspension for at least 4 h.  相似文献   

20.
Burn injury elicits a marked, sustained hypermetabolic state in patients characterized by accelerated hepatic amino acid metabolism and negative nitrogen balance. The transport of glutamine, a key substrate in gluconeogenesis and ureagenesis, was examined in hepatocytes isolated from the livers of rats after a 20% total burn surface area full-thickness scald injury. A latent and profound two- to threefold increase in glutamine transporter system N activity was first observed after 48 h in hepatocytes from injured rats compared with controls, persisted for 9 days, and waned toward control values after 18 days, corresponding with convalescence. Further studies showed that the profound increase was fully attributable to rapid posttranslational transporter activation by amino acid-induced cell swelling and that this form of regulation may be elicited in part by glucagon. The phosphatidylinositol-3-kinase (PI3K) inhibitors wortmannin and LY-294002 each significantly attenuated transporter stimulation by amino acids. The data suggest that PI3K-dependent system N activation by amino acids may play an important role in fueling accelerated hepatic nitrogen metabolism after burn injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号