首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Ischemic postconditioning (IPost) has aroused much attention since 2003 when it was firstly reported. The role of microRNAs (miRNAs or miRs) in IPost has rarely been reported. The present study was undertaken to investigate whether miRNAs were involved in the protective effect of IPost against myocardial ischemia-reperfusion (IR) injury and the probable mechanisms involved.  相似文献   

2.

Background

Cardiomyocyte autophagy and apoptosis are crucial events underlying the development of cardiac abnormalities and dysfunction after myocardial infarction (MI). A better understanding of the cell signaling pathways involved in cardiac remodeling may support the development of new therapeutic strategies for the treatment of heart failure (HF) after MI.

Methods

A cardiac MI injury model was constructed by ligating the left anterior descending (LAD) coronary artery. Neonatal cardiomyocytes were isolated and cultured to investigate the mechanisms underlying the protective effects of nicorandil on MI-induced injury.

Results

Nicorandil reduced cardiac enzyme release, mitigated left ventricular enlargement and cardiac dysfunction after MI, as evaluated by echocardiography and hemodynamic measurements. According to the results of the western blot analysis and immunofluorescence staining, nicorandil enhanced autophagic flux and reduced apoptosis in cardiomyocytes subjected to hypoxic injury. Interestingly, nicorandil increased Mst1 and p-Mst1 levels in cardiomyocytes subjected to MI injury. Mst1 knockout abolished the protective effects of nicorandil on cardiac remodeling and dysfunction after MI. Mst1 knockout also abolished the beneficial effects of nicorandil on cardiac enzyme release and cardiomyocyte autophagy and apoptosis.

Conclusions

Nicorandil alleviates post-MI cardiac dysfunction and remodeling. The mechanisms were associated with enhancing autophagy and inhibiting apoptosis through Mst1 inhibition.  相似文献   

3.

Soluble receptor for advanced glycation end-product (sRAGE) was reported to protect myocardial ischemia/reperfusion (I/R) injuries via directly interacting with cardiomyocytes besides competing with RAGE for AGEs. However, the specific molecule for the interaction between sRAGE and cardiomyocytes are not clearly defined. Integrins which were reported to interact with RAGE on leukocytes were also expressed on myocardial cells, therefore it was supposed that sRAGE might interact with integrins on cardiomyocytes to protect hearts from ischemia/reperfusion injuries. The results showed that sRAGE increased the expression of integrinβ3 but not integrinβ1, β2, β4 or β5 in cardiomyocytes during I/R injuries. Meanwhile, the suppressive effects of sRAGE on cardiac function, cardiac infraction size and apoptosis in mice were cancelled by inhibition of integrinβ3 with cilengitide (CLG, 75 mg/kg). The results from cultured cardiomyocytes also proved that sRAGE attenuated myocardial apoptosis and autophagy through interacting with integrinβ3 to activate Akt and STAT3 pathway during oxygen and glucose deprivation/reperfusion (OGD/R) treatment. Furthermore, the phosphorylation of STAT3 was significantly downregulated by the inhibition of Akt (LY294002, 10 μM) in OGD/R and sRAGE treated cardiomyocytes, which suggested that STAT3 pathway was induced by Akt in I/R and sRAGE treated cardiomyocytes. The present study contributes to the understanding of myocardial I/R pathogenesis and provided a novel integrinβ3-dependent therapy strategy for sRAGE ameliorating I/R injuries.

  相似文献   

4.

Background

Recent animal study and clinical trial data suggested that remote limb ischemic postconditioning (RIPostC) can invoke potent cardioprotection. However, during ischemia reperfusion injury (IR), the effect and mechanism of RIPostC on myocardium in subjects with or without diabetes mellitus (DM) are poorly understood. Autophagy plays a crucial role in alleviating myocardial IR injury. The aim of this study was to determine the effect of RIPostC on mice myocardial IR injury model with or without DM, and investigate the role of autophagy in this process.

