首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Algal growth on organic compounds as nitrogen sources   总被引:19,自引:0,他引:19  
Two experimental series were run to evaluate the potential of algal development on dissolved organic nitrogen (DON) compounds as the sole source of nitrogen (N) nutrition. Monocultures of several common Lake Kinneret algae (Pediastrum duplex, Synechococcus sp., Microcystis aeruginosa, Aphanizomenon ovalisporum and Cyclotella sp.) were incubated for 3 weeks in the laboratory with different inorganic (NH4+, NO3-) or organic (hypoxanthine, urea, guanine, ornithine, glucosamine, lysine) nitrogen sources. Even though the cultures were not axenic, marked differences were observed in algal growth response. Pediastrum, Cyclotella and Aphanizomenon grew well on most N sources, and cyanobacterial growth and yield were consistently greatest when the urea was the only N source. We also followed algal growth and eventual species dominance in batch samples of GF/F-filtered lake water, supplemented with orthophosphate and different inorganic or organic N compounds and inoculated with concentrated lake phytoplankton. Although no clear impact on phytoplankton growth (as chlorophyll concentration) was observed, in seven out of 11 experiments we could discern changes in the algal species that became dominant in flasks with different organic and inorganic N sources. Our results are consistent with the proposition that components of the DON pool are not only an important potential, direct or indirect N source for phytoplankton, but also that different algal species can exploit these sources with varying capabilities so that different N substrates may selectively stimulate the development of dominant algal species.   相似文献   

2.
Summary The ability of over 160 organic nitrogen compounds to serve as sole sources of nitrogen for the growth in sterile culture ofNeurospora crassa, Chlorella vulgaris andSpirodela oligorrhiza has been tested. With some forms of organic nitrogen all three organisms grew as well as with the more usual inorganic forms. Neurospora had the ability to use a wider range of compounds than the other organisms. Some compounds, including a few native to the organism inhibited Spirodela.  相似文献   

3.
Techniques are compared for the evaluation of nutrient sources in which the potential nutrients are in contact with algae over their entire culture period versus relatively short-term exposure tests. Different nitrogen and phosphorus compounds were shown to be utilized in darkness as well as in light and were equally available at pH 7 and 9. The availability of relatively insoluble nutrients–iron-phosphorus compounds and teeth for phosphorus, hair for nitrogen iron pyrites for iron, and marble for carbon–indicates that in many cases the equilibrium between soluble and insoluble forms allows algae to compete successfully with insoluble forms for nutrients. Apparently, factors other than mere insolubility prevent algae from obtaining available nitrogen or phosphorus from phosphate rock or lake muds. Live algae or aquatic weeds with adequate or surplus nitrogen or phosphorus were shown to not share their nutrients with nitrogen- or phosphorus-limited algae, whereas the nutrients of killed algae or aquatic weeds were readily used by nutrient-limited algae. The facts–(1) that live algae and aquatic weeds do not share their adequate or surplus nutrients with nutrient-limited algae and (2) that lake muds do not provide readily available nitrogen or phosphorus–indicate that once lake waters are stripped of available nutrients by plant production, further plant production will depend upon nutrients from continuous sources of nutrients, such as wastewater effluents.  相似文献   

4.
5.
Four newly isolated marine strains of Beggiatoa and five freshwater strains were tested for nitrogen fixation in slush agar medium. All strains reduced acetylene when grown microaerobically in media containing a reduced sulfur source and lacking added combined nitrogen. The addition of 2 mmol N, as nitrate or ammonium salts, completely inhibited this reduction. Although not optimized for temperature or cell density, acetylene reduction rates ranged from 3.2 to 12 nmol·mg prot-1 min-1. Two freshwater strains did not grow well or reduce acetylene in medium lacking combined nitrogen if sulfide was replaced by thiosulfate. Two other strains grew well in liquid media lacking both combined nitrogen and reduced sulfur compounds but only under lowered concentrations of air. All freshwater strains grew well in medium containing nitrate as the combined nitrogen source. Since they did not reduce acetylene under these conditions, we infer that they can assimilate nitrate.  相似文献   

6.
Heterocystous nitrogen-fixing blue-green algae consist of filaments containing two types of cells: the heterocysts, responsible for ammonia synthesis, and vegetative cells, which exhibit normal photosynthesis and reproductive growth. This unique biological system could be used for the conversion of solar energy into organic fertilizer, through cultivation of these algae in open ponds. The most immediately practical approach is the use of this process in conjunction with waste-water treatment. Initial experiments have involved the isolation of sewage effluents-adapted algae and their cultivation in small-scale ponds. Significant rates of biomass production and nitrogen fixation were achieved, but a substantial improvement is still needed for possible practical applications. The potential economics of such systems and the need for new sources of fertilizers are discussed.  相似文献   

