首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interpretation of landscape patterns from the perspective of different species allows knowing the way in which they perceive landscape, and how their perception varies with scale. We examined distribution of four small mammal species at different scales over a landscape including protected and grazed areas, and associated species distribution with landscape structure. The study was conducted in the central Monte Desert (Reserve of Ñacuñán). Trap grids were set in both areas at two scales, varying their grain and extent. To determine whether spatial patterns are random, clumped or regular, we used a point pattern analysis. Logistic regressions were performed to relate the presence-absence of small mammals to environmental variables. Intensity of the point pattern was not constant, either in the Reserve or the grazed area. Small mammal abundance exhibited a heterogeneous distribution, and the existence of a first-order effect was detected for all species. No second-order effects were detected, the point pattern was random for all species in both areas. Both areas were differently perceived by rodent species. Habitat structure in both conditions and its variations with scale appear to be important factors affecting distribution patterns.  相似文献   

2.
A large number of protected areas worldwide have been impacted by biological invasions, threatening the biodiversity they aim to protect. The wild boar (Sus scrofa) is one of the most threatening invasive species in Argentina, already occupying many ecoregions, including the central Monte Desert. However, there are no studies regarding the use that wild boars make of this invaded biome and what factors (climate or landscape) determine or contribute to the establishment of this species. The objectives of this study were to assess habitat use of the wild boar at spatial and temporal scales in the central Monte Desert, and to assess if climatic factors influence its abundance. Our results show that, at habitat-level the wild boar exhibited preferences for a particular habitat (Larrea shrubland) for feeding. At microhabitat-level, we found a positive association between herb cover and wild boar presence. In addition, we found a strong and positive association between the number of days with low temperatures and the number of wild boar signs registered. Therefore, we consider that in the central Monte Desert, habitat selection by wild boars is most likely determined by a maximization of food intake and a minimization of exposure to high temperature.  相似文献   

3.
Studying plant responses to environmental variables is an elemental key to understand the functioning of arid ecosystems. We selected four dominant species of the two main life forms. The species selected were two evergreen shrubs: Larrea divaricata and Chuquiraga avellanedae and two perennial grasses: Nassella tenuis and Pappostipa speciosa. We registered leaf/shoot growth, leaf production and environmental variables (precipitation, air temperature, and volumetric soil water content at two depths) during summer-autumn and winter-spring periods. Multiple regressions were used to test the predictive power of the environmental variables. During the summer-autumn period, the strongest predictors of leaf/shoot growth and leaf production were the soil water content of the upper layer and air temperature while during the winter-spring period, the strongest predictor was air temperature. In conclusion, we found that the leaf/shoot growth and leaf production were associated with current environmental conditions, specially to soil water content and air temperature.  相似文献   

4.
In grassland systems across the globe, ecologists have been attempting to understand the complex role of fire, grazing and rainfall in creating habitat heterogeneity and the consequences of anthropogenic control of these factors on ecosystem integrity and functioning. Using a South African grassland ecosystem as a model, we investigated the impact of fire and grazing pressure on small mammal communities during three differing periods of a rainfall cycle. Over 2 years, 15,203 trap nights revealed 1598 captures of 11 species (nine rodents, one macroscelid and one insectivore). Results highlighted the importance of the interplay between factors and showed that the role of fire, grazing and rainfall in determining small mammal abundance was species-dependant. While no two species were affected by the same environmental variables, grass cover or height was important to 56% of species. Considered independently, high rainfall had a positive influence on small mammal abundance and diversity, although the lag period in population response was species-specific. High grazing negatively affected overall abundance, but specifically in Mastomys coucha; fire alone had little immediate impact on small mammal diversity. Six months after the fire, vegetation cover had recovered to similar levels as unburned areas, although small mammal diversity and richness were higher in burned areas than unburned areas. Grazing levels influenced the rate of vegetation recovery. In conclusion, low-level grazing and burning can help to maintain small mammal biodiversity, if conducted under appropriate rainfall levels. A too high grazing pressure, combined with fire, and/or fire conducted under drought conditions can have a negative impact on small mammal biodiversity. To maintain small mammal diversity in grassland ecosystems, the combined effects of the previous year’s rainfall and existing population level as well as the inhibition of vegetation recovery via grazing pressure need to be taken into consideration before fire management is applied. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Species distribution models are commonly used to predict species responses to climate change. However, their usefulness in conservation planning and policy is controversial because they are difficult to validate across time and space. Here we capitalize on small mammal surveys repeated over a century in Yosemite National Park, USA, to assess accuracy of model predictions. Historical (1900–1940) climate, vegetation, and species occurrence data were used to develop single‐ and multi‐species multivariate adaptive regression spline distribution models for three species of chipmunk. Models were projected onto the current (1980–2007) environmental surface and then tested against modern field resurveys of each species. We evaluated models both within and between time periods and found that even with the inclusion of biotic predictors, climate alone is the dominant predictor explaining the distribution of the study species within a time period. However, climate was not consistently an adequate predictor of the distributional change observed in all three species across time. For two of the three species, climate alone or climate and vegetation models showed good predictive performance across time. The stability of the distribution from the past to present observed in the third species, however, was not predicted by our modeling approach. Our results demonstrate that correlative distribution models are useful in understanding species' potential responses to environmental change, but also show how changes in species‐environment correlations through time can limit the predictive performance of models.  相似文献   