Methodology and Results

Streptozocin (STZ) induced DM mice model and myocardial IR model were established. Using a noninvasive technique, RIPostC was induced in normal mice (ND) and DM mice by three cycles of ischemia (5 min) and reperfusion (5 min) in the left hindlimb. In ND group, RIPostC significantly reduced infarct size (32.6±3.0% in ND-RIPostC vs. 50.6±2.4% in ND-IR, p<0.05) and improved cardiac ejection fraction (49.70±3.46% in ND-RIPostC vs. 31.30±3.95% in ND-IR, p<0.05). However, in DM group, no RIPostC mediated cardioprotetion effect was observed. To analyze the role of autophagy, western blot and immunohistochemistry was performed. Our data showed that a decreased sequestosome 1 (SQSTM1/p62) level, an increased Beclin-1 level, and higher ratio of LC3-II/LC3-I were observed in ND RIPostC group, but not DM RIPostC group.

Conclusions

The current study suggested that RIPostC exerts cardioprotection effect on IR in normal mice, but not DM mice, and this difference is via, at least in part, the up-regulation of autophagy.  相似文献   

5.
It has been reported that growth differentiation factor 11 (GDF11) protects against myocardial ischemia/reperfusion (IR) injury, but the underlying mechanisms have not been fully clarified. Considering that GDF11 plays a role in the aging/rejuvenation process and that aging is associated with telomere shortening and cardiac dysfunction, we hypothesized that GDF11 might protect against IR injury by activating telomerase. Human plasma GDF11 levels were significantly lower in acute coronary syndrome patients than in chronic coronary syndrome patients. IR mice with myocardial overexpression GDF11 (oe-GDF11) exhibited a significantly smaller myocardial infarct size, less cardiac remodeling and dysfunction, fewer apoptotic cardiomyocytes, higher telomerase activity, longer telomeres, and higher ATP generation than IR mice treated with an adenovirus carrying a negative control plasmid. Furthermore, mitochondrial biogenesis-related proteins and some antiapoptotic proteins were significantly upregulated by oe-GDF11. These cardioprotective effects of oe-GDF11 were significantly antagonized by BIBR1532, a specific telomerase inhibitor. Similar effects of oe-GDF11 on apoptosis and mitochondrial energy biogenesis were observed in cultured neonatal rat cardiomyocytes, whereas GDF11 silencing elicited the opposite effects to oe-GDF11 in mice. We concluded that telomerase activation by GDF11 contributes to the alleviation of myocardial IR injury through enhancing mitochondrial biogenesis and suppressing cardiomyocyte apoptosis.Subject terms: Apoptosis, Heart failure  相似文献   

6.

Background

Pharmacological inhibition of arginase and remote ischemic perconditioning (RIPerc) are known to protect the heart against ischemia/reperfusion (IR) injury.

Purpose

The objective of this study was to investigate whether (1) peroxynitrite-mediated RhoA/Rho associated kinase (ROCK) signaling pathway contributes to arginase upregulation following myocardial IR; (2) the inhibition of this pathway is involved as a cardioprotective mechanism of remote ischemic perconditioning and (3) the influence of diabetes on these mechanisms.

Methods

Anesthetized rats were subjected to 30 min left coronary artery ligation followed by 2 h reperfusion and included in two protocols. In protocol 1 rats were randomized to 1) control IR, 2) RIPerc induced by bilateral femoral artery occlusion for 15 min during myocardial ischemia, 3) RIPerc and administration of the nitric oxide synthase inhibitor NG-monomethyl-L-arginine (L-NMMA), 4) administration of the ROCK inhibitor hydroxyfasudil or 5) the peroxynitrite decomposition catalyst FeTPPS. In protocol 2 non-diabetic and type 1 diabetic rats were randomosed to IR or RIPerc as described above.

