首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inflammatory conditions mediated by activated microglia lead to chronic neuro-degenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s diseases. This study was conducted to determine the effect of floridoside isolated from marine red algae Laurencia undulata on LPS (100 ng/ml) activated inflammatory responses in BV-2 microglia cells. The results show that floridoside has the ability to suppress pro-inflammatory responses in microglia by markedly inhibiting the production of nitric oxide (NO) and reactive oxygen species (ROS). Moreover, floridoside down-regulated the protein and gene expression levels of iNOS and COX-2 by significantly blocking the phosphorylation of p38 and ERK in BV-2 cells. Collectively, these results indicate that floridoside has the potential to be developed as an active agent for the treatment of neuro-inflammation. [BMB Reports 2013; 46(8): 398-403]  相似文献   

2.
Microglia-mediated cytotoxicity has been implicated in models of neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson's disease and Alzheimer's disease, but few studies have documented how neuroprotective signals might mitigate such cytotoxicity. To explore the neuroprotective mechanism of anti-inflammatory cytokines, we applied interleukin-4 (IL-4) to primary microglial cultures activated by lipopolysaccharide as well as to activated microglia cocultured with primary motoneurons. lipopolysaccharide increased nitric oxide and superoxide (O(2) (.-)) and decreased insulin-like growth factor-1 (IGF-1) release from microglial cultures, and induced motoneuron injury in microglia-motoneuron cocultures. However, lipopolysaccharide had minimal effects on isolated motoneuron cultures. IL-4 interaction with microglial IL-4 receptors suppressed and nitric oxide release, and lessened lipopolysaccharide-induced microglia-mediated motoneuron injury. The extent of nitric oxide suppression correlated directly with the extent of motoneuron survival. Although IL-4 enhanced release of free IGF-1 from microglia in the absence of lipopolysaccharide, it did not enhance free IGF-1 release in the presence of lipopolysaccharide. These data suggest that IL-4 may provide a significant immunomodulatory signal which can protect against microglia-mediated neurotoxicity by suppressing the production and release of free radicals.  相似文献   

3.
Ethyl pyruvate (EP), a simple derivative of endogenous pyruvate, has an anti-inflammatory function. Recently, the protective neurological effects of EP have been reported in cell culture and animal models of neurological diseases. The present study investigates the protective effects of EP on dopaminergic cell death in Parkinson’s disease models. The selective death of dopaminergic neurons in substantia nigra was prevented by EP in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse models. EP also suppressed the 1-methyl-4-pyridinium-induced cell death of SH-SY5Y cells and restored the phosphorylation of extracellular signal-regulated kinase. Thus, EP has neuroprotective effects of EP in Parkinson’s disease and its related signaling pathways.  相似文献   

4.
Hu X  Cui B  Zhou X  Xu C  Lu Z  Jiang H 《Molecular biology reports》2012,39(1):227-231
High mobility group box 1 protein (HMGB1) plays an important role in myocardial ischemia and reperfusion (I/R) injury. Ethyl pyruvate (EP), a potent reactive oxygen species scavenger, has been reported to inhibit myocardial apoptosis and reduce myocardial I/R injury. The aim of this study was to investigate the mechanism by which EP reduces myocardial I/R injury in rats. Anesthetized male rats were once treated with EP (50 mg/kg, i.p.) before ischemia, and then subjected to ischemia for 30 min followed by reperfusion for 4 h. Lactate dehydrogenase (LDH), creatine kinase (CK), malondialdehyde (MDA), superoxide dismutase (SOD) activity and infarct size were measured. HMGB1 expression was assessed by immunoblotting. The results showed that pretreatment of EP (50 mg/kg) could significantly reduce the infarct size and the levels of LDH and CK after 4 h reperfusion (all P < 0.05). EP could also significantly inhibit the increase of the MDA level, the decrease of the SOD level (both P < 0.05). Meanwhile, EP could significantly inhibit the expression of HMGB1 induced by I/R. The present study suggested that ethyl pyruvate could attenuate myocardial I/R injury by inhibiting HMGB1 expression.  相似文献   

5.
Ding H  Zhou M  Zhang RP  Xu SL 《生理学报》2010,62(6):547-554
Abundant evidence has suggested that neuroinflammation participates in the pathogenesis of Parkinson's disease (PD). The emerging evidence has supported that microglia may play key roles in the progressive neurodegeneration in PD and might be a promising therapeutic target. Ganoderma lucidum (GL), a traditional Chinese medicinal herb, has been shown potential neuroprotective effect in our clinical trials that lead us to speculate that it might possess potent anti-inflammatory and immunomodulating properties. To test this hypothesis, the present study investigated the potential neuroprotective effect of GL and underlying mechanism through inhibiting microglial activation using co-cultures of dopaminergic neurons and microglia. The cultures of microglia or MES23.5 cells alone or together were treated for 24 h with lipopolysaccharide (LPS, 0.25 μg/mL) as a positive control, GL extracts (50-400 μg/mL) or MES23.5 cell membrane fragments (150 μg/mL) were used in treatment groups. Microglia activation, microglia-derived harmful factors and [(3)H]dopamine ([(3)H]DA) uptake of MES23.5 cells were analyzed. The results showed that microglia were activated by LPS and MPP(+)-treated MES23.5 cell membrane fragments, respectively. Meanwhile, GL extracts significantly prevented the production of microglia-derived proinflammatory and cytotoxic factors, including nitric oxide, tumor necrosis factor-α (TNF-α) and interleukin 1β (IL-1β), in a dose-dependent manner and down-regulated the TNF-α and IL-1β expressions on mRNA level. In addition, GL extracts antagonized the reduction of [(3)H]DA uptake induced by MPP(+) and microglial activation. In conclusion, these results suggest that GL may be a promising agent for the treatment of PD through anti-inflammation.  相似文献   

