首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phospholipase D-mediated hydrolysis of N-acylethanolamine phospholipids (NAPEs) releases anandamide and other N-acylethanolamines, resulting in different actions at cellular targets in the CNS. Recently, we have demonstrated that these N-acyl lipids accumulate in cultured neocortical neurons subjected to sodium azide-induced cell injury. We here extend the information on the NAPE response, reporting on the composition of N-acylspecies of NAPE, employing a new methodological approach of HPLC-coupled electrospray ionization mass spectrometry. Exposure to sodium azide (5 mM) increased the total amount of NAPE threefold over control levels; however, no alteration of the relative composition of NAPE species was detected. The anandamide precursor (20 : 4-NAPE) constituted only 0.1% of all NAPEs detected in the neurons. Total NAPE species in control cells amounted to 956-1,060 pmol/10(7) cells. Moreover, we detected the presence of an unknown NAPE species with molecular weight identical to 20 : 4-NAPE. This may suggest the presence of a putative stereoisomer of the anandamide precursor with at least one trans-configured double bond in the N-arachidonoyl moiety. These results show that with the present method, neuronal NAPE species can be identified and quantified with respect to N-acyl composition, including a trans-isomer of the anandamide precursor. The anandamide precursor is up-regulated to the same extent as other NAPEs upon neuronal injury.  相似文献   

2.
It has been demonstrated that the endogenous cannabinoid receptor ligand, anandamide, and other N-acylethanolamines (NAEs), accumulate during neuronal injury in vitro, a process that may be linked to the neuroprotective effects of NAEs. The crucial step for generation of NAEs is the synthesis of the corresponding precursors, N-acylethanolamine phospholipids (NAPEs). However, it is unknown whether this key event for NAE formation is regulated differently in the context of insults causing necrotic or apoptotic neuronal death. To address this question, we monitored a range of cortical NAPE species in three infant rat models of in vivo neurodegeneration: (i) necrosis caused by intrastriatal injection of NMDA (25 nmol); (ii) apoptosis induced by systemic administration of the NMDA-receptor antagonist (+)MK-801 (3 x 0.5 mg/kg, i.p.); and (iii) apoptosis following focal necrosis triggered by concussive head trauma. A marked increase of all NAPE species was observed in both hemispheres 4 and 24 h after NMDA-induced injury, with a relatively larger increase in N-stearoyl-containing NAPE species. Thus, the percentage of the anandamide precursor fell from 1.1 to 0.5 mol %. In contrast, administration of (+)MK-801 did not alter cortical NAPE levels. Concussion head trauma resulted in a similar but less pronounced upregulation of NAPE levels at both 4 and 24 h as compared to NMDA injections. Increased levels of NAPE 24 h post-trauma possibly reflect that necrosis is still ongoing at this time point. Consequently, our data suggest that excitotoxic necrotic mechanisms of neurodegeneration, as opposed to apoptotic neurodegeneration, have a profound effect on in vivo NAE precursor homeostasis.  相似文献   

3.
The production of N-acylethanolamine (NAE) is enhanced during inflammation. NAE is synthesized from phosphatidylethanolamine with N-acylphosphatidylethanolamine (NAPE) as a precursor. The amount of NAPE at the site of inflammation exceeds that of NAE. This evokes the possibility that NAPE possesses a biological function, as does NAE. We here examined if N-palmitoylphosphatidylethanolamine (NPPE), a precursor of N-palmitoylethanolamine, modulates the state of inflammation. We found that the level of the phagocytosis of latex beads, Staphylococcus aureus, Escherichia coli, or apoptotic cells by mouse peritoneal macrophages or J774A.1 macrophages was reduced in the presence of liposomes containing NPPE, while that of dextran remained unaffected. This action of NPPE seemed to be due to the inhibition of the activation of Rac1 and Cdc42 in macrophages. These results suggested that NAPE is bioactive lipid acting toward the termination of inflammation.  相似文献   