Results

Infarct size was significantly reduced in rats treated with FeTPPS, hydroxyfasudil and RIPerc compared to controls (P<0.001). FeTPPS attenuated both ROCK and arginase activity (P<0.001 vs. control). Similarly, RIPerc reduced arginase and ROCK activity, peroxynitrite formation and enhanced phospho-eNOS expression (P<0.05 vs. control). The cardioprotective effect of RIPerc was abolished by L-NMMA. The protective effect of RIPerc and its associated changes in arginase and ROCK activity were abolished in diabetes.

Conclusion

Arginase is activated by peroxynitrite/ROCK signaling cascade in myocardial IR. RIPerc protects against IR injury via a mechanism involving inhibition of this pathway and enhanced eNOS activation. The beneficial effect and associated molecular changes of RIPerc is abolished in type 1 diabetes.  相似文献   

7.
Rabkin SW 《Autophagy》2007,3(4):347-349
There is unequivocal evidence of autophagy in the heart, both in human hearts from patients who experienced heart failure and in experimental models of myocardial ischemia and reperfusion. Whether autophagy is involved in the pathophysiology of these conditions is controversial as studies suggest inhibition of Beclin 1 can increase or decrease cardiomyocyte cell injury. Increased beclin 1 expression, however, has been consistently identified in myocardial ischemia/reperfusion. Because of the role of nitric oxide (NO) in myocardial ischemia/reperfusion as well as in heart failure, we sought to determine whether NO and its byproduct peroxynitrite alter the expression of some genes involved in autophagy in the heart. Neonatal mouse cardiomyocytes were treated with SIN-1 (3-morpholinosydnonimine), which releases NO and accelerates formation of peroxynitrite. Gene expression was evaluated using RNA labeled and hybridized to cDNA microarrays. SIN-1 treatment induced significant changes in five caspases. In contrast, there were no changes in three genes involved in autophagy, namely beclin 1, Atg5l and Atg12l. Several different time periods were examined; a short time period, 2h, to more closely model myocardial ischemia reperfusion and a long time period, 20 h, that more closely represents sustained injury. In summary, evidence to date suggests that NO is not involved in increased beclin 1 expression in ischemia/reperfusion injury in the heart and would be unlikely to account for the signs of autophagy in the hearts of patients with heart failure.  相似文献   

8.

Backgound  

It has been reported that Toll-like receptor 4 (TLR4) deficiency reduces infarct size after myocardial ischemia/reperfusion (MI/R). However, measurement of MI/R injury was limited and did not include cardiac function. In a chronic closed-chest model we assessed whether cardiac function is preserved in TLR4-deficient mice (C3H/HeJ) following MI/R, and whether myocardial and systemic cytokine expression differed compared to wild type (WT).  相似文献   

9.

Background

Hypoxia/reoxygenation(H/R)-induced apoptosis of cardiomyocytes plays an important role in myocardial injury. Lycopene is a potent antioxidant carotenoid that has been shown to have protective properties on cardiovascular system. The aim of the present study is to investigate the potential for lycopene to protect the cardiomyocytes exposed to H/R. Moreover, the effect on mitochondrial function upon lycopene exposure was assessed.

Methods and Findings

Primary cardiomyocytes were isolated from neonatal mouse and established an in vitro model of H/R which resembles ischemia/reperfusion in vivo. The pretreatment of cardiomyocytes with 5 µM lycopene significantly reduced the extent of apoptosis detected by TUNEL assays. To further study the mechanism underlying the benefits of lycopene, interactions between lycopene and the process of mitochondria-mediated apoptosis were examined. Lycopene pretreatment of cardiomyocytes suppressed the activation of the mitochondrial permeability transition pore (mPTP) by reducing the intracellular reactive oxygen species (ROS) levels and inhibiting the increase of malondialdehyde (MDA) levels caused by H/R. Moreover, the loss of mitochondrial membrane potential, a decline in cellular ATP levels, a reduction in the amount of cytochrome c translocated to the cytoplasm and caspase-3 activation were observed in lycopene-treated cultures.