7.
Analysis of soil solution from forest sites dominated by Eucalyptus grandis and Eucalyptus maculata indicates that soluble forms of organic nitrogen (amino acids and protein) are present in concentrations similar to those of mineral nitrogen (nitrate and ammonium). Experiments were conducted to determine the extent to which mycorrhizal associations might broaden nitrogen source utilization in Eucalyptus seedlings to include organic nitrogen. In isolation, species of ectomycorrhizal fungi from northern Australia show varying abilities to utilize mineral and organic forms of nitrogen as sole sources. Pisolithus sp. displayed strongest growth on NH4+, glutamine and asparagine, but grew poorly on protein, while Amanita sp. grew well both on mineral sources and on a range of organic sources (e.g. arginine, asparagine, glutamine and protein). In sterile culture, non-mycorrhizal seedlings of Eucalyptus grandis and Eucalyptus maculata grew well on mineral sources of nitrogen, but showed no ability to grow on sources of organic nitrogen other than glutamine. In contrast, mycorrhizal seedlings grew well on a range of organic nitrogen sources. These observations indicate that mycorrhizal associations confer on species of Eucalyptus the ability to broaden their resource base substantially with respect to nitrogen. This ability to utilize organic nitrogen was not directly related to that of the fungal symbiont in isolation. Seedlings mycorrhizal with Pisolithus sp. were able to assimilate sources of nitrogen (in particular histidine and protein) on which the fungus in pure culture appeared to grow weakly. Experiments in which plants were fed 15N-labelled ammonium were undertaken in order to investigate the influence of mycorrhizal colonization on the pathway of nitrogen metabolism. In roots and shoots of all seedlings, 15N was incorporated into the amide group of glutamine, and label was also found in the amino groups of glutamine, glutamic acid, γ-aminobutyric acid and alanine. Mycorrhizal colonization appeared to have no effect on the assimilation pathway and metabolism of [15N]H4+; labelling data were consistent with the operation of the glutamate synthase cycle in plants infected with either Pisolithus sp. (which in isolation assimilates via the glutamate synthase cycle) or Elaphomyces sp. (which assimilates via glutamate dehydrogenase). It is likely that the control of carbon supply to the mycorrhizal fungus from the host may have a profound effect on both the assimilatory pathway and the range of nitrogen sources that can be utilized by the association.  相似文献   

8.
Cryptoendolithic microorganisms from stratified communities in Antarctic sandstone were studied for physiological diversity and possible interactions. Cultures of 25 bacteria, five fungi, and two green algae from one boulder grew with a wide variety of organic carbon or nitrogen sources, they exhibited varied exoenzymatic activities and were psychrophilic or psychrotrophic. Many isolates excreted vitamins into the medium and were stimulated by other vitamins. Organic acid excretion and siderophore formation were common, but antibiotic activity was rare. Plasmids were found in 24% of the bacteria, and many of these strains showed resistance to antibiotics and heavy metals. A small plasmid (2.9 kb) from strain AA-341 was electrotransferred into sensitive isolates, thereby rendering these resistant to amplicillin and Cr3+ Bacterial cultures in spent algal medium and coculture with algae demonstrated beneficial (rarely inhibitory) interactions. A search for free organic compounds in zones of the sandstone community revealed sugars, sugar alcohols, organic acids and amino acids-in many cases the same compounds that were excreted into the laboratory medium. Data presented here indicate low taxonomic but high physiological diversity among these heterotrophic cryptoendoliths. This physiological diversity, as well as the spatial separation in layers with distinct activities, allows coexistence within the community and contributes to the stability of this ecosystem.  相似文献   

9.
A microcosm study of nitrogen utilization in the Great Salt Lake,Utah   总被引:1,自引:0,他引:1  
Microcosms were used to study the effects of two inorganic nitrogen sources (ammonia and nitrate) and two organic nitrogen sources (urea and glutamic acid) on the growth of algae and bacteria found in the Great Salt Lake, Utah. Ammonia, nitrate and urea stimulated bacterial growth indirectly through increased algal production of unknown organic substances. Glutamic acid, representing readily available organic carbon and nitrogen, stimulated the bacteria directly. No nitrification was observed in the microcosms although nitrite was found when the microcosms were supplemented with nitrate. Lake sediment contained a number of anaerobic bacteria producing hydrogen sulfide, methane and other gases. Production of these gases was stimulated in the columns with high algal and bacterial activity.  相似文献   

10.
The growth response of the marine blue-green alga, Agmenellum quadruplicatum to 60 inorganic and organic nitrogen sources was studied. These compounds were offered as sole nitrogen sources. Most amino acids, most purines, and urea were good nitrogen sources for growth.  相似文献   

