首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The topography of phosphatidylcholine, phosphatidylethanolamine and triacylglycerol biosynthetic enzymes within the transverse plane of rat liver microsomes was investigated using two impermeant inhibitors, mercury-dextran and dextran-maleimide. Between 70 and 98% of the activities of fatty acid : CoA ligase (EC 6.2.1.3), sn-glycerol-3-phosphate acyltransferase (EC 2.3.1.15), phosphatidic acid phosphatase (EC 3.1.3.4), diacylglycerol acyltransferase (EC 2.3.1.20), diacylglycerol cholinephosphotransferase (EC 2.7.8.2) and diacylglycerol ethanolaminephosphotransferase (EC 2.7.8.1) were inactivated by mercury-dextran. Dextran-maleimide caused 52% inactivation of the sn-glycerol-3-phosphate acyltransferase. Inactivation of each of these activities except fatty acid : CoA ligase occurred in microsomal vesicles which remained intact as evidenced by the maintenance of highly latent mannose-6-phosphatase activity (EC 3.1.3.9). These glycerolipid biosynthetic activities were not latent, indicating that substrates have free access to the active sites. Moreover, ATP, CDP-choline and CMP appeared unable to penetrate the microsome membrane. These data indicate that the active sites of thease enzymes are located on the external surface of microsomal vesicles. It is concluded that the biosynthesis of phosphatidylcholine, phosphatidylethanolamine and triacylglycerol occurs asymmetrically on the cytoplasmic surface of the endoplasmic reticulum.  相似文献   

2.
The topography of phosphatidylcholine, phosphatidylethanolamine and triacylglycerol biosynthetic enzymes within the transverse plane of rat liver microsomes was investigated using two impermeant inhibitors, mercury-dextran and dextran-maleimide. Between 70 and 98% of the activities of fatty acid : CoA ligase (EC 6.2.1.3), sn-glycerol-3-phosphate acyltransferase (EC 2.3.1.15), phosphatidic acid phosphatase (EC 3.1.3.4), diacylglycerol acyltransferase (EC 2.3.1.20), diacylglycerol cholinephosphotransferase (EC 2.7.8.2) and diacylglycerol ethanolaminephosphotransferase (EC 2.7.8.1) were inactivated by mercury-dextran. Dextran-maleimide caused 52% inactivation of the sn-glycerol-3-phosphate acyltransferase. Inactivation of each of these activities except fatty acid : CoA ligase occurred in microsomal vesicles which remained intact as evidenced by the maintenance of highly latent mannose-6-phosphatase activity (EC 3.1.3.9). These glycerolipid biosynthetic activities were not latent, indicating that substrates have free access to the active sites. Moreover, ATP, CDP-choline and CMP appeared unable to penetrate the microsome membrane. These data indicate that the active sites of these enzymes are located on the external surface of microsomal vesicles.It is concluded that the biosynthesis of phosphatidylcholine, phosphatidylethanolamine and triacylglycerol occurs asymmetrically on the cytoplasmic surface of the endoplasmic reticulum.  相似文献   