Conclusion

The present results suggested that lycopene possesses great pharmacological potential in protecting against H/R-induced apoptosis. Importantly, the protective effects of lycopene may be attributed to its roles in improving mitochondrial function in H/R-treated cardiomyocytes.  相似文献   

10.
There is no question that necrosis and apoptosis contribute to cardiomyocyte death in the setting of myocardial ischemia-reperfusion. Indeed, considerable effort and resources have been invested in the development of novel therapies aimed at attenuating necrotic and apoptotic cell death, with the ultimate goal of applying these strategies to reduce infarct size and improve outcome in patients suffering acute myocardial infarction (MI) or ‘heart attack’. However, an issue that remains controversial is the role of autophagy in determining the fate of ischemic-reperfused cardiomyocytes: i.e., is induction of autophagy detrimental or protective? Recent data from our group obtained in the clinically relevant, in vivo swine model of acute MI provide novel evidence of a positive association between pharmacological upregulation of autophagy (achieved by administration of chloramphenicol succinate (CAPS)) and increased resistance to myocardial ischemia-reperfusion injury.Key words: myocardial ischemia, myocardial infarction, ischemia-reperfusion injury, autophagy, chloramphenicolOngoing controversy concerning the role of autophagy in myocardial ischemia-reperfusion injury (pro-survival versus pro-death) may be an example of the ‘Goldilocks Principle’: uncontrolled ‘pathophysiological’ induction of autophagy in response to an extreme or prolonged stress reportedly contributes to cardiac cell death, whereas a modest ‘physiological’ upregulation of autophagy may be beneficial. Indeed, in support of this latter concept, a growing body of evidence obtained in isolated cardiomyocytes and rodent models has revealed that acute, pre-ischemic induction of autophagy can confer a cardioprotective phenotype. The objective of our recent publication was to extend this paradigm to a clinically relevant, large animal (swine) model and establish whether pharmacological upregulation of autophagy would render the heart resistant to lethal ischemia-reperfusion injury and thus limit myocardial infarct size.To test this concept, anesthetized pigs were assigned to receive our candidate drug, chloramphenicol succinate (CAPS) or placebo and, at 10 min after treatment, underwent 45 min of coronary artery occlusion followed by 3 h of reperfusion. Administration of CAPS results in a rapid and robust upregulation in molecular markers of autophagy: at 10 min post-treatment (the time corresponding to the onset of the sustained ischemic insult), we observed a 2.4- and 6.2-fold increase in expression of Beclin 1 and LC3-II, respectively, versus baseline. However, most notably, CAPS-treated pigs displayed a profound, ~50% reduction in infarct size when compared with placebo-controls. To investigate whether the favorable effect of CAPS was retained when administered in a more clinically relevant manner, an additional cohort of pigs received CAPS at 15 min before the onset of reperfusion. Efficacy was maintained (albeit attenuated) with delayed treatment, with mean infarct size reduced by ~27% versus controls.The novel aspect of our study is the unequivocal documentation of a significant infarct-sparing effect of CAPS in a well-established pre-clinical model of ischemia-reperfusion injury, thereby bringing the concept of cardioprotection via pharmacological upregulation of autophagy one step closer to future clinical evaluation. Nonetheless, our use of the swine model has an inherent weakness: although we have shown compelling evidence of an association between induction of autophagy and reduction of infarct size, the pig is not amenable to the application of genetic and molecular tools that would yield definitive documentation of cause-and-effect.As acknowledged in our recent publication, an issue of particular relevance in establishing the mechanism by which CAPS confers cardioprotection is the tight and complex interaction between autophagy and the PtdIns3K-Akt-mTOR signaling pathway. Specifically, class III PtdIns3K is an activator of autophagy and, via its interaction with Beclin 1, plays a pivotal role in initiating autophagosome formation, whereas class I PtdIns3K purportedly suppresses autophagy. Interaction at the level of mTOR is multifaceted, bi-directional and has been reported to exert both positive and negative feedback; i.e., while activation of mTOR is associated with inhibition of autophagy, there is evidence of self-regulation of autophagy by autophagy-induced inhibition of mTOR and, in at least one model, co-activation of autophagy and mTOR. PtdIns3K-Akt-mTOR are also components of the ‘Reperfusion Injury Salvage Kinase’ or RISK pathway, a canonical cardioprotective signal transduction pathway that, when activated, has been shown in multiple models to attenuate lethal ischemia-reperfusion injury. Akt signaling is upregulated by a host of protective strategies including ischemic preconditioning (considered the ‘gold standard’ of cardioprotection) and pharmacological preconditioning-mimetic agents. It is therefore perhaps not surprising that administration of CAPS is accompanied by an increase in expression of phospho-Akt.If CAPS treatment is associated with both an induction of autophagy (as documented in our study) and, as with many cardioprotective strategies, upregulation of Akt signaling, this raises two intriguing and interrelated possibilities. First, autophagy and PtdIns3K-Akt-mTOR signaling may yield additive benefit. Second, we speculate that co-activation of the Akt signaling pathway may, by these complex bi-directional interactions, assist in establishing an appropriate balance and maintaining autophagy in a favorable, pro-survival ‘Goldilocks’ state. Our data clearly demonstrate that CAPS is cardioprotective, and may, via induction of autophagy, provide a novel and clinically relevant therapy to attenuate myocardial ischemia-reperfusion injury. However, detailed molecular investigation will be required to ‘get to the heart’ of the mechanisms underlying the reduction of infarct size seen with CAPS treatment.  相似文献   