6.
Viscum album (VA) preparations are extensively used as complementary therapy in cancer and are shown to exert anti-tumor activities which involve the cytotoxic properties, induction of apoptosis, inhibition of angiogenesis and several other immunomodulatory mechanisms. In addition to their application in cancer therapy, VA preparations have also been successfully utilized in the treatment of several inflammatory pathologies. Owing to the intricate association of inflammation and cancer and in view of the fact that several anti-tumor phytotherapeutics also exert a potent anti-inflammatory effect, we hypothesized that VA exerts an anti-inflammatory effect that is responsible for its therapeutic benefit. Since, inflammatory cytokine-induced cyclo-oxygenase-2 (COX-2) and prostaglandin E2 (PGE2) play a critical role in the pathogenesis of inflammatory diseases, we investigated the anti-inflammatory effect of VA on regulation of cyclo-oxygenase expression and PGE2 biosynthesis by using human lung adenocarcinoma cells (A549 cells) as a model. A549 cells were stimulated with IL-1β and treated with VA preparation (VA Qu Spez) for 18 hours. PGE2 was analysed in the culture supernatants by enzyme immunoassay. Expression of COX-2 and COX-1 proteins was analyzed by immunoblotting and the expression of COX-2 mRNA was assessed by semi-quantitative RT-PCR. We found that VA Qu Spez inhibit the secretion of IL-1β-induced PGE2 in a dose-dependent manner. Further, we also show that this inhibitory action was associated with a reduced expression of COX-2 without modulating the COX-1 expression. Together these results demonstrate a novel anti-inflammatory mechanism of action of VA preparations wherein VA exerts an anti-inflammatory effect by inhibiting cytokine-induced PGE2 via selective inhibition of COX-2.  相似文献   

7.
Inflammatory IL-6/STAT3 signaling is constitutively activated in diverse cancers and is associated with malignant cell proliferation, invasion and escape of antitumor immunosurveillance. Liraglutide, a glucagon-like peptide-1 (GLP-1) analog, is commonly used to treat insulin-resistant diabetes. In this study, for the first time, we showed that liraglutide remarkably improved the antitumor immune responses in hepatocellular carcinoma (HCC). Furthermore, we showed that the antitumor activity was mediated by nature killer cells (NKs) but not CD8+ T cells. Finally, we showed that liraglutide enhanced NK-mediated cytotoxicity by suppressing the IL-6/STAT3 signaling pathway in HCC cells. Our findings unveil a novel therapeutic role of liraglutide by manipulating the innate immunity in cancer therapy.  相似文献   

8.
9.
10.

Background

Desmosine and Isodesmosine (D/I) are cross-linking amino acids which are present only in mature elastin. Changes in their concentration in body fluids indicate changes in elastin degradation and can be a reflection of tissue elastase activity. This study was undertaken to determine whether continuous therapy with the long-acting bronchodilator Tiotropium bromide (TTP) could result in reductions in D/I as measured by mass spectrometry in plasma, urine and sputum.

Methods

Twelve not currently smoking patients with chronic obstructive pulmonary disease (COPD), never on TTP, were selected for study. Levels of D/I, along with measurements of FVC, FEV1 and FEV1/FVC. were determined before starting TTP daily, and then one and two months after.

Results

D/I decreased in plasma (10 of 12 patients), in sputum all (12 of 12), and in the percentage of free D/I in urine (10 of 12). Most patients showed slight increases in FVC and FEV1 percent predicted over two months.

Conclusion

The results are consistent with an effect of prolonged bronchodilitation by anti-cholinergic blockade to also result in reduced lung elastin degradation.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
Chronic kidney disease (CKD) is a traumatic disease with significant psychic consequences to the patient's overall physical condition. microRNA-206 (miR-206) has been reported to play an essential role in the development of various diseases. The purpose of the present study is to investigate the effect of miR-206 through the JAK/STAT signaling pathway on epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells and glomerulosclerosis in rats with CKD. The targeting relationship between miR-206 and ANXA1 was verified. To explore the role of miR-206 in CKD, the model of CKD rats was established to detect glomerular sclerosis index (GSI), contents of interleukin-6 (IL-6) and transforming growth factor-beta1 (TGF-β1), and expression of type IV collagen. Moreover, to further determine the roles of both miR-206 and the JAK/STAT signaling pathway in CKD, the gain- and loss-of function approaches were performed with the expression of ANXA1, α-SMA, E-cadherin, vimentin, N-cadherin, and the JAK/STAT signaling pathway-related genes detected. miR-206 negatively targeted ANXA1. Overexpressed miR-206 inhibited the degeneration and interstitial fibrosis of renal tubular epithelial cells, decreased GSI of rats, and the expression of type IV collagen, TGF-β1 and IL-6. Overexpressed miR-206 inhibited the degeneration of renal tubular epithelial cells, the expression of ANXA1, α-SMA, TGF-β1, p-STAT3, STAT3, p-STAT1, STAT1, p-JAK2, and JAK2, while promoted the expression of E-cadherin. Taken together the results, miR-206 inhibits EMT of renal tubular epithelial cells and glomerulosclerosis by inactivating the JAK/STAT signaling pathway via ANXA1 in CKD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号