3.
Experiments were performed to localize the hepatic microsomal enzymes of phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol biosynthesis to the cytoplasmic or lumenal surface of microsomal vesicles. Greater than 90 percent of the activities of fatty acid-CoA ligase (EC 6.2.1.3), sn-glycerol 3-phosphate acyltransferase (EC 2.3.1.15), lysophosphatidic acid acyltransferase, diacylglycerol acyltransferase (EC 2.3.1.20), diacylglycerol cholinephosphotransferase (EC 2.7.8.2), and diacylglycerol ethanolaminephosphotransferase (EC 2.7.8.1) was inactivated by proteolysis of intact microsomal vesicles. The phosphatidic acid phosphatase (EC 3.1.3.4) was not inactivated by any of the protease tested. Under conditions employed, <5 percent of the luminal mannose-6-phosphatase (EC 3.1.3.9) activity was lost. After microsomal integrity was disrupted with detergents, protease treatment resulted in a loss of >74 percent of the mannose-6-phosphatase activity. The latency of the mannose-6-phosphatase activity was not affected by protease treatment. Mannose-6-phosphatase latency was not decreased by the presence of the assay components of several of the lipid biosynthetic activities, indicating that those components did not disrupt the microsomal vesicles. None of the lipid biosynthetic activities appeared latent. The presence of a protease-sensitive component of these biosynthetic activities on the cytoplasmic surface of microsomal vesicles, and the absence of latency for any of these biosynthetic activities suggest that the biosynthesis of phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol occurs asymmetrically on the cytoplasmic surface of the endoplasmic reticulum. The location of biosynthetic activities within the transverse plane of the endoplasmic reticulum is of particular interest for enzymes whose products may be either secreted or retained within the cell. Phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol account for the vast majority of hepatic glycerolipid biosynthesis. The phospholipids are utilized for hepatic membrane biogenesis and for the formation of lipoproteins, and the triacylglycerols are incorporated into lipoproteins or accumulate within the hepatocyte in certain disease states (14). The enzymes responsible for the biosynthesis of these glycerolipids (Scheme I) from fatty acids and glycerol-3P have all been localized to the microsomal subcellular fraction (12, 16, 29, 30). Microsomes are derived from the endoplasmic reticulum and are sealed vesicles which maintain proper sidedness. (11, 22). The external surface of these vesicles corresponds to the cytoplasmic surface of the endoplasmic reticulum. Macromolecules destined for secretion must pass into the lumen of the endoplasmic reticulum (5, 23). Uncharged molecules of up to approximately 600 daltons are able to enter the lumen of rat liver microsomes, but macromolecules and charged molecules of low molecular weight do not cross the vesicle membrane (10, 11). Because proteases neither cross the microsomal membrane nor destroy the permeability barrier of the microsomal vesicles, only the enzymes and proteins located on the cytoplasmic surface of microsomal vesicles are susceptible to proteolysis unless membrane integrity is disrupted (10, 11). By use of this approach, several enzymes and proteins have been localized in the transverse plane of microsomal membranes (11). With the possible exception of cytochrome P 450, all of the enzymes and proteins investigated were localized asymmetrically by the proteolysis technique (11). By studies of this type, as well as by product localization, glucose-6-phosphate (EC 3.1.3.9) has been localized to the luminal surface of microsomal vesicles (11) and of the endoplasmic reticulum (18, 19). All microsomal vesicles contain glucose-6-phosphatase (18, 19) which can effectively utilize mannose-6-P as a substrate, provided the permeability barrier of the vesicles has been disrupted to allow the substrate access to the active site located on the lumenal surface (4). An exact correspondence between mannose- 6-phosphate activity and membrane permeability to EDTA has been established (4). The latency of mannose-6-phosphatase activity provides a quantitative index of microsomal integrity (4.) Few of the microsomal enzymes in the synthesis of phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol have been solubilized and/or purified, and little is known about the topography of these enzymes in the transverse or lateral planes of the endoplasmic reticulum. An asymmetric location of these biosynthetic enzymes on the cytoplasmic or lumenal surface of microsomal vesicles may provide a mechanism for regulation of the glycerolipids to be retained or secreted by the cell, and for the biogenesis of asymmetric phospholipid bilayers. In this paper, we report investigations on the localization of all seven microsomal enzymes (Scheme I) in the biosynthesis of triacylglycerol, phosphatidylcholine, and phosphatidylethanolamine, using the protease technique with mannose-6-phosphatase serving as luminal control activity. The latency of these lipid biosynthetic enzymes was also investigated, using the latency of mannose-6-phosphatase as an index of microsomal integrity.  相似文献   