11.
Huang C  Gu H  Yu Q  Manukyan MC  Poynter JA  Wang M 《PloS one》2011,6(12):e29246

Background

Cardiac stem cells (CSCs) promote myocardial recovery following ischemia through their regenerative properties. However, little is known regarding the implication of paracrine action by CSCs in the setting of myocardial ischemia/reperfusion (I/R) injury although it is well documented that non-cardiac stem cells mediate cardioprotection via the production of paracrine protective factors. Here, we studied whether CSCs could initiate acute protection following global myocardial I/R via paracrine effect and what component from CSCs is critical to this protection.

Methodology/Principal Findings

A murine model of global myocardial I/R was utilized to investigate paracrine effect of Sca-1+ CSCs on cardiac function. Intracoronary delivery of CSCs or CSC conditioned medium (CSC CM) prior to ischemia significantly improved myocardial function following I/R. siRNA targeting of VEGF in CSCs did not affect CSC-preserved myocardial function in response to I/R injury. However, differentiation of CSCs to cardiomyocytes (DCSCs) abolished this protection. Through direct comparison of the protein expression profiles of CSCs and DCSCs, SDF-1 was identified as one of the dominant paracrine factors secreted by CSCs. Blockade of the SDF-1 receptor by AMD3100 or downregulated SDF-1 expression in CSCs by specific SDF-1 siRNA dramatically impaired CSC-induced improvement in cardiac function and increased myocardial damage following I/R. Of note, CSC treatment increased myocardial STAT3 activation after I/R, whereas downregulation of SDF-1 action by blockade of the SDF-1 receptor or SDF-1 siRNA transfection abolished CSC-induced STAT3 activation. In addition, inhibition of STAT3 activation attenuated CSC-mediated cardioprotection following I/R. Finally, post-ischemic infusion of CSC CM was shown to significantly protect I/R-caused myocardial dysfunction.