11.
淡水藻类在监测水质和净化污水中的应用   总被引:5,自引:0,他引:5  
淡水藻类作为水体中的初级生产者,分布广泛,适应性强,在水生生态系统食物链中占据着十分重要的地位,在水质监测中起着关键的作用。通过对藻类生长与水环境之间的相互关系进行简要的概述,探讨了pH值和氮磷对淡水藻类的生长的影响,以及淡水藻类的生长对外界环境的影响。藻类不但应用于水质监测,而且还能去除水体中的氮、磷等营养物质和其它有机物,对自然水域中的污水有良好的净化作用。重点论述淡水藻类在水质监测和污水净化中的作用以及利用淡水藻类来处理污水的方法。并提出了保护水资源的相关建议,为综合监测和治理水环境提供一定的理论依据和支持。  相似文献   

12.
Abstract The halophilic phototrophic bacterium Rhodospirillum salexigens was tested for growth on a variety of organic and inorganic nitrogenous compounds as sole nitrogen sources. In media containing acetate as carbon source, the amino acids glutamate, proline, and aspartate supported good growth of R. salexigens ; several other amino acids or ammonia did not support growth. Attempts to grow R. salexigens on ammonia led to the discovery that this organism excretes a highly basic substance under certain nitrogen nutritional conditions which raises the pH above that supporting growth. Cultures of R. salexigens transferred to media containing both pyruvate and acetate as carbon sources grew on ammonia as sole nitrogen source and the culture pH did not rise. Dual substrate experiments showed that R. salexigens utilized glutamate in preference to ammonia when both were present at equimolar concentrations.  相似文献   

13.
A total of 25 marine caulobacters were isolated from littoral marine sources. Several aspects of their physiology and morphology were examined, as well as their suitability for genetic manipulation in laboratory cultivation. Caulobacters were readily isolated from all sources, including samples from areas containing pollution-related organic compounds. All isolates grew best in media containing seawater, but eight strains grew if sea salts were replaced with NaCl alone, three strains grew at 1/10 the normal sea salt concentration, and one isolate grew, albeit poorly, in freshwater medium. Of the marine isolates, 12 strains grew under anaerobic conditions, indicating that some caulobacters are not obligately aerobic bacteria, as they are currently categorized. Although some freshwater caulobacters are able to oxidize manganese, this capability was not found in these marine caulobacters. Of the marine isolates, 10 strains were resistant to mercury chloride concentrations 10- to 20-fold greater than that tolerated by sensitive bacteria. However, a mercury reductase gene comparable with that found in R100-type plasmids was not detected by gene hybridization. With respect to the potential for genetic experimentation, most strains grew rapidly (3- to 4-h generation time at 30°C), producing colonies on solid media in 2 to 3 days. The isolates were sensitive to antibiotics commonly used in recombinant DNA experiments, and spontaneous drug-resistant mutants were selectable. Conjugal transfer of plasmids from Escherichia coli to several marine caulobacters was demonstrated for four broad-host-range plasmid incompatibility groups, by using both self-transmissible plasmids and cloning-oriented plasmids that require a helper plasmid. Conjugal transfer of broad-host-range plasmids between freshwater and marine caulobacters was also demonstrated in both directions. Native plasmids of approximately 100- to 150-kilobase sizes were found in 2 of the 25 marine Caulobacter strains. The native plasmids were present in relatively high copy number and appeared stable in laboratory culture. In short, the marine caulobacters appeared appropriate as candidates for genetic manipulation and the expression of selected genes in the marine environment.  相似文献   

14.
Metabolites from algae with economical impact   总被引:1,自引:0,他引:1  
In order to survive in a highly competitive environment, freshwater or marine algae have to develop defense strategies that result in a tremendous diversity of compounds from different metabolic pathways. Recent trends in drug research from natural sources have shown that algae are promising organisms to furnish novel biochemically active compounds. The current review describes the main substances biosynthesized by algae with potential economic impact in food science, pharmaceutical industry and public health. Emphasis is given to fatty acids, steroids, carotenoids, polysaccharides, lectins, mycosporine-like amino acids, halogenated compounds, polyketides and toxins.  相似文献   

15.
16.
An isolated guinea-pig ileum preparation was used to screen for bioactive compounds from algae. 212 culture supernatants and methanolic extracts of randomly chosen marine and freshwater algae were tested for their effect on electrically evoked muscle contractions (recorded as a change in tension) and on the resting muscle tone. 15 out of 42 (35%) of the marine algae tested and 5 out of 64 (8%) of freshwater algae gave positive results. Of the 20 algae giving positive results, 6 had previously been shown to produce bioactive compounds (mainly toxins) but we can find no reports in the literature of bioactive compounds from the remaining 14. Of these 14 cultures, 9 were axenic and therefore production of the biological activity can be assigned unambiguously to the alga. These results confirm the usefulness of the guinea-pig ileum preparation as a screen for bioactive compounds from microbial cultures.  相似文献   