4.
Differential and isopycnic centrifugation of rat liver homogenates showed that, besides its established localization in peroxisomes and endoplasmic reticulum, dihydroxyacetone-phosphate acyltransferase is also present in mitochondria. The three activities differed in a number of properties (pH optimum, palmitoyl-CoA and dihydroxyacetone-phosphate dependence, and sensitivity toward N-ethylmaleimide) and are therefore likely associated with three distinct proteins. Glycerol 3-phosphate (5 mM) did not inhibit peroxisomal dihydroxyacetone-phosphate acyltransferase but inhibited the extraperoxisomal activities virtually completely. Peroxisomal dihydroxyacetone-phosphate acyltransferase was located at the inner aspect of the peroxisomal membrane, but the enzyme was not latent. Purified microsomes, from which intact peroxisomes had been removed, were still contaminated with peroxisomal membranes as deduced from the presence of two dihydroxyacetone-phosphate acyltransferase activities: a glycerol 3-phosphate-resistant activity with properties similar to those of peroxisomal dihydroxyacetone-phosphate acyltransferase and a glycerol 3-phosphate-sensitive "true" microsomal dihydroxyacetone-phosphate acyltransferase. We propose that, assayed in the presence of 5mM glycerol 3-phosphate, dihydroxyacetone-phosphate acyltransferase can be used as a marker enzyme for peroxisomal membranes. Such a marker enzyme has not hitherto been available. The differential effect of 5 mM glycerol 3-phosphate on peroxisomal and extraperoxisomal dihydroxyacetone-phosphate acyltransferases enabled us to determine the relative contribution of these activities to overall dihydroxyacetone-phosphate acylation in whole liver homogenates. At near-physiological pH and at near-physiological concentrations of unbound palmitoyl-CoA and of dihydroxyacetone-phosphate plus glycerol 3-phosphate, peroxisomes contributed 50-75%. The remaining percentage was mostly accounted for by the microsomal enzyme. At near-physiological concentrations of glycerol 3-phosphate plus dihydroxyacetone-phosphate, glycerolphosphate acyltransferase contributed 93% and dihydroxyacetone-phosphate acyltransferase 7% to overall glycerolipid synthesis in homogenates. This suggests that the dihydroxyacetone-phosphate pathway is of minor quantitative importance in overall hepatic glycerolipid synthesis but that its main function lies in the synthesis of ether lipids, which have acyldihydroxyacetone-phosphate as obligatory precursor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Chymotrypsin inactivation of lysophosphatidic acid acyltransferase activity in detergent-disrupted rat liver microsomes, but not in intact microsomes, falsely indicated a lumenal location for the enzyme. Inhibition by several other proteases in the absence of detergent showed that lysophosphatidic acid acyltransferase activity is located on the cytoplasmic surface of microsomes. Chymotrypsin inactivation did not occur in vesicles disrupted by nitrogen cavitation unless deoxycholate was present, suggesting that deoxycholate exposes a cryptic chymotrypsin cleavage site. Criteria for localization of lumenal microsomal enzymes should include studies using several proteases and/or employ more than one method of microsomal disruption.  相似文献   

6.
Enzymes associated with glycerolipid biosynthesis were examined in microsomal fractions of liver and adipose tissue obtained from swine of various ages. Generally, liver glycerophosphate acyltransferase, phosphatidate phosphohydrolase, diglyceride acyltransferase, and choline phosphotransferase activities were substantial at birth but increased 2- to 3-fold by day 14 postpartum, decreased at day 25, then increased at the oldest ages studied (up to 155 days postpartum). In adipose tissue, enzyme activities were low at birth and developed through day 25 in a pattern generally similar to that observed in liver. In contrast to liver, the adipose enzymes were depressed immediately postweaning (day 32) with subsequent recovery. The observed decline in adipose tissue enzyme activities expressed on a tissue basis at older ages was primarily the result of increased adipocyte size, since the activities expressed on a cell basis did not decline as rapidly. In both liver and adipose tissue, phosphatidate was the major glycerolipid synthesized by the microsomal glycerophosphate acyltransferase enzymes at all ages (generally greater than 75%). The ratio of neutral lipids to phospholipids produced by acylation of glycerophosphate was increased when a microsomal--cytosolic preparation was used as a source of enzyme in contrast to a microsomal preparation.  相似文献   