4.
N-Acylphosphatidylethanolamine (NAPE) and its hydrolysis product, N-acylethanolamine (NAE), are minor but ubiquitous lipids in multicellular eukaryotes. Various physiological processes are severely affected by altering the expression of fatty acid amide hydrolase (FAAH), an NAE-hydrolyzing enzyme. To determine the effect of altered FAAH activity on NAPE molecular species composition, NAE metabolism, and general membrane lipid metabolism, quantitative profiles of NAPEs, NAEs, galactolipids, and major and minor phospholipids for FAAH mutants of Arabidopsis were determined. The NAPE molecular species content was dramatically affected by reduced FAAH activity and elevated NAE content in faah knockouts, increasing by as much as 36-fold, far more than the NAE content, suggesting negative feedback regulation of phospholipase D-mediated NAPE hydrolysis by NAE. The N-acyl composition of NAPE remained similar to that of NAE, suggesting that the NAPE precursor pool largely determines NAE composition. Exogenous NAE 12:0 treatment elevated endogenous polyunsaturated NAE and NAPE levels in seedlings; NAE levels were increased more in faah knockouts than in wild-type or FAAH overexpressors. Treated seedlings with elevated NAE and NAPE levels showed impaired growth and reduced galactolipid synthesis by the "prokaryotic" (i.e., plastidic), but not the "eukaryotic" (i.e., extraplastidic), pathway. Overall, our data provide new insights into the regulation of NAPE-NAE metabolism and coordination of membrane lipid metabolism and seedling development.  相似文献   

5.
N-acylphosphatidylethanolamine (NAPE) is a minor phospholipid resulting from the transfer of an acyl chain from an acyl donor to the primary amine of the ethanolamine moiety of phosphatidylethanolamine (PE). Occurring in plant and animal kingdoms as well as in prokaryotic cells, it is synthesized in higher amounts in membranes during cellular stresses and tissue damage, and it is widely thought to be the precursor of the lipid mediator, N-acylethanolamine (NAE), which modulates the endocannabinoid signaling pathway and therefore regulates various physiological processes. However, recent studies have shown that NAPE is also a bioactive molecule that is involved in several physiological functions. The present paper reviews the occurrence of NAPE in animals and plants and focuses on the various properties of NAPE observed in vitro and in vivo. The different metabolic pathways promoting the synthesis and degradation of NAPE are also discussed and the differences between animals and plants are underlined.  相似文献   

6.
Previous studies with tobacco (Nicotiana tabacum L.) cell suspensions indicated that elicitation of defense response (production of phytoalexins) with xylanase (1,4-β-D-xylanxylanohydrolase: EC 3.2.1.8) resulted in a dramatic acylation of phytosterols (Moreau et al. 1994). N-acylphosphatidylethanolamine (NAPE), an acylated derivative of phosphatidylethanolamine (PE), was recently demonstrated to be synthesized in vivo in plant tissues (Chapman and Moore 1993a). Here we report that acylation of PE was increased in elicitor-treated cells. NAPE levels increased 3-fold (from 1.6 to 4.8 mol% of total phospholipids) after a 2-h treatment of cell suspensions with xylanase (1 δg ml?1). Specific activity of NAPE synthase increased in parallel with NAPE levels. Levels of NAPE and NAPE synthase activity declined during the period of 2–4 h after elicitation while levels of acylated sterolglycosides (ASG) continued to increase. Radiolabeling studies with [2?14C]-ethanolamine confirmed that three times as much NAPE was synthesized in elicitor-treated cells compared to that in unelicited cells. Patterns of incorporation of [1-14C]-palmitic acid into membrane phospholipids in elicitor-treated cells suggested that increased acylation of lipids may be a result of changes in the acyl-coenzyme A pool. Treatment of cells with purified ethylene biosynthesis-inducing xylanase (EIX; 1 δg ml?1 cells) resulted in increased levels of NAPE synthase activity comparable to those observed with the commercial preparations of xylanase. Boiled xylanase did not elicit an increase in the specific activity of NAPE synthase. Collectively our results demonstrate that the accumulation of NAPE in tobacco cells is attributable to increased activity of NAPE synthase. This suggests that NAPE may be specifically synthesized to play a protective role in membranes of plant cells as has been suggested for membranes of damaged animal cells.  相似文献   

7.
N-acylphosphatidylethanolamine (NAPE) and N-acylplasmenylethanolamine (pNAPE) are widely found phospholipids, and they are precursors for N-acylethanolamines, a group of compounds that has a variety of biological effects and encompasses the endocannabinoid anandamide. NAPE and pNAPE are synthesized by the transfer of an acyl chain from a donor phospholipid, to the amine in phosphatidylethanolamine or plasmenylethanolamine. NAPE has been reported to stabilize model membranes during brain ischemia, and to modulate food intake in rodents, thus having bioactive effects besides its precursor role. This paper reviews the metabolism, occurrence and assay of NAPE and pNAPE, and discusses the putative biological functions in mammals of these phospholipids. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   