6.
7.
8.
Parasites are considered to play an important role in the regulation of wild animal populations. We investigated parasite burden of gastrointestinal nematodes and body condition in specialist and generalist small mammal species in secondary forest fragments in the highly endangered coastal Atlantic Forest. We hypothesized that body condition decreases with increasing parasite load and that parasite burden increases with increasing fragmentation in specialist species but not in generalist species as a consequence of differing responses to fragmentation effects. Investigated species were Akodon montensis, Oligoryzomys nigripes, and Delomys sublineatus (rodents) and the marsupials Marmosops incanus and Gracilinanus microtarsus. Prevalence of parasites was high in all species except for the arboreal G. microtarsus, presumably because of decreased infection probability. No correlation was found between body condition and parasite load in any of the species. Contrary to our expectations, body condition of the specialists D. sublineatus and M. incanus increased in both species with increasing fragmentation. In D. sublineatus, parasite burden increased and body condition decreased in fragments with relatively high density probably due to increased contact rates and facilitation of infection with nematodes. In all generalist species, low or no correlation between parasite burden and fragmentation was detected, suggesting little effect of fragmentation on population health.  相似文献   

9.
We studied lion demography in the Maasai Mara National Reserve between September 1990 and April 1992, with a special emphasis on the spatial and seasonal variation in demographic characteristics. Lion density (0.2–0.4 lions km?2) and pride size (range 8–48) were high because of a high resident prey biomass (10 335 kg km?2) augmented by migrant prey to 26 092 kg km?2 in the dry season. Overall, their sex ratio was almost at parity and varied neither spatially nor seasonally. Sex ratio was even among subadults but skewed toward males and females among cubs and adults, respectively. This implies an increasing differential mortality of males with age through subadulthood. The age ratio varied seasonally because of a birth peak in March–June and an influx of subadults into the reserve during July–August, coincident with increases in migrant prey. The birth peak was apparently preceded by another peak in mating activity falling between November and May. Further research should investigate the precise causes of the biased cub sex ratio, low lion density in the Mara Triangle and the higher ratio of subadults in Musiara than in the Mara Triangle or Sekenani.  相似文献   

10.
We estimated nesting success of a breeding bird assemblage in the central Monte Desert in four breeding seasons (1995–1999). We analyzed the effect of year, period within the breeding season, nest type, and nest location on daily survival rates (DSR). Averaged nesting success of passeriforms in natural habitats was very low (<20% on average, n=12 species). DSR tended to be lower during the egg-laying stage in Furnariidae, Rhinocryptidae, Mimidae, and Emberizidae. Tyrannidae had the highest DSR for all nesting stages and Emberizidae the lowest. Predation was the main cause of nest failure (>90% on average, n=12 species). DSR differed among years, being higher in the driest year (1995) and lower in the most humid year (1997). Nests initiated in the first half of the breeding season had higher DSR than those initiated in the second half. Closed nests had similar survival rates to open nests. DSR differed according to species of plant that supported the nest. Nest predation in the central Monte Desert may be an important selective pressure in birds' life history, which is in accordance with other results for South American temperate birds.  相似文献   