7.
1. Measurements were made of the activities of the following enzymes of glycerolipid synthesis in homogenates of interscapsular brown adipose tissue obtained from rats subjected to a 4 degrees C environment for time periods of 6 h up to 12 days: fatty acyl-CoA synthetase (FAS), mitochondrial and microsomal forms of glycerolphosphate acyltransferase (GPAT), monoacylglycerolphosphate acyltransferase (MGPAT) and Mg2+-dependent phosphatidate phosphohydrolase (PPH). 2. Relative to tissue DNA content, the activities of mitochondrial GPAT, MGPAT and Mg2+-dependent PPH were significantly increased after 1 day of exposure to cold, and continued to increase thereafter. By contrast, FAS and microsomal GPAT activities were unchanged relative to tissue DNA. 3. The time profile of the increase in MGPAT activity correlated well with a concomitant increase in the microsomal marker NADP+-cytochrome c reductase. Changes in mitochondrial GPAT and in Mg2+-dependent PPH activities were larger in amplitude than that of MGPAT. 4. It is proposed that these selective changes in enzyme activity may be associated with the onset of brown-adipose-tissue hyperplasia or possibly with an increase in triacylglycerol synthesis during cold-acclimation.  相似文献   

8.
Enzyme activities of the sn-glycerol 3-phosphate (glycerol-P) and of the dihydroxyacetone-phosphte (DHAP) pathway of glycerolipid biosynthesis were investigated during the differentiation of 3T3-L1 preadipocytes into adipocytes. Total particulate glycerol-P and DHAP acyltransferase activities increased 70- and 30-fold, respectively, during differentiation induced with methylisobutylxanthine and dexamethasone. The N-ethylmaleimide-sensitive (microsomal) glycerol-P and DHAP acyltransferase activities were virtually undetectable in nondifferentiated cells, and increased in parallel over 70-fold during differentiation. These and several kinetic observations are consistent with the induction of a single microsomal enzyme having dual activity. During differentiaion, the N-ethylmaleimide-resistant DHAP acyltransferase activity increased 10-fold, suggesting the presence of at least two DHAP acyltransferase isoenzymes. Qualitatively similar changes in microsomal glycerol-P and DHAP acyltransferase activities were observed when cell differentiation was induced with insulin or with insulin plus dexamethasone and methylisobutylxanthine. Acyl-DHAP oxidoreductase (EC 1.1.1.101) specific activity increased only 3- to 5-fold during adipocyte differentiation. Alkyl-DHAP synthase activity was not detected. These data demonstrate that selective changes in enzyme activities of the gycerol-P pathways of glycerolipid synthesis occur during the differentiation of 3T3-L1 preadipocytes.  相似文献   

9.
Using highly enriched membrane preparations from lactate-grown Saccharomyces cerevisiae cells, the subcellular and submitochondrial location of eight enzymes involved in the biosynthesis of phospholipids was determined. Phosphatidylserine decarboxylase and phosphatidylglycerolphosphate synthase were localized exclusively in the inner mitochondrial membrane, while phosphatidylethanolamine methyltransferase activity was confined to microsomal fractions. The other five enzymes tested in this study were common both to the outer mitochondrial membrane and to microsomes. The transmembrane orientation of the mitochondrial enzymes was investigated by protease digestion of intact mitochondria and of outside-out sealed vesicles of the outer mitochondrial membrane. Glycerolphosphate acyltransferase, phosphatidylinositol synthase, and phosphatidylserine synthase were exposed at the cytosolic surface of the outer mitochondrial membrane. Cholinephosphotransferase was apparently located at the inner aspect or within the outer mitochondrial membrane. Phosphatidate cytidylyltransferase was localized in the endoplasmic reticulum, on the cytoplasmic side of the outer mitochondrial membrane, and in the inner mitochondrial membrane. Inner membrane activity of this enzyme constituted 80% of total mitochondrial activity; inactivation by trypsin digestion was observed only after preincubation of membranes with detergent (0.1% Triton X-100). Total activity of those enzymes that are common to mitochondria and the endoplasmic reticulum was about equally distributed between the two organelles. Data concerning susceptibility to various inhibitors, heat sensitivity, and the pH optima indicate that there is a close similarity of the mitochondrial and microsomal enzymes that catalyze the same reaction.  相似文献   