8.
The activation of N-acylphosphatidylethanolamine (NAPE) metabolism in plants appears to be associated mostly with cellular stresses. In response to pathogen elicitors, NAPE is hydrolzyed by phospholipase-D (PLD), and corresponding medium-chain, saturated N-acylethanolamines (NAEs) are released by plant cells where they act as lipid mediators to modulate ion flux and activate defense gene expression. In desiccated seeds of higher plants, long-chain, saturated and unsaturated NAEs are prevalent, but are rapidly metabolized during the first few hours of imbibition, a period of substantial osmotic stress. NAPE synthesis is increased in seeds during this same period of rapid rehydration. A membrane-bound enzyme designated NAPE synthase has been purified from imbibed cottonseeds and its unusual biochemical properties suggest that it may scavenge free fatty acids in vivo. This feature of NAPE metabolism may be unique to higher plants a may be a mechanism for the rapid recycling of fatty acids back into membrane-associated NAPE. Altogether, increasing evidence indicates that NAPE metabolism in plants shares functional similarities with NAPE metabolism in animal systems, including signal transduction and cellular protection. In particular, the emerging role of released NAEs as lipid mediators in plant defense signaling represents an intriguing parallel to 'endocannabinoid signaling' in several mammalian cell types.  相似文献   

9.
The mechanism of anorectic action of several serotonin uptake inhibitors was investigated by comparing their anorectic potencies with several biochemical and pharmacological properties and in reference to the novel compound SL 81.0385. The anorectic effect of the potent serotonin uptake inhibitor SL 81.0385 (ED50 = 4 mg/kg, i.p.) was potentiated by pretreatment with 5-hydroxytryptophan and blocked by the serotonin receptor antagonist metergoline. A good correlation (r = 0.98, p less than 0.01) was obtained between the ED50 values of anorectic action and the ED50 values of serotonin uptake inhibition in vivo (but not in vitro) for several specific serotonin uptake inhibitors. Most of the drugs tested displaced [3H]-mazindol from its binding to the anorectic recognition site in the hypothalamus, except the pro-drug zimelidine which was inactive (IC50 greater than 100 microM). Excluding zimelidine, a good correlation (r = 0.835, p less than 0.01) was obtained between the affinities of these drugs for [3H]-mazindol binding and their anorectic action indicating that their anorectic activity may be associated with an effect mediated through this site. Taken together these results suggest that the anorectic action of serotonin uptake inhibitors is directly associated to their ability to inhibit serotonin uptake and thus increasing the synaptic levels of serotonin. The interactions of these drugs with the anorectic recognition site labelled with [3H]-mazindol is discussed in connection with the serotonergic regulation of carbohydrate intake.  相似文献   

10.
N-Acylphosphatidylethanolamine (NAPE) is synthesized from freefatty acids and phosphatidylethanolamine (PE) by a membrane-boundacyltransferase enzyme designated NAPE synthase. Here we reportthe subcellular location of NAPE synthase in cotyledons of germinatedcotton seedlings. Organelle marker enzyme assays and transmissionelectron microscopy were used to evaluate cellular fractionsseparated by differential centrifugation, sucrose-density gradientcentrifugation, and aqueous two-phase partitioning. NAPE synthasewas associated with fractions enriched in ER, Golgi and plasmamembranes. NAPE synthase was not located in mitochondria, plastids,peroxi-somes, or cytosol. Consistent with these observations,NAPE synthase also was localized in membranes of the secretorypathway in spinach leaves. Because PE is synthesized primarilyin the ER, these results suggest that JV-acyla-tion of PE maybe a lipid modification of the compartments of the secretorypathway providing a mechanism for supplying NAPE to the plasmamembrane. These data are particularly relevant given the recentfindings that NAPE biosynthesis is increased in elicitor-treatedplant cells [Chapman et al. (1995) Physiol. Plant. 95: 120]. (Received July 25, 1997; Accepted October 6, 1997)  相似文献   