11.
12.
13.
1. To understand how habitat heterogeneity affects organisms, the present authors measured the response of chironomid life-histories to single patch types in a controlled laboratory experiment. The objective was to determine whether the size and type of leaf particles in the substratum affect development rate and survival of larvae, and the fecundity of the resulting adults.
2. Chironomus riparius larvae were raised in sand supplemented with dogwood, Cornus florida, (a rapid decomposer) or American sycamore, Platanus occidentalis, (a refractory decomposer) leaves fully crossed in a factorial design with four leaf particle sizes (0.2, 0.5, 1 and 5 cm2), or in sand only.
3. Development time was shorter in dogwood habitats than sycamore habitats, and shorter in sycamore habitats than in sand habitats. Survival was higher and larval head capsule lengths of instars III and IV were larger in dogwood than in sycamore or sand habitats. Development time was longer and head capsule lengths of instars III and IV were smaller in habitats with 5-cm2 leaf particles than in 0.2-, 0.5- and 1-cm2 particle size treatments. Female thorax length (a measure of fecundity) did not differ among treatments.
4. The present authors conclude that, for C. riparius confined to a single patch type, fitness is significantly enhanced when the patch contains small particles of dogwood (labile) leaves.  相似文献   

14.
The wild boar (Sus scrofa) is an exotic agent of disturbance that arrived in the Ñacuñán Reserve of Argentina in the 1980s. When foraging, the wild boar overturns extensive areas of soil leaving them bare of vegetation. Knowledge is scarce about the boar's impact on vegetation composition and soil properties in the Monte Desert, Argentina. The objective of our study was to determine the short terms effects of wild boar rooting on vegetation and on soil physical, chemical and microbiological properties. Our results indicate that rooting activities significantly reduced the plant cover of herbs, perennial grasses and shrubs, and decreased plant richness and diversity. Disturbed soils showed less compaction, more moisture, a low C/N ratio, and high content of mineral nitrogen. These new soil characteristics could be responsible for a reduced plant cover and less soil bulk density, which could increase soil degradation by wind erosion.  相似文献   

15.
16.
We assessed leafing patterns (rate, timing, and duration of leafing) and leaf traits (leaf longevity, leaf mass per area and leaf-chemistry) in four co-occurring evergreen shrubs of the genus Larrea and Chuquiraga (each having two species) in the arid Patagonian Monte of Argentina. We asked whether species with leaves well-defended against water shortage (high LMA, leaf longevity, and lignin concentration, and low N concentration) have lower leaf production, duration of the leafing period, and inter-annual variation of leafing than species with the opposite traits. We observed two distinctive leafing patterns each related to one genus. Chuquiraga species produced new leaves concentrated in a massive short leafing event (5–48 days) while new leaves of Larrea species emerged gradually (128–258 days). Observed leafing patterns were consistent with simultaneous and successive leafing types previously described for woody plants. The peak of leaf production occurred earlier in Chuquiraga species (mid September) than in Larrea species (mid October–late November). Moreover, Chuquiraga species displayed leaves with the longest leaf lifespan, while leaves of Larrea species had the lowest LMA and the highest N and soluble phenolics concentrations. We also observed that only the leaf production of Larrea species increased in humid years. We concluded that co-occurring evergreen species in the Patagonian Monte displayed different leafing patterns, which were associated with some relevant leaf traits acting as plant defenses against water stress and herbivores. Differences in leafing patterns could provide evidence of ecological differentiation among coexisting species of the same life form.  相似文献   