Conclusions/Significance

This study suggests that CSCs acutely improve post-ischemic myocardial function through paracrine factor SDF-1 and up-regulated myocardial STAT3 activation.  相似文献   

12.
H He  X Liu  L Lv  H Liang  B Leng  D Zhao  Y Zhang  Z Du  X Chen  S Li  Y Lu  H Shan 《Cell death & disease》2014,5(1):e997
Calcineurin signalling plays a critical role in the pathogenesis of many cardiovascular diseases. Calcineurin has been proven to affect a series of signalling pathways and to exert a proapoptotic effect in cardiomyocytes. However, whether it is able to regulate autophagy remains largely unknown. Here, we report that prolonged oxidative stress-induced activation of calcineurin contributes to the attenuation of adaptive AMP-activated protein kinase (AMPK) signalling and inhibits autophagy in cardiomyocytes. Primary cardiomyocytes exhibited rapid formation of autophagosomes, microtubule-associated protein 1 light chain 3 (LC3) expression and phosphorylation of AMPK in response to hydrogen peroxide (H2O2) treatment. However, prolonged (12 h) H2O2 treatment attenuated these effects and was accompanied by a significant increase in calcineurin activity and apoptosis. Inhibition of calcineurin by FK506 restored AMPK function and LC3 expression, and decreased the extent of apoptosis caused by prolonged oxidative stress. In contrast, overexpression of the constitutively active form of calcineurin markedly attenuated the increase in LC3 induced by short-term (3 h) H2O2 treatment and sensitised cells to apoptosis. In addition, FK506 failed to induce autophagy and alleviate apoptosis in cardiomyocytes expressing a kinase-dead K45R AMPK mutant. Furthermore, inhibition of autophagy by 3-methylanine (3-MA) or by knockdown of the essential autophagy-related gene ATG7 abrogated the protective effect of FK506. These findings suggest a novel role of calcineurin in suppressing adaptive autophagy during oxidative stress by downregulating the AMPK signalling pathway. The results also provide insight into how altered calcineurin and autophagic signalling is integrated to control cell survival during oxidative stress and may guide strategies to prevent cardiac oxidative damage.  相似文献   

13.
目的:研究孤儿核受体Nur77对缺/复氧损伤中心肌细胞自噬的调节作用。方法:差速贴壁法分离乳鼠心肌细胞,经免疫荧光染色鉴定纯度。缺氧(1%O_2、5%CO_2和94%N_2)培养12 h后,常氧培养2 h构建心肌细胞缺/复氧损伤。实时定量PCR和western blot的方法检测Nur77的表达变化。通过siRNA转染抑制心肌细胞nur77表达,通过自噬标志蛋白表达改变作为细胞自噬水平的变化。结果:原代分离的心肌细胞纯度95%以上。缺氧12 h和缺/复氧(12 h/2 h)刺激后,心肌细胞中Nur77表达都明显升高(P0.01)。与缺氧组相比,缺/复氧组细胞质中的水平明显增加(P0.01),细胞核中Nur77水平无明显变化。抑制Nur77后,缺/复氧组自噬水平明显降低,缺氧组心肌细胞自噬水平无明显变化。结论:Nur77参与缺/复氧损伤中心肌细胞自噬水平的调节。  相似文献   

14.

Background  

Myocardial injury may contribute to unexpected deaths due to pyometra. To detect myocardial damage, measurement of cardiac troponin I (cTnI) is currently the most sensitive and specific method. The aims of the present study were to evaluate presence of myocardial damage in canine pyometra by analysis of cTnI, to explore whether myocardial injury was associated with systemic inflammatory response syndrome (SIRS) and to evaluate whether other clinical or laboratory parameters were associated with cTnI increase.  相似文献   

15.

Objective

Experimental and clinical studies have shown that administration of insulin during reperfusion is cardioprotective, but the mechanisms underlying this effect are still unknown. In this study, the ability of insulin to protect apoptotic cardiomyocytes from hypoxia/reoxygenation injury using the sphingosine kinase/sphingosine 1-phosphate axis was investigated.