10.
Subcellular membranes of Saccharomyces cerevisiae, including mitochondria, microsomes, plasma membranes, secretory vesicles, vacuoles, nuclear membranes, peroxisomes, and lipid particles, were isolated by improved procedures and analyzed for their lipid composition and their capacity to synthesize phospholipids and to catalyze sterol delta 24-methylation. The microsomal fraction is heterogeneous in terms of density and classical microsomal marker proteins and also with respect to the distribution of phospholipid-synthesizing enzymes. The specific activity of phosphatidylserine synthase was highest in a microsomal subfraction which was distinct from heavier microsomes harboring phosphatidylinositol synthase and the phospholipid N-methyltransferases. The exclusive location of phosphatidylserine decarboxylase in mitochondria was confirmed. CDO-diacylglycerol synthase activity was found both in mitochondria and in microsomal membranes. Highest specific activities of glycerol-3-phosphate acyltransferase and sterol delta 24-methyltransferase were observed in the lipid particle fraction. Nuclear and plasma membranes, vacuoles, and peroxisomes contain only marginal activities of the lipid-synthesizing enzymes analyzed. The plasma membrane and secretory vesicles are enriched in ergosterol and in phosphatidylserine. Lipid particles are characterized by their high content of ergosteryl esters. The rigidity of the plasma membrane and of secretory vesicles, determined by measuring fluorescence anisotropy by using trimethylammonium diphenylhexatriene as a probe, can be attributed to the high content of ergosterol.  相似文献   

11.
The initial step of phospholipid biosynthesis in yeast is carried out through the acylation of glycerol 3-phosphate (G-3-P) and dihydroxyacetone phosphate by stereospecific sn-1 acyltransferases. Here we report the identification of two key fatty acyltransferases of the glycerolipid biosynthesis pathway in Saccharomyces cerevisiae. Disruption of the open reading frame YBL011w, corresponding to a gene previously identified as a choline transporter suppressor (SCT1), resulted in a substantial decrease of total cellular G-3-P acyltransferase activity. A yeast strain disrupted at the open reading frame YKR067w, which encodes a protein closely related to Sct1p, also exhibited a dramatic reduction in G-3-P acyltransferase activity. Molecular characterizations of the genes revealed that a missense mutation in YKR067w accounted for a defect in the activities of the G-3-P acyltransferase in the yeast mutant strain TTA1. Heterologous expression of YKR067w in Escherichia coli further confirmed its enzyme activity. These results indicate that YKR067w and YBL011w, designated herein as GAT1 and GAT2(SCT1), respectively, are yeast G-3-P acyltransferase genes. Furthermore, biochemical results are presented to show that both Gat1p and Gat2p(Sct1p) are G-3-P/dihydroxyacetone phosphate dual substrate-specific sn-1 acyltransferases. The fatty acyl specificity of Gat1p is similar to that of the mammalian microsomal G-3-P acyltransferase, as it can effectively utilize a broad range of fatty acids as acyl donors. In contrast, Gat2p(Sct1p) displayed preference toward 16-carbon fatty acids. The most notable of the altered phospholipid compositions of the gat1Delta and gat2(sct1)Delta strains are a decreased phosphatidic acid pool and an increased phosphatidylserine/phosphatidylinositol ratio. This did not appear to affect the mutants as no growth defect was found. However, null mutations of both GAT1 and GAT2(SCT1) are synthetically lethal to yeast.  相似文献   