17.
Twenty-two common British angiosperms were examined for their ability to acclimate photosynthetically to sun and shade conditions. Plants were grown under low irradiance, far-red enriched light (50 μmol m?2 s?1), selected to mimic as closely as possible natural canopy shade, and moderately high light of insufficient irradiance to induce photoinhibitory or photoprotective responses (300 μmol m?2 s?1). Light-and CO2-saturated photosynthetic rates of oxygen evolution (Pmax) and chlorophyll content were measured. Large variation was found in both parameters, and two ‘strategies’ for long-term acclimation were identified: firstly a change in chlorophyll per unit leaf area which was found to correlate positively with photosynthetic capacity, and secondly changes in chlorophyll alb ratio and Pmax, indicative of alterations at the chloroplast level, which were not associated with a change in chlorophyll content per unit leaf area. Combinations of these two strategies may occur, giving rise to the observed diversity in photosynthetic acclimation. The extent and nature of photosynthetic acclimation were compared with an index of shade association, calculated from the association each species has with woodland. It was found that the greatest flexibility for change at the chloroplast level was found in those species possessing an intermediate shade association, whilst acclimation in ‘sun’ species proceeded by a change in chlorophyll content; obligate shade species showed little capacity for acclimation at either the chloroplast or leaf level. A framework for explaining the variation between plant species in leaf-level photosynthetic capacity, in relation to the natural light environment, is presented. This is the first time the potential for light acclimation of photosynthesis in different plant species has been satisfactorily linked to habitat distribution.  相似文献   

18.
Seed-eating ants could have a significant effect on plant communities in deserts and semiarid zones. This effect is mediated through spatial and temporal foraging patterns, and seed selection within patches. Foraging patterns of harvester ants in South American deserts are almost unknown. The purpose of this work is to determine the temporal variations in the activity levels of Pogonomyrmex pronotalis and P. rastratus in the central Monte desert, and how these patterns may be related to abiotic factors, particularly to soil temperature. Activity levels and soil surface temperature were recorded at hourly intervals in five colonies for each species during the activity season (October, December, February, and April) in both 1999–2000 and 2000–2001 periods (except for October 1999). Surface ant activity starts in October, increases between December and February, and then ceases by April. Surface ant activity is diurnal throughout the season and usually has a unique peak during midday in October and April, and two peaks in the morning and the afternoon from December to February. The proportion of the activity budget devoted to nest's maintenance activity was similar for both species. Activity levels of foraging workers tended to be higher in P. pronotalis than in P. rastratus. P. pronotalis is active between 20 and 59°C, with higher levels of activity between 35 and 45°C, whereas P. rastratus shows activity between 18 and 58°C, with higher levels of activity between 30 and 40°C. Our results suggest that temporal changes in surface activity respond mainly to soil temperature fluctuations. However, at intermediate temperatures (those probably encompassing the thermal tolerance range of these ant species), temperature appears not to be a good predictor of daily and seasonal activity fluctuations.  相似文献   

19.
20.
The objective of this study was to investigate the variation in leaf litterfall patterns of desert plant species in relation to the intra- and interannual variation of precipitation. We collected the leaf litterfall of 12 representative species of the dominant life forms in the arid Patagonian Monte (evergreen shrubs, deciduous shrubs, and perennial grasses) at monthly intervals during three consecutive years. All shrub species showed a marked seasonality in the pattern of leaf litterfall, but the date of the peak of leaf litterfall differed among them. The peak of leaf litterfall in three deciduous and three evergreen shrubs occurred in summer months while in one deciduous shrub and in two other evergreen shrubs the peak of leaf litterfall was in autumn and winter, respectively. In contrast, the leaf litterfall of perennial grasses occurred through the year without a seasonal pattern. In most shrub species, increasing annual precipitation was related to increasing leaf litterfall and the peak of leaf litterfall was positively related to precipitation events occurred some months before, during winter. Moreover, the magnitude of responses in terms of variation in leaf litterfall in relation to interannual variation of precipitation was not the same for all species. Evergreen shrubs showed lower responses than deciduous species. These differences in leaf litterfall patterns were consistent with differences in leaf traits. In conclusion, we found new evidence of species-specific responses of leaf litterfall patterns to precipitation, suggesting that other factors than precipitation may control leaf litterfall in desert plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号