17.
An increase in the concentration of riverine dissolved organic matter (DOM) has been observed during the last decades, and this material can stimulate marine plankton in coastal waters with significant freshwater input. We studied the effect of two size fractions of riverine high molecular weight dissolved organic matter (HMW DOM), isolated with tangential ultrafiltration, on the harmful dinoflagellate Alexandrium minutum and a natural isolate of marine bacteria under laboratory conditions. Both A. minutum and bacteria grew significantly better with the low MW DOM compared to both the high MW DOM fraction and controls (no DOM additions). This experiment demonstrates that the harmful algae A. minutum and bacteria benefit from larger molecules of river HMW DOM, and highlights the potential of A. minutum to utilize organic nitrogen from large DOM molecules. This ability may enhance their likelihood of success in estuaries/costal waters with a humic rich freshwater input, especially when the relative amount of large molecules within DOM is more pronounced.  相似文献   

18.
Four strains of the coccolithophore Emiliania huxleyi (CCMP strains 370, 373, 374, 379) were tested for their ability to grow on various nitrogen sources. All strains grew on ammonium, nitrate, and urea, although growth of CCMP379 on urea was low. Responses to other dissolved organic nitrogen (DON) sources varied. CCMP379 did not grow on any DON source other than urea. All other strains grew on one of the two tested amino acids: CCMP370 and CCMP373 on glutamine, and CCMP374 on alanine. All three of these strains also grew on hypoxanthine; in addition, two grew well on acetamide and one on ethanolamine. E. huxleyi strains also differed in their susceptibility to predation by the ciliate Strobilidium sp. CCMP374 was ingested at substantially higher rates than CCMP373 regardless of E. huxleyi growth condition. Ciliate feeding rates also depended on E. huxleyi growth condition. For CCMP374, feeding rates were 2× higher on growing E. huxleyi cells than on non-growing cells (average 27.5 versus 15.6 cells ciliate−1 h−1, respectively). For CCMP373, a relationship between E. huxleyi growth rate and ciliate feeding rate was not evident, but E. huxleyi grown on some N sources (ammonium, nitrate, urea) were ingested at consistently higher rates than E. huxleyi grown on other sources (ethanolamine, glutamine). Interstrain differences in the ability to utilize DON and resist predation may contribute to maintenance of high genetic diversity within this cosmopolitan, bloom-forming species.  相似文献   

19.
The effect of inorganic and organic nitrogen compounds on the synthesis of biomass and extracellular lipase by Oospora lactis was studied. Among the inorganic nitrogen sources ammonium sulphate and ammonium secondary phosphate and among the organic nitrogen sources yeast autolysate proved to be most beneficial for the lipase synthesis. Lipase activity and biomass accumulation in the medium containing yeast autolysate were greater than in the media containing the above ammonium salts. Lipase synthesis reached maximum in the nutrient medium containing yeast autolysate (0.7%) and ammonium sulphate (0.3%).  相似文献   

20.
Algal production of dissolved organic carbon and the regeneration of nutrients from dissolved organic carbon by bacteria are important aspects of nutrient cycling in the sea, especially when inorganic nitrogen is limiting. Dissolved free amino acids are a major carbon source for bacteria and can be used by phytoplankton as a nitrogen source. We examined the interactions between the phytoplankton species Emiliania huxleyi and Thalassiosira pseudonana and a bacterial isolate from the North Sea. The organisms were cultured with eight different amino acids and a protein as the only nitrogen sources, in pure and mixed cultures. Of the two algae, only E. huxleyi was able to grow on amino acids. The bacterium MD1 used all substrates supplied, except serine. During growth of MD1 in pure culture, ammonium accumulated in the medium. Contrary to the expectation, the percentage of ammonium regenerated from the amino acids taken up showed no correlation with the substrate C/N ratio. In mixed culture, the algae grew well in those cultures in which the bacteria grew well. The bacterial yields (cell number) were also higher in mixed culture than in pure culture. In the cultures of MD1 and T. pseudonana, the increase in bacterial yield (number of cells) over that of the pure culture was comparable to the bacterial yield in mixed culture on a mineral medium. This result suggests that T. pseudonana excreted a more-or-less-constant amount of carbon. The bacterial yields in mixed cultures with E. huxleyi showed a smaller and less consistent difference than those of the pure cultures of MD1. It is possible that the ability of E. huxleyi to use amino acids influenced the bacterial yield. The results suggest that interactions between algae and bacteria influence the regeneration of nitrogen from organic carbon and that this influence differs from one species to another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号