12.
The ability in vitro of yeast mitochondrial and microsomal fractions to synthesize lipid de novo was measured. The major phospholipids synthesized from sn-[2-(3)H]glycerol 3-phosphate by the two microsomal fractions were phosphatidylserine, phosphatidylinositol and phosphatidic acid. The mitochondrial fraction, which had a higher specific activity for total glycerolipid synthesis, synthesized phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine and phosphatidic acid, together with smaller amounts of neutral lipids and diphosphatidylglycerol. Phosphatidylcholine synthesis from both S-adenosyl[Me-(14)C]methionine and CDP-[Me-(14)C]choline appeared to be localized in the microsomal fraction.  相似文献   

13.
Peroxisomal (acyl-CoA oxidase and peroxisomal dihydroxyacetone-phosphate acyltransferase) and extraperoxisomal (mitochondrial fatty acid oxidation, extraperoxisomal dihydroxyacetone-phosphate acyltransferase, mitochondrial and microsomal glycerophosphate acyltransferases) lipid-metabolizing enzymes were measured in homogenates from rat liver and from seven extrahepatic tissues. Except for jejunal mucosa and kidney, extrahepatic tissues contained very little acyl-CoA oxidase activity. Peroxisomal dihydroxyacetone-phosphate acyltransferase, taken as the activity that was not inhibited by 5 mM-glycerol 3-phosphate, was present in all tissues examined, and its specific activity in liver and extrahepatic tissues was roughly of the same order of magnitude. Clofibrate treatment increased the activity of acyl-CoA oxidase in liver, and to a smaller extent also in kidney, but did not influence the activity of peroxisomal dihydroxyacetone-phosphate acyltransferase. Comparison of the activities of peroxisomal and extraperoxisomal lipid-metabolizing enzymes in extrahepatic tissues and in liver, an organ in which the contribution of peroxisomes to fatty acid oxidation and to glycerolipid synthesis has been estimated previously, suggests that, as in liver, peroxisomal long-chain fatty acid oxidation is of minor quantitative importance in extrahepatic tissues, but that in these tissues (micro)-peroxisomes are responsible for most of the dihydroxyacetone phosphate acylation and, consequently, for initiating ether glycerolipid synthesis.  相似文献   

14.
Glycerol-3-phosphate acyltransferase (GPAT) catalyses the first committed step in glycerolipid biosynthesis. The mitochondrial isoform (mtGPAT) is mainly expressed in liver, where it is highly regulated, indicating that mtGPAT may have a unique role in hepatic fatty acid metabolism. Because both mtGPAT and carnitine palmitoyl transferase-1 are located on the outer mitochondrial membrane, we hypothesized that mtGPAT directs fatty acyl-CoA away from beta-oxidation and toward glycerolipid synthesis. Adenoviral-mediated overexpression of murine mtGPAT in primary cultures of rat hepatocytes increased mtGPAT activity 2.7-fold with no compensatory effect on microsomal GPAT activity. MtGPAT overexpression resulted in a dramatic 80% reduction in fatty acid oxidation and a significant increase in hepatic diacylglycerol and phospholipid biosynthesis. Following lipid loading of the cells, intracellular triacylglycerol biosynthesis was also induced by mtGPAT overexpression. Changing an invariant aspartic acid residue to a glycine [D235G] in mtGPAT resulted in an inactive enzyme, which helps define the active site required for mammalian mtGPAT function. To determine if obesity increases hepatic mtGPAT activity, two models of rodent obesity were examined and shown to have >2-fold increased enzyme activity. Overall, these results support the concept that increased hepatic mtGPAT activity associated with obesity positively contributes to lipid disorders by reducing oxidative processes and promoting de novo glycerolipid synthesis.  相似文献   