11.
Abstract: Glutamate-induced formation of N-acylethanolamine (NAE) and N-acylphosphatidylethanolamine (NAPE) was studied in primary cultures of mouse neocortical neurons prelabeled with [14C]ethanolamine. The formation of these two lipids was dependent on the maturity of the cell culture; i.e., no glutamate-induced formation was seen in 2-day-old cultures, whereas glutamate induced a pronounced formation in 6-day-old cultures. The calcium ionophore A23187 (2 µM) stimulated, within 2 h, formation of NAPE in 2-day-old cultures (fourfold) as well as in 6-day-old cultures (eightfold). Glutamate exerted its effect via NMDA receptors as seen by the inhibitory action of the NMDA-selective receptor antagonists d -(?)-2-amino-5-phosphonovalerate and N-(1-(2-thienyl)-cyclohexyl)piperidine and the lack of effect of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate-receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). In 6-day-old cultures, exposure to NMDA (100 µM for 24 h) induced a linear increase in the formation of NAPE and NAE as well as a 40–50% neuronal death, as measured by a decrease in cellular formazan formation [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay]. The increase in NAPE and NAE could be detected earlier than the neuronal death. Neither cyclic AMP, cyclic GMP, nitric oxide, protein kinase C, nor peroxidation appears to be involved in the formation of NAPE and NAE, as assessed by the use of different pharmacological agents. Exposure to 5 mM NaN3 for 8 h resulted in a >80% decrease in the cellular MTT staining and a pronounced linear increase in the formation of NAE and NAPE (reaching 25–30% of total labeling). [14C]Anandamide was also formed in [14C]arachidonic acid-labeled neurons exposed to NaN3. No NAPE formation was detected in A23187-stimulated mouse astrocytes, rat Leydig cells and cardiomyocytes, and several other cells. These results suggest that the glutamate-induced formation of NAPE and NAE was mediated by the NMDA receptor and the formation of these lipids may be associated with neuronal death.  相似文献   

12.
The acidic phospholipid requirement of the predominant particulate beta-glucosidase of mammalian spleen and liver was investigated using a series of N-acyl derivatives of dioleoyl phosphatidylethanolamine (PE). The PE, a neutral phospholipid, was converted to an acidic lipid, (N-acyl)-phosphatidylethanolamine (NAPE) by acylation of the amino group with different fatty acyl chains. Lysosomal beta-glucosidases from rat liver and spleens of controls and patients with various types of Gaucher's disease were solubilized and delipidated by extraction with sodium cholate and 1-butanol. All members of the NAPE series tested were effective activators of the delipidated rat liver beta-glucosidase, and the stimulatory power of the NAPE family increased with increasing chain length of the fatty acid substitution. In contrast, dioleoyl-PE had no effect on beta-glucosidase activity. A heat-stable factor (HSF) purified from the spleen of a patient with Gaucher's disease significantly increased the sensitivity of the rat liver beta-glucosidase to all of the NAPE derivatives. The maximum stimulation achieved in the presence of HSF was independent of N-acyl chain length. Compared to the potent activator, phosphatidylserine (PS), (N-acetyl)-PE and (N-linoleoyl)-PE were half as effective as activators of beta-glucosidase from control human spleen. PS stimulated the beta-glucosidase of type 1 nonneurologic Gaucher's disease, but none of the NAPE compounds activated it. Neither PS nor any of the (N-acyl)-PE compounds could activate a delipidated preparation of beta-glucosidase obtained from the spleen of a neurologic case. These results indicate that although the presence of a net negative charge on a phospholipid confers upon it an ability to reconstitute beta-glucosidase activity to the normal, nonmutant enzyme, it is insufficient to permit differentiation of the various types of Gaucher's disease.  相似文献   

13.
N-acyl-ethanolamine phospholipids (NAPE) can be formed as a stress response during neuronal injury, and they are precursors for N-acyl-ethanolamines (NAE), some of which are endocannabinoids. The levels of NAPE accumulated during post-decapitative ischemia (6 h at 37 degrees C) were studied in rat brains of various age (1, 6, 12, 19, 30, and approximately 70 days) by the use of (31)P NMR spectroscopy of lipid extracts. This ability to accumulate NAPE was compared with the activity of N-acyltransferase and of NAPE-hydrolyzing phospholipase D (NAPE-PLD) in brain microsomes. These two enzymes are involved in the formation and degradation of NAPE, respectively.The results showed that 1) the ability to accumulate NAPE during post-decapitative ischemia is especially high in the youngest rats and is markedly reduced in older brains [in 1-day-old rat brains NAPE accumulated to 1.5% of total phospholipids, while in 30-day-old rat brains NAPE accumulation could not be detected (detection limit 0.09%)] and 2) this age pattern of accumulation can be explained by a combination of the decreased activity of N-acyltransferase and the increased activity of NAPE-PLD during development. These results point out that it would be advantageous to investigate a potential cytoprotective role of NAPE in the brains of very young rats.  相似文献   