Methods and Results

Rat cardiomyocytes were isolated and subjected to hypoxia and reoxygenation. [γ-32P] ATP was used to assess sphingosine kinase activity. Insulin was found to increase sphingosine kinase activity. Immunocytochemistry and Western blot analysis showed changes in the subcellular location of sphingosine kinase 1 from cytosol to the membrane in cardiomyocytes. Insulin caused cardiomyocytes to accumulate of S1P in a dose-dependent manner. FRET efficiency showed that insulin also transactivates the S1P1 receptor. TUNEL staining showed that administration of insulin during reoxygenation could to reduce the rate of reoxygenation-induced apoptosis, which is a requirement for SphK 1 activity. It also reduced the rate of activation of the S1P receptor and inhibited hypoxia/reoxygenation-induced cell death in cardiomyocytes.

Conclusion

The sphingosine kinase 1/sphingosine 1-phosphate/S1P receptor axis is one pathway through which insulin protects rat cardiomyocytes from apoptosis induced by hypoxia/reoxygenation injury.  相似文献   

16.
Autophagy has been implicated in cardiac cell death during ischemia/reperfusion (I/R). In this study we investigated how propofol, an antioxidant widely used for anesthesia, affects the autophagic cell death induced by the myocardial I/R injury. The infarction size in the myocardium was dramatically reduced in rats treated with propofol during I/R compared with untreated rats. A large number of autophagic vacuoles were observed in the cardiomyocytes of I/R-injured rats but rarely in I/R-injured rats treated with propofol. While LC3-II formation, an autophagy marker, was up-regulated in the I/R-injured myocardium, it was significantly down-regulated in the myocardial tissues of I/R-injured and propofol-treated rats. Moreover, propofol inhibited the I/R-induced expression of Beclin-1, and it accelerated phosphorylation of mTOR during I/R and Beclin-1/Bcl-2 interaction in cells, which indicates that it facilitates the inhibitory pathway of autophagy. These data suggest that propofol protects the autophagic cell death induced by the myocardial I/R injury.  相似文献   

17.
Claudin-5 has recently attracted increasing attention by its potential as a novel treatment target in the early stage of heart failure. However, whether Claudin-5 produces beneficial effects on myocardial ischemia and reperfusion (IR) injury has not been elucidated yet. In this study, we identified reduced levels of Claudin-5 in the hearts of mice subjected to acute myocardial IR injury and murine HL-1 cardiomyocytes subjected to hypoxia and reoxygenation (HR). We then constructed cardiac-specific Cldn5-overexpressing mice using an adeno-associated virus (AAV9) vector and demonstrated that Cldn5 overexpression ameliorated cardiac dysfunction and myocardial damage in mice subjected to myocardial IR injury. Moreover, Cldn5 overexpression attenuated myocardial oxidative stress (DHE and protein levels of Nrf2, HO-1, and NQO1), inflammatory response (levels of MPO, F4/80, Ly6C, and circulating inflammatory cells), mitochondrial dysfunction (protein levels of PGC-1α, NRF1, and TFAM), endoplasmic reticulum stress (protein levels of GRP78, ATF6, and CHOP and p-PERK), energy metabolism disorder (p-AMPK and ACC), and apoptosis (TUNEL assay and protein levels of Bax and Bcl2) in mice subjected to myocardial IR. Next, we generated Cldn5 knockdown cells by lentiviral shRNA and observed that Cldn5 knockdown inhibited cell viability and affected the expression or activation of these IR-related signalings in HL-1 cardiomyocytes subjected to HR. Mechanistically, SIRT1 was proved to be involved in regulating the expression of Claudin-5 by co-immunoprecipitation analysis and Sirt1 knockdown experiments. Our data demonstrated that targeting Claudin-5 may represent a promising approach for preventing and treating acute myocardial IR injury.  相似文献   