15.
1. Rats were injected with a single dose of 35mg of streptozotocin/kg body wt. They exhibited a diabetes that was characterized by glycosuria, polyuria, polydipsia, hyperphagia, hyperglycaemia, increased concentrations of unesterified fatty acids, glycerol and triacylglycerols in the serum and an increased activity of glucose 6-phosphatase in the liver. 2. After 10 weeks the hepatic activities of the microsomal glycerol phosphate acyltransferase, phosphatidate phosphohydrolase, phosphatidate cytidylyltransferase, diacylglycerol acyltransferase, choline phosphotransferase, CDP-diacylglycerol--inositol phosphatidyltransferase and the soluble phosphatidate phosphohydrolase were measured. 3. The only significant changes were an increase in the activity of the soluble phosphatidate phosphohydrolase and a decrease in that of the CDP-diacylglycerol--inositol phosphatidyltransferase in the diabetic rats. 4. These results are discussed in relation to the control of glycerolipid synthesis.  相似文献   

16.
Reconstitution of phosphatidylserine import into rat liver mitochondria   总被引:5,自引:0,他引:5  
The synthesis translocation and decarboxylation of phosphatidylserine occurs in a cell-free system. The principal membrane components necessary are microsomes (source of phosphatidylserine synthase) and mitochondria (source of phosphatidylserine decarboxylase). The interorganelle translocation of phosphatidylserine can be measured by quantitating the decarboxylation of phosphatidyl[1'-14C]serine initially present in prelabeled microsomal membranes using a 14CO2 trapping assay. The decarboxylation of microsomal phosphatidylserine by intact mitochondria is 1) dependent upon substrate (microsomal membrane) concentration, 2) different from decarboxylation of liposomal phosphatidylserine, 3) resistant to proteases, 4) independent of soluble factors, and 5) unaffected by the addition of partially purified phospholipid exchange proteins but accelerated by purified nonspecific phospholipid exchange protein. The rate-limiting step in the reconstituted translocation-decarboxylation system is not the decarboxylation reaction but the initial translocation event between the microsomal membrane and the outer mitochondrial membrane. These data are interpreted to demonstrate that phosphatidylserine import into the mitochondria can occur via collision complexes formed between the endoplasmic reticulum or vesicles derived therefrom and the outer mitochondrial membrane.  相似文献   

17.
The sn-glycerol-3-phosphate (glycerol-P) acyltransferase of Escherichia coli cytoplasmic membrane was purified in Triton X-100 (Green, P. R., Merrill, A. H., Jr., and Bell, R. M. (1981) J. Biol. Chem. 256, 11151-11159) and incorporated into mixed micelles containing Triton X-100, phosphatidylethanolamine, phosphatidylglycerol, cardiolipin, and beta-octyl glucoside. Enzyme activity was quantitatively reconstituted from the mixed micelle into single-walled phospholipid vesicles by chromatography over Sephadex G-50. Activity coeluted with vesicles of 90-nm average diameter on columns of Sepharose CL-4B and Sephacryl S-1000. These vesicles contained less than 2 Triton X-100 and 5 beta-octyl glucoside molecules/100 phospholipid molecules. Calculations suggested that up to eight 91,260-dalton glycerol-P acyltransferase polypeptides were incorporated per 90-nm vesicle. The pH dependence and apparent Km values for glycerol-P and palmitoyl-CoA of the glycerol-P acyltransferase reconstituted into vesicles were similar to those observed upon reconstitution by mixing of the enzyme in Triton X-100 with a 20-fold molar excess of sonicated phosphatidylethanolamine:phosphatidylglycerol:cardiolipin, 6:1:1. The integrity of vesicles containing glycerol-P acyltransferase was established by trapping 5,5'-dithiobis-(2-nitrobenzoic acid). Chymotrypsin inactivated greater than 95% of the glycerol-P acyltransferase in intact vesicles and cleaved the 91,260-dalton polypeptide into several vesicle-bound and several released peptides, indicating that critical domains of the enzyme are accessible in intact vesicles. Trinitrobenzene sulfonate and 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene caused greater than 90% loss of glycerol-P acyltransferase in vesicles. Disruption of vesicles with Triton X-100 did not reveal significant latent activity. These data strongly suggest that the glycerol-P acyltransferase was reconstituted asymmetrically into the vesicles with its active site facing outward.  相似文献   