14.
Obestatin is a recently discovered peptide produced in the stomach, which was originally described to suppress food intake and decrease body weight in experimental animals. We investigated fasting plasma obestatin levels in normal weight, obese and anorectic women and associations of plasma obestatin levels with anthropometric and hormonal parameters. Hormonal (obestatin, ghrelin, leptin, insulin) and anthropometric parameters and body composition were examined in 15 normal weight, 21 obese and 15 anorectic women. Fasting obestatin levels were significantly lower in obese than in normal weight and anorectic women, whereas ghrelin to obestatin ratio was increased in anorectic women. Compared to leptin, only minor differences in plasma obestatin levels were observed in women who greatly differed in the amount of fat stores. However, a negative correlation of fasting obestatin level with body fat indexes might suggest a certain role of obestatin in the regulation of energy homeostasis. A significant relationship between plasma obestatin and ghrelin levels, independent of anthropometric parameters, supports simultaneous secretion of both hormones from the common precursor. Lower plasma obestatin levels in obese women compared to normal weight and anorectic women as well as increased ghrelin to obestatin ratio in anorectic women might play a role in body weight regulation in these pathologies.  相似文献   

15.
Recently, the biosynthesis of an unusual membrane phospholipid, N-acylphosphatidylethanolamine (NAPE), was found to increase in elicitor-treated tobacco (Nicotiana tabacum L.) cells (K.D. Chapman, A. Conyers-Hackson, R.A. Moreau, S. Tripathy [1995] Physiol Plant 95: 120–126). Here we report that before induction of NAPE biosynthesis, N-acylethanolamine (NAE) is released from NAPE in cultured tobacco cells 10 min after treatment with the fungal elicitor xylanase. In radiolabeling experiments [14C]NAE (labeled on the ethanolamine carbons) increased approximately 6-fold in the culture medium, whereas [14C]NAPE associated with cells decreased approximately 5-fold. Two predominant NAE molecular species, N-lauroylethanolamine and N-myristoylethanolamine, were specifically identified by gas chromatography-mass spectrometry in lipids extracted from culture medium, and both increased in concentration after elicitor treatment. NAEs were found to accumulate extracellularly only. A microsomal phospholipase D activity was discovered that formed NAE from NAPE; its activity in vitro was stimulated about 20-fold by mastoparan, suggesting that NAPE hydrolysis is highly regulated, perhaps by G-proteins. Furthermore, an NAE amidohydrolase activity that catalyzed the hydrolysis of NAE in vitro was detected in homogenates of tobacco cells. Collectively, these results characterize structurally a new class of plant lipids and identify the enzymatic machinery involved in its formation and inactivation in elicitor-treated tobacco cells. Recent evidence indicating a signaling role for NAPE metabolism in mammalian cells (H.H.O. Schmid, P.C. Schmid, V. Natarajan [1996] Chem Phys Lipids 80: 133–142) raises the possibility that a similar mechanism may operate in plant cells.NAPE is a widespread, albeit minor, membrane phospholipid in animal and plant tissues (Schmid et al., 1990; Chapman and Moore, 1993). Its unusual structural features (a third fatty acid moiety linked to the amino head group of PE) impart stabilizing properties to membrane bilayers (Domingo et al., 1994; LaFrance et al., 1997). NAPE and its hydrolysis products, NAEs, are known to accumulate in vertebrate tissues under pathological conditions (for review, see Schmid et al., 1990). Recently, there has been renewed interest in NAEs because of the contention that anandamide (N-arachidonylethanolamine) is an endogenous ligand for the cannabinoid receptor in mammalian brain (Devane et al., 1992; Fontana et al., 1995; Schmid et al., 1996). The likely route for NAE formation in neural and nonneural tissues, although the matter of some debate, is via the signal-mediated hydrolysis of NAPE (DiMarzo et al., 1994; Schmid et al., 1996; Sugiura, et al., 1996).In plants little is known regarding the catabolism of NAPE. In cottonseed microsomes NAPE was metabolized to NAE or NAlysoPE by PLD- or PLA-type activities, respectively (Chapman et al., 1995b). However, the metabolic fate of NAPE in vivo and the factors that regulate NAPE hydrolysis remain largely unknown. We previously noted that the biosynthesis of NAPE was increased in elicitor-treated cell suspensions of tobacco (Nicotiana tabacum L.). Here we extend our investigations with this model system to examine NAPE catabolism by plant cells in vivo. NAE was released from NAPE, and it accumulated extracellularly. We identified by GC-MS these tobacco NAEs as N-lauroylethanolamine and N-myristoylethanolamine. These NAEs were increased in elicitor-treated cell suspensions. Furthermore, we detected the enzymatic machinery capable of the release and the degradation of NAEs in tobacco cells. To our knowledge this represents the first identification of the NAE molecular species in plant cells. It is tempting to speculate that NAPE hydrolysis in elicitor-treated plant cells may be involved in a signaling pathway analogous to that found in mammalian cells.  相似文献   