18.
BackgroundActivation of NLRP3 inflammasome plays a key role in cardiac dysfunction for acute myocardial ischemia-reperfusion injury. Scutellarin (Scu) is a flavonoid purified from Erigeron breviscapus. Whether Scu has any influence on the activation of NLRP3 inflammasome in cardiomyocytes remains unknown.PurposeWe aimed to examine the therapeutic effect of Scu on cardiomyocyte ischemia-reperfusion (I/R) injury and its effect on NLRP3 inflammasome in rats with acute myocardial I/R injury and anoxia/reoxygenation (A/R)-induced H9c2 injuries.MethodsHeart injuries were induced through 30 min of ischemia followed by 24 h of reperfusion. Scu was intraperitoneally administered 15 min before vascular ligation. Effects of Scu on cardiac injury were detected by echocardiograms, TTC staining, and histological and immunohistochemical analyses. The effects of Scu on biochemical parameters were analyzed. H9c2 cells were pretreated with different concentrations of Scu for 6 h before A/R exposure. Afterward, cell viability, LDH release, and Hoechst 33342 and peromide iodine double staining were determined. Western blot analyses of proteins, including those involved in autophagy, NLRP3, mTOR complex 1 (mTORC1), and Akt signaling, were conducted.ResultsIn vivo study revealed that Scu improved diastolic dysfunction, ameliorated myocardium structure abnormality, inhibited myocyte apoptosis and inflammatory response, and promoted autophagy. Scu reduced NLRP3 inflammasome activation, inhibited mTORC1 activity, and increased Akt phosphorylation. In vitro investigation showed the same results. The Scu-mediated NLRP3 inflammasome and mTORC1 inhibition and cardioprotection were abolished through the genetic silencing of Akt by siRNA.ConclusionsThe cardioprotective effect of Scu was achieved through its anti-inflammatory effect. It suppressed the activation of NLRP3 inflammasome. In addition, inflammasome restriction by Scu was dependent on Akt activation and mTORC1 inhibition.  相似文献   

19.
Hyperglycaemia during acute myocardial infarction is common and associated with increased mortality. Thioredoxin‐interacting protein (Txnip) is a modulator of cellular redox state and contributes to cell apoptosis. This study aimed to investigate whether or not hyperglycaemia enhances Txnip expression in myocardial ischaemia/reperfusion (MI/R) and consequently exacerbates MI/R injury. Rats were subjected to 30 min. of left coronary artery ligation followed by 4 hrs of reperfusion and treated with saline or high glucose (HG, 500 g/l, 4 ml/kg/h intravenously). In vitro study was performed on cultured rat cardiomyocytes subjected to simulated ischaemia/reperfusion (SI/R) and incubated with HG (25 mM) or normal glucose (5.6 mM) medium. In vivo HG infusion during MI/R significantly impaired cardiac function, aggravated myocardial injury and increased cardiac oxidative stress. Meanwhile, Txnip expression was enhanced whereas thioredoxin activity was inhibited following HG treatment in ischaemia/reperfusion (I/R) hearts. In addition, HG activated p38 MAPK and inhibited Akt in I/R hearts. In cultured cardiomyocytes subjected to SI/R, HG incubation stimulated Txnip expression and reduced thioredoxin activity. Overexpression of Txnip enhanced HG‐induced superoxide generation and aggravated cardiomyocyte apoptosis, whereas Txnip RNAi significantly blunted the deleterious effects of HG. Moreover, inhibition of p38 MAPK or activation of Akt markedly blocked HG‐induced Txnip expression in I/R cardiomyocytes. Most importantly, intramyocardial injection of Txnip siRNA markedly decreased Txnip expression and alleviated MI/R injury in HG‐treated rats. Hyperglycaemia enhances myocardial Txnip expression, possibly through reciprocally modulating p38 MAPK and Akt activation, leading to aggravated oxidative stress and subsequently, amplification of cardiac injury following MI/R.  相似文献   

20.

Background

Myocardial ischemia/reperfusion injury is the major cause of morbidity