18.
Membrane-associated phosphatidylserine synthase was purified from Saccharomyces cerevisiae (Bae-Lee, M., and Carman, G. M. (1984) J. Biol. Chem. 259, 10857-10862) and reconstituted into phospholipid vesicles containing phosphatidylcholine/phosphatidylethanolamine/ phosphatidylinositol/phosphatidylserine. Reconstitution was performed by removing detergent from an octyl glucoside/phospholipid/Triton X-100/enzyme mixed micelle by Sephadex G-50 super-fine chromatography. The average diameter of the vesicles was 90 nm, and the enzyme was reconstituted asymmetrically with the active site facing outward. The enzymological properties of reconstituted phosphatidylserine synthase were determined in the absence of detergent. The enzyme was reconstituted into vesicles with phospholipid compositions approximating those of wild type and mutant strains of S. cerevisiae. Reconstituted activity was modulated by the phosphatidylinositol/phosphatidylserine ratio in the vesicles. The modulation of activity observed in the vesicles is enough to account for some of the fluctuations in the phosphatidylserine content in vivo.  相似文献   

19.
The intramembrane localization of linoleoyl-CoA desaturase in rat liver microsomes was examined by various methods, such as digestion by proteases, effect of detergents, and inhibition by the antibodies against purified terminal desaturase. Exposure of the desaturase on the surface of microsomal vesicles was suggested by the fact that the enzyme activity in the intact microsomes was susceptible to tryptic digestion, and considerably inhibited by anti-desaturase antibodies. When microsomes were previously treated with trypsin, the enzyme became more susceptible to the antibodies. Furthermore, it was demonstrated that the protein fragments cleaved from microsomal membranes by tryptic digestion formed a single precipitin line with the antibodies by the double-immunodiffusion test. These findings suggest the presence of linoleoyl-CoA desaturase on the cytoplasmic surface in the endoplasmic reticulum, since tryptic digestion liberates only the protein components situated on the surface area of membranes. In addition, desaturase activity in the intact microsomes was not stimulated by addition of the detergent, indicating the further outside location of the active site of the enzyme in microsomal vesicles. The pretreatment of microsomes with a low concentration (0.05%) of sodium deoxycholate, which destroys the permeability barrier for macromolecules without membrane disassembly, did not increase the susceptibility to tryptic digestion and the antibodies. These results show that linoleoyl-CoA desaturase is not present in a latent state in the membrane.  相似文献   

20.
1. The activities of some enzymes of glycerolipid synthesis were measured in homogenates obtained from the intestinal scrapings of 62-66-day foetuses and 2- and 8-day-old guinea pigs. 2. The ratio of protein concentration/DNA concentration was significantly higher (P greater than 0.001) in homogenized tissue from the neonatal compared with the foetal guinea pigs. Enzyme activities were therefore expressed relative to both protein and to DNA. 3. The specific activities (relative to DNA) of palmitoyl-CoA synthetase, glycerol phosphate acyltransferase and phosphatidate phosphatase were higher in homogenized tissues from neonatal than in those from the foetal guinea pigs. These activities are probably involved more in cell proliferation than in the absorption and transport of triacylglycerol. Its activity was not significantly different in the foetal and neonatal guinea pigs when expressed relative to DNA but it was lower in the neonatal guinea pigs when expressed relative to protein. The entry of food into the intestine after birth is therefore not necessary for its activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号