16.
We recently demonstrated that cotyledons of cotton (Gossypium hirsutum L.) seedlings synthesize N-acylphosphatidylethanolamine (NAPE), an unusual acylated derivative of phosphatidylethanolamine (PE), during postgerminative growth (K.D. Chapman and T.S. Moore [1993] Arch Biochem Biophys 301: 21-33). Here, we report the discovery of an acyltransferase enzyme, fatty acid: diacylphosphatidylethanolamine N-acyltransferase (designated NAPE synthase), that synthesizes NAPE from PE and free fatty acids (FFA) in cottonseed microsomes. [14C]NAPE was synthesized from [14C]palmitic acid and endogenous PE in a time-, pH-, temperature-, and protein concentration-dependent manner. [14C]Palmitic acid was incorporated exclusively into the N-acyl position of NAPE. [14C]palmitoyl coenzyme A (CoA) and [14C]-dipalmitoyl phosphatidylcholine (PC) were poor acyl donors for the synthesis of NAPE (i.e. 200- and 3000-fold lower incorporation efficiency than palmitic acid, respectively). Synthesis of NAPE from palmitoyl-CoA and dipalmitoyl-PC was observed only after the release of FFA in microsomes. We observed a temperature optimum of 45[deg]C and a pH optimum of 8.0 for the synthesis of [14C]NAPE from [14C]palmitic acid (or from [14C]PE). NAPE synthase activity showed no apparent divalent cation requirement. Notably, activity was stimulated by HPO42-, HCO3-, SO42-, and NADPH, whereas activity was inhibited by Ca2+, Mn2+, Cd2+, ATP, ADP, flavin adenine disnucleotide, and flavin mononucleotide. Other nucleotide triphosphates (GTP and CTP) and pyridine dinucleotides (NAD, NADH, and NADP) did not appreciably affect NAPE synthase activity. Initial velocity measurements of NAPE synthase activity at increasing concentrations of palmitic acid showed non-Michaelis-Menten, biphasic kinetics. A high-affinity site (S0.5 = 7.2 [mu]M, Vmax = 18.8 nmol h-1 mg-1 of protein) and a low-affinity site (S0.5 = 32.0 [mu]M, Vmax = 44.9 nmol h-1 mg-1 of protein) were identified. Both sites exhibited positive cooperativity. Adding myristic, stearic, or oleic acids at equimolar amounts reduced the incorporation of [14C]palmitic acid into NAPE at low concentrations (10 [mu]M, high-affinity site) but not at high concentrations (50 [mu]M, low-affinity site), indicating that the two putative sites can be distinguished by their fatty acid preferences.  相似文献   

17.
ABSTRACT

We previously found that equol, a metabolite of intestinal bacterial conversion from soy isoflavone daidzein, has female-specific anorectic effects. In the present study, we used seven-week-old female ovariectomized (OVX) Sprague Dawley rats to test the hypothesis that the anorectic effect of dietary daidzein may be attributed to delayed gastric emptying. Results suggest that dietary daidzein delays gastric emptying and that it has an anorectic effect with residual gastric contents, but not without gastric contents. Dietary equol significantly decreased daily food intake in the OVX rats without sleeve gastrectomy, but not in those with sleeve gastrectomy, suggesting that the accumulation of food in the stomach is required for the anorectic effect of equol to occur. These results support the hypothesis that the anorectic effect of dietary daidzein is attributed to delayed gastric emptying.  相似文献   

