首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pH dependence of stability of staphylococcal nuclease was studied with two independent equilibrium thermodynamic approaches. First, by measurement of stability in the pH range 9 to 3.5 by fluorescence-monitored denaturation with urea (Delta), GdnHCl (Delta), and heat (Delta). Second, by numerical integration of H(+) titration curves (Delta) measured potentiometrically under native (100 mM KCl) and unfolding (6.0 M GdnHCl) conditions. The pH dependence of stability described by Delta, Delta, and Delta was comparable but significantly different from the one described by Delta. The decrease in Delta between pH 9 and pH 4 was 4 kcal/mol greater than the decrease in Delta, Delta, and Delta in the same pH range. In 6 M GdnHCl, all the ionizable groups titrated with the pK(a) values of model compounds. Therefore, Delta represents the free energy difference between the native state (N) and an ensemble of unstructured, or expanded, and highly screened conformations. In contrast, the shallower pH dependence of stability described by Delta and by Delta between pH 9 and 5 was consistent with the titration of histidines with depressed, nativelike pK(a) values in the denatured state (D). These depressed pK(a) values likely reflect long-range electrostatic interactions with the other 29 basic groups and are a consequence of the compact character of the D state. The steep change in Delta and Delta at pH < 5 suggests that near pH 5 the structural and thermodynamic character of the D state shifts toward a state in which acidic residues titrate with normal pK(a) values, presumably because the electrostatic interactions with basic residues are lost, maybe as a consequence of an expansion.  相似文献   

2.
Alpha-lactalbumin (alpha-LA) is biosynthesized and stored at the smooth endoplasmic reticulum (ER), then transferred to the Golgi lumen when prolactin stimulation of lactose biosynthesis and secretion takes place. Because both environments are composed of membranes, it was of interest to examine the interactions of alpha-LA with relevant model and biological membranes. Using the ESR spin-labeled fatty acid analog 5-doxyl stearic acid, we found evidence reflecting the insertion of "acid-shocked" molten globule (MG) alpha-LA into lecithin or phosphatidylserine (PS) multi-lamellar vesicles. An additional approximately 3 G immobilization was observed in the alpha-LA-lecithin sample versus the lipid alone. With PS, the increased immobilization was almost 6 G, reflecting an enhanced effect caused by strong electrostatic interactions between the positively charged protein with the negatively charged headgroup at pH 2.4. This was also reflected in the broadening of the PS:alpha-LA phase transition. Additionally, we have demonstrated that alpha-LA in its apo-form also shows similar insertion characteristics with both model and natural lipid membranes. Upon addition of calcium, the apo-form is released from the membrane as the Ca(2+)-bound protein.  相似文献   

3.
The protein BBL undergoes structural transitions and acid denaturation between pH 1.2 and 8.0. Using NMR spectroscopy, we measured the pKa values of all the carboxylic residues in this pH range. We employed 13C direct-detection two-dimensional IPAP (in-phase antiphase) CACO NMR spectroscopy to monitor the ionization state of different carboxylic groups and demonstrated its advantages over other NMR techniques in measuring pKa values of carboxylic residues. The two residues Glu161 and Asp162 had significantly lowered pKa values, showing that these residues are involved in a network of stabilizing electrostatic interactions, as is His166. The other carboxylates had unperturbed values. The pH dependence of the free energy of denaturation was described quantitatively by the ionizations of those three residues of perturbed pKa, and, using thermodynamic cycles, we could calculate their pKas in the native and denatured states as well as the equilibrium constants for denaturation of the different protonation states. We also measured 13Cα chemical shifts of individual residues as a function of pH. These shifts sense structural transitions rather than ionizations, and they titrated with pH consistent with the change in equilibrium constant for denaturation. Kinetic measurements of the folding of BBL E161Q indicated that, at pH 7, the stabilizing interactions with Glu161 are formed mainly in the transition state. We also found that local interactions still exist in the acid-denatured state of BBL, which attenuate somewhat the flexibility of the acid-denatured state.  相似文献   

4.
The ability of a specific complex of human alpha-lactalbumin with oleic acid (HAMLET) to induce cell death with selectivity for tumor and undifferentiated cells was shown recently to be mediated by interaction of HAMLET with histone proteins irreversibly disrupting chromatin structure [Duringer, C., et al. (2003) J. Biol. Chem. 278, 42131-42135]. Here we show that monomeric alpha-lactalbumin (alpha-LA) in the absence of fatty acids is also able to bind efficiently to the primary target of HAMLET, histone HIII, regardless of Ca(2+) content. Thus, the modification of alpha-LA by oleic acid is not required for binding to histones. We suggest that interaction of negatively charged alpha-LA with the basic histone stabilizes apo-alpha-LA and destabilizes the Ca(2+)-bound protein due to compensation for excess negative charge of alpha-LA's Ca(2+)-binding loop by positively charged residues of the histone. Spectrofluorimetric curves of titration of alpha-LA by histone H3 were well approximated by a scheme of cooperative binding of four alpha-LA molecules per molecule of histone, with an equilibrium dissociation constant of 1.0 microM. Such a stoichiometry of binding implies that the binding process is not site-specific with respect to histone and likely is driven by just electrostatic interactions. Co-incubation of positively charged poly-amino acids (poly-Lys and poly-Arg) with alpha-LA resulted in effects which were similar to those caused by histone HIII, confirming the electrostatic nature of the alpha-LA-histone interaction. In all cases that were studied, the binding was accompanied by aggregation. The data indicate that alpha-lactalbumin can be used as a basis for the design of antitumor agents, acting through disorganization of chromatin structure due to interaction between alpha-LA and histone proteins.  相似文献   

5.
Marti DN  Bosshard HR 《Biochemistry》2004,43(39):12436-12447
The pH-dependent stability of a protein is strongly affected by electrostatic interactions between ionizable residues in the folded as well as unfolded state. Here we characterize the individual contributions of charged Glu and His residues to stability and determine the NMR structure of the designed, heterodimeric leucine zipper AB consisting of an acidic A chain and a basic B chain. Thermodynamic parameters are compared with those of the homologous leucine zipper AB(SS) in which the A and B chains are disulfide-linked. NMR structures of AB based on (1)H NMR data collected at 600 MHz converge, and formation of the same six interchain salt bridges found previously in disulfide-linked AB(SS) [Marti, D. N., and Bosshard, H. R. (2003) J. Mol. Biol. 330, 621-637] is indicated. While the structures of AB and AB(SS) are very similar, their pH-dependent relative stabilities are strikingly different. The stability of AB peaks at pH approximately 4.5 and is higher at pH 8 than at pH 2. In contrast, AB(SS) is most stable at acidic pH where no interhelical salt bridges are formed. The different energetic contributions of charged Glu and His residues to stability of the two coiled coil structures were evaluated from pK(a) shifts induced by folding. The six charged Glu residues involved in salt bridges stabilize leucine zipper AB by 4.5 kJ/mol yet destabilize disulfide-linked AB(SS) by -1.1 kJ/mol. Two non-ion-paired Glu charges destabilize AB by only -1.8 kJ/mol but AB(SS) by -5.6 kJ/mol. The higher relative stability of AB at neutral pH is not caused by more favorable electrostatic interactions in the folded leucine zipper. It is due mainly to unfavorable electrostatic interactions in the unfolded A and B chains and may therefore be called an inverse electrostatic effect. This study illustrates the importance of residual interactions in the unfolded state and how the energetics of the unfolded state affect the stability of the folded protein.  相似文献   

6.
7.
Lindman S  Linse S  Mulder FA  André I 《Biochemistry》2006,45(47):13993-14002
Charge-charge interactions in proteins are important in a host of biological processes. Here we use 13C NMR chemical shift data for individual aspartate and glutamate side chain carboxylate groups to accurately detect site-specific protonation equilibria in a variant of the B1 domain of protein G (PGB1-QDD). Carbon chemical shifts are dominated by changes in the electron distribution within the side chain and therefore excellent reporters of the charge state of individual groups, and the data are of high precision. We demonstrate that it is possible to detect local charge interactions within this small protein domain that stretch and skew the chemical shift titration curves away from "ideal" behavior and introduce a framework for the analysis of such convoluted data to study local charge-charge interactions and electrostatic coupling. It is found that, due to changes in electrostatic potential, the proton binding affinity, Ka, of each carboxyl group changes throughout the titration process and results in a linearly pH dependent pKa value. This result could be readily explained by calculations of direct charge-charge interactions based on Coulomb's law. In addition, the slope of pKa versus pH was dependent on screening by salt, and this dependence allowed the selective study of charge-charge interactions. For PGB1-QDD, it was established that mainly differences in self-energy, and not direct charge-charge interactions, are responsible for shifted pKa values within the protein environment.  相似文献   

8.
The effects of solvation and charge-charge interactions on the pKa of ionizable groups in bacteriorhodopsin have been studied using a macroscopic dielectric model with atom-level detail. The calculations are based on the atomic model for bacteriorhodopsin recently proposed by Henderson et al. Even if the structural data are not resolved at the atomic level, such calculations can indicate the quality of the model, outline some general aspects of electrostatic interactions in membrane proteins, and predict some features. The effects of structural uncertainties on the calculations have been investigated by conformational sampling. The results are in reasonable agreement with experimental measurements of several unusually large pKa shifts (e.g. the experimental findings that Asp96 and Asp115 are protonated in the ground state over a wide pH range). In general, we find that the large unfavorable desolvation energies of forming charges in the protein interior must be compensated by strong favorable charge-charge interactions, with the result that the titrations of many ionizable groups are strongly coupled to each other. We find several instances of complex titration behavior due to strong electrostatic interactions between titrating sites, and suggest that such behavior may be common in proton transfer systems. We also propose that they can help to resolve structural ambiguities in the currently available density map. In particular, we find better agreement between theory and experiment when a structural ambiguity in the position of the Arg82 side-chain is resolved in favor of a position near the Schiff base.  相似文献   

9.
NMR spectroscopy has been used to follow the urea-induced unfolding of the low pH molten globule states of a single-disulfide variant of human alpha-lactalbumin ([28-111] alpha-LA) and of two mutants, each with a single proline substitution in a helix. [28-111] alpha-LA forms a molten globule very similar to that formed by the wild-type four-disulfide protein, and this variant has been used as a model for the alpha-lactalbumin (alpha-LA) molten globule in a number of studies. The urea-induced unfolding behavior of [28-111] alpha-LA is similar to that of the four-disulfide form of the protein, except that [28-111] alpha-LA is less stable and has greater cooperativity in the loss of different elements of structure. For one mutant, L11P, the helix containing the mutation is highly destabilized such that it is completely unfolded even in the absence of urea. By contrast, for the other mutant, Q117P, the helix containing the mutation retains its compact structure. Both mutations, however, show significant long-range destabilization of the overall fold showing that the molten globule state has a degree of global cooperativity. The results reveal that different permutations of three of the four major alpha-helices of the protein can form a stable, locally cooperative, compact structural core. Taken together, these findings demonstrate that the molten globule state of alpha-LA is an ensemble of conformations, with different subsets of structures linked by a range of long-range interactions.  相似文献   

10.
Bovine alpha-lactalbumin (alpha-LA) is an alpha/beta protein which adopts partly folded states when dissolved at low pH (A-state), by removal of the protein-bound calcium at neutral pH and low salt concentration (apo-state), as well as in aqueous trifluoroethanol. Previous spectroscopic studies have indicated that the A-state of alpha-LA at pH 2.0, considered a prototype molten globule, has a native-like fold in which the helical core is mostly retained, while the beta subdomain is less structured. Here, we investigate the conformational features of three derivatives of alpha-LA characterized by a single peptide bond fission or a deletion of 12 or 19/22 amino-acid residues of the beta subdomain of the native protein (approximately from residue 34 to 57). These alpha-LA derivatives were obtained by limited proteolysis of the protein in its partly folded state(s). A nicked alpha-LA species consisting of fragments 1-,3-40 and 41-123 (nicked-LA) was prepared by thermolytic digestion of the 123-residue chain of alpha-LA in 50% (v/v) aqueous trifluoroethanol. Two truncated or gapped protein species given by fragments 1-40 and 53-123 (desbeta1-LA) or fragments 1-34 and 54-,57-123 (desbeta2-LA) were obtained by digestion of alpha-LA with pepsin in acid or with proteinase K at neutral pH in its apo-state, respectively. The two protein fragments of nicked or gapped alpha-LA are covalently linked by the four disulfide bridges of the native protein. CD measurements revealed that, in aqueous solution at neutral pH and in the presence of calcium, the three protein species maintain the helical secondary structure of intact alpha-LA, while the tertiary structure is strongly affected by the proteolytic cleavages of the chain. Temperature effects of CD signals in the far- and near-UV region reveal a much more labile tertiary structure in the alpha-LA derivatives, while the secondary structure is mostly retained even upon heating. In acid solution at pH 2.0, the three alpha-LA variants adopt a conformational state essentially identical to the molten globule displayed by intact alpha-LA, as demonstrated by CD measurements. Moreover, they bind strongly the fluorescent dye 8-anilinonaphthalene-1-sulfonate, which is considered a diagnostic feature of the molten globule of proteins. Therefore, the beta subdomain can be removed from the alpha-LA molecule without impairing the capability of the rest of the chain to adopt a molten globule state. The results of this protein dissection study provide direct experimental evidence that in the alpha-LA molten globule only the alpha domain is structured.  相似文献   

11.
Structure-based calculations of pKa values and electrostatic free energies of proteins assume that electrostatic effects in the unfolded state are negligible. In light of experimental evidence showing that this assumption is invalid for many proteins, and with increasing awareness that the unfolded state is more structured and compact than previously thought, a detailed examination of electrostatic effects in unfolded proteins is warranted. Here we address this issue with structure-based calculations of electrostatic interactions in unfolded staphylococcal nuclease. The approach involves the generation of ensembles of structures representing the unfolded state, and calculation of Coulomb energies to Boltzmann weight the unfolded state ensembles. Four different structural models of the unfolded state were tested. Experimental proton binding data measured with a variant of nuclease that is unfolded under native conditions were used to establish the validity of the calculations. These calculations suggest that weak Coulomb interactions are an unavoidable property of unfolded proteins. At neutral pH, the interactions are too weak to organize the unfolded state; however, at extreme pH values, where the protein has a significant net charge, the combined action of a large number of weak repulsive interactions can lead to the expansion of the unfolded state. The calculated pKa values of ionizable groups in the unfolded state are similar but not identical to the values in small peptides in water. These studies suggest that the accuracy of structure-based calculations of electrostatic contributions to stability cannot be improved unless electrostatic effects in the unfolded state are calculated explicitly.  相似文献   

12.
Singh SK  Kishore N 《Biopolymers》2006,83(3):205-212
Isothermal titration calorimetry has been used to demonstrate that the heat profile associated with the binding of 8-anilino-1-naphthalene sulfonic acid (ANS) with the acid induced molten globule state (A-state) of alpha-lactalbumin (alpha-LA) is different from that with the native and denatured states of the protein. The results corroborate the spectroscopic observations that ANS binds more strongly to the partially folded states of the protein compared to that with the native and denatured states. ANS binds to the A-state of alpha-LA at two independent binding sites that remain nearly the same in the temperature range of 10-35 degrees C. The number of moles of ANS binding at site 1 at 10 degrees C is 14.0+/-0.2 and remains nearly the same with rise in temperature. However, the number of moles of ANS molecules binding at site 2 show an increase from 1.6+/-0.2 at 10 degrees C to 4.1+/-0.1 at 35 degrees C. The deviation of the slope of enthalpy-entropy compensation plot from unity and nonadherence to van't Hoff dictates implies that the binding sites on the A-state of alpha-LA for ANS are not well defined and specific; rather, these binding sites are formed due to greater exposure of hydrophobic clusters in the A-state of the protein. The results for the first time demonstrate the use of isothermal titration calorimetry in characterizing the A-state of alpha-LA both qualitatively and quantitatively.  相似文献   

13.
Human alpha-lactalbumin (alpha-LA) is a four disulfide-bonded protein that adopts partially structured conformations under a variety of mildly denaturing conditions. At low pH, the protein is denatured but compact, with a high degree of secondary structure and a native-like fold. This is commonly referred to as a molten globule. A variant of alpha-LA, in which all eight cysteines have been mutated to alanine (all-Ala alpha-LA), has been studied using NMR spectroscopy. At low pH all-Ala alpha-LA is nearly as compact as wild type alpha-LA. Urea-induced unfolding experiments reveal that the residues that remain compact in the absence of disulfide bonds are those that are most resistant to unfolding in the wild-type alpha-LA molten globule. This is particularly remarkable because this stable core is formed by segments of the polypeptide chain from both the N- and C-termini. These results show that the overall architecture of the protein fold of alpha-LA is determined by the polypeptide sequence itself, and not as the result of cross-linking by disulfide bonds, and provide insight into the way in which the sequence codes for the fold.  相似文献   

14.
Formation of complexes between bovine beta-lactoglobulins (BLG) and long-chain fatty acids (FAs), effect of complex formation on protein stability, and effects of pH and ionic strength on both complex formation and protein stability were investigated as a function of pH and ionic strength by electrophoretic techniques and NMR spectroscopy. The stability of BLG against unfolding is sharply affected by the pH of the medium: both A and B BLG variants are maximally stabilized against urea denaturation at acidic pH and against SDS denaturation at alkaline pH. The complexes of BLGB with oleic (OA) and palmitic acid (PA) appear more stable than the apoprotein at neutral pH whereas no differential behavior is observed in acidic and alkaline media. PA forms with BLG more stable complexes than OA. The difference between the denaturant concentration able to bring about protein unfolding in the holo versus the apo forms is larger for urea than for SDS treatment. This evidence disfavors the hypothesis of strong hydrophobic interactions being involved in complex formation. Conversely, a significant contribution to FA binding by ionic interactions is demonstrated by the effect of pH and of chloride ion concentration on the stoichiometry of FA.BLG complexes. At neutral pH in a low ionic strength buffer, one molecule of FA is bound per BLG monomer; this ratio decreases to ca. 0.5 per monomer in the presence of 200 mM NaCl. The polar heads of bound FA appear to be solvent accessible, and carboxyl resonances exhibit an NMR titration curve with an apparent pK(a) of 4.7(1).  相似文献   

15.
16.
NMR‐monitored pH titration experiments are routinely used to measure site‐specific protein pKa values. Accurate experimental pKa values are essential in dissecting enzyme catalysis, in studying the pH‐dependence of protein stability and ligand binding, in benchmarking pKa prediction algorithms, and ultimately in understanding electrostatic effects in proteins. However, due to the complex ways in which pH‐dependent electrostatic and structural changes manifest themselves in NMR spectra, reported apparent pKa values are often dependent on the way that NMR pH‐titration curves are analyzed. It is therefore important to retain the raw NMR spectroscopic data to allow for documentation and possible re‐interpretation. We have constructed a database of primary NMR pH‐titration data, which is accessible via a web interface. Here, we report statistics of the database contents and analyze the data with a global perspective to provide guidelines on best practice for fitting NMR titration curves. Titration_DB is available at http://enzyme.ucd.ie/Titration_DB . Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Bai P  Luo L  Peng Zy 《Biochemistry》2000,39(2):372-380
The molten globule state of alpha-lactalbumin (alpha-LA) has been considered a prototype of partially folded proteins. Despite the importance of molten globules in understanding the mechanisms of protein folding and its relevance to some biological phenomena, site-specific information on the structure and dynamics of a molten globule is limited, largely because of the high conformational flexibility and heterogeneity. Here, we use selective isotope labeling and (19)F NMR to investigate the solvent accessibility and side-chain dynamics of aromatic residues in the molten globule of alpha-LA. Comparison of these properties with those of the native and unfolded protein indicates that the alpha-LA molten globule is highly heterogeneous; each residue has its unique solvent accessibility and motional environment. Many aromatic residues normally buried in the interior of native alpha-LA remain significantly buried in the molten globule and the side-chain dynamics of these residues are highly restricted. Our results suggest that hydrophobic and van der Waals interactions mediated by the inaccessible surface area could be sufficient to account for all the stability of the alpha-LA molten globule, which is approximately 50% of the value for the native protein.  相似文献   

18.
Kuhlman B  Luisi DL  Young P  Raleigh DP 《Biochemistry》1999,38(15):4896-4903
pKa values were measured for the 6 carboxylates in the N-terminal domain of L9 (NTL9) by following NMR chemical shifts as a function of pH. The contribution of each carboxylate to the pH dependent stability of NTL9 was estimated by comparing the pKa values for the native and denatured state of the protein. A set of peptides with sequences derived from NTL9 were used to model the denatured state. In the protein fragments, the pKa values measured for the aspartates varied between 3.8 and 4.1 and the pKa values measured for the glutamates varied between 4.1 and 4.6. These results indicate that the local sequence can significantly influence pKa values in the denatured state and highlight the difficulties in using standard pKa values derived from small compounds. Calculations based on the measured pKa values suggest that the free energy of unfolding of NTL9 should decrease by 4.4 kcal mol-1 when the pH is lowered from 6 to 2. In contrast, urea and thermal denaturation experiments indicate that the stability of the protein decreases by only 2.6 kcal mol-1 when the carboxylates are protonated. This discrepancy indicates that the protein fragments are not a complete representation of the denatured state and that nonlocal sequence effects perturb the pKa's in the denatured state. Increasing the salt concentration from 100 to 750 mM NaCl removes the discrepancy between the stabilities derived from denaturation experiments and the stability changes calculated from the pKa values. At high concentrations of salt there is also less variation of the pKa values measured in the protein fragments. Our results argue that in the denatured state of NTL9 there are electrostatic interactions between groups both local and nonlocal in primary sequence.  相似文献   

19.
A domain-exchanged chimeric alpha-lactalbumin (alpha-LA), which consisted of the alpha-domain of human alpha-LA and the beta-domain of bovine alpha-LA, was constructed. Like native alpha-LA, the chimeric protein was in a molten globule state in the absence of Ca(2+) at neutral pH and low salt concentration. The stability of the molten globule state of the constructed chimeric protein was identical to that of the recombinant human protein and was higher than that of the recombinant bovine protein. The stability of the molten globule state of alpha-LA is defined by the stability of the alpha-domain.  相似文献   

20.
A few studies indirectly support the existence of an intermediate in the transition of Ca(2+)-saturated bovine alpha-lactalbumin (alpha-LA) from the native (N) to the acidic (A) state, known as the molten globule state. However, direct experimental evidence for the appearance of this intermediate has not been obtained. The signal of circular polarization of luminescence (CPL) is sensitive to fine conformational transitions because of its susceptibility to changes in the environmental asymmetry of fluorescent chromophores in their excited electronic states. In the present study, CPL measurements were applied using the intrinsic tryptophan fluorescence of alpha-LA as well as the fluorescence of 8-anilino-1-naphthalenesulfonic acid (ANS) bound to alpha-LA. CPL of tryptophan and ANS was measured in the pH range of 2.5-6 in order to find direct experimental evidence for the proposed intermediate. CPL (characterized by the emission anisotropy factor, g(em)) depends on the asymmetry of the protein molecular structure in the environment of the tryptophan and the ANS chromophores in the excited electronic state. The pH dependence of both the gab, absorption anisotropy factor determined by CD, and the ANS steady state fluorescence, showed a single transition at pH 3-3.7 as already reported elsewhere. This transition was interpreted as being a result of a change of the alpha-LA tertiary structure, which resulted in a loss of asymmetry of the environment of both the tryptophan residues and the ANS hydrophobic binding sites. The pH dependence of the tryptophan and ANS g(em) showed an additional conformational transition at pH 4-5, which coincided with the pKa of Ca2+ dissociation (pKa 5), as predicted by Permyakov et al. (1981, Biochem Biophys Res Commun 100:191-197). The titration curve showed that there is a pH range between 3.7 and 4.1 in which alpha-LA exists in an intermediate state between the N- and A-state. We suggest that the intermediate is the premolten globule state characterized by a reduced Ca2+ binding to the alpha-LA, native-like tertiary structure, and reduced asymmetric fluctuation of the tertiary structure on the nanosecond time scale. This intermediate resembles the "critical activated state" theoretically deduced by Kuwajima et al. (1989, J Mol Biol 206:547-561). The present study demonstrates the power of CPL measurements for the investigation of folding/unfolding transitions in proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号