18.
A minor phospholipid was isolated from potato (Solanum tuberosum L. cv Bintje) cells, chromatographically purified, and identified by electrospray ionization mass spectrometry as N-acylphosphatidylethanolamine (NAPE). The NAPE level was low in unstressed cells (13 +/- 4 nmol g fresh weight(-1)). According to acyl chain length, only 16/18/18 species (group II) and 18/18/18 species (group III) were present. NAPE increased up to 13-fold in anoxia-stressed cells, but only when free fatty acids (FFAs) started being released, after about 10 h of treatment. The level of groups II and III was increased by unspecific N-acylation of phosphatidylethanolamine, and new 16/16/18 species (group I) appeared via N-palmitoylation. NAPE also accumulated in aerated cells treated with NaN(3) plus salicylhydroxamate. N-acyl patterns of NAPE were dominated by 18:1, 18:2, and 16:0, but never reflected the FFA composition. Moreover, they did not change greatly after the treatments, in contrast with O-acyl patterns. Anoxia-induced NAPE accumulation is rooted in the metabolic homeostasis failure due to energy deprivation, but not in the absence of O(2), and is part of an oncotic death process. The acyl composition of basal and stress-induced NAPE suggests the existence of spatially distinct FFA and phosphatidylethanolamine pools. It reflects the specificity of NAPE synthase, the acyl composition, localization and availability of substrates, which are intrinsic cell properties, but has no predictive value as to the type of stress imposed. Whether NAPE has a physiological role depends on the cell being still alive and its compartmentation maintained during the stress period.  相似文献   

19.
Bioactive N-acylethanolamines (NAEs), including N-palmitoylethanolamine, N-oleoylethanolamine, and N-arachidonoylethanolamine (anandamide), are formed from membrane glycerophospholipids in animal tissues. The pathway is initiated by N-acylation of phosphatidylethanolamine to form N-acylphosphatidylethanolamine (NAPE). Despite the physiological importance of this reaction, the enzyme responsible, N-acyltransferase, remains molecularly uncharacterized. We recently demonstrated that all five members of the HRAS-like suppressor tumor family are phospholipid-metabolizing enzymes with N-acyltransferase activity and are renamed HRASLS1-5 as phospholipase A/acyltransferase (PLA/AT)-1-5. However, it was poorly understood whether these proteins were involved in the formation of NAPE in living cells. In the present studies, we first show that COS-7 cells transiently expressing recombinant PLA/AT-1, -2, -4, or -5, and HEK293 cells stably expressing PLA/AT-2 generated significant amounts of [(14)C]NAPE and [(14)C]NAE when cells were metabolically labeled with [(14)C]ethanolamine. Second, as analyzed by liquid chromatography-tandem mass spectrometry, the stable expression of PLA/AT-2 in cells remarkably increased endogenous levels of NAPEs and NAEs with various N-acyl species. Third, when NAPE-hydrolyzing phospholipase D was additionally expressed in PLA/AT-2-expressing cells, accumulating NAPE was efficiently converted to NAE. We also found that PLA/AT-2 was partly responsible for NAPE formation in HeLa cells that endogenously express PLA/AT-2. These results suggest that PLA/AT family proteins may produce NAPEs serving as precursors of bioactive NAEs in vivo.  相似文献   

20.
CRF and melanocortin (MSH/ACTH) peptides share a number of central effects including anorexia and grooming. The effects of CRF may be secondary, due to CRF's effects on melanocortin peptide release. We investigated if the newly discovered selective melanocortin 4 receptor antagonist HS014 could influence CRF induced anorexia and grooming. The data show that ICV administration of CRF (3 mg/rat), significantly reduced food intake, feeding time and feeding episodes whereas it increased grooming time and grooming episodes. HS014 (5 mg/rat), that previously has been shown to antagonize the anorectic effect and the excessive grooming induced by alpha-MSH, did however not influence any of the behavioral effects induced by CRF when the peptides were administered together. The data indicate that the anorectic and grooming effects of CRF are independent of pathways involving the MC4 receptors. These data suggest that the anorectic and grooming effect of CRF are not due to a secondary effect caused by increase in release of melanocortins acting on the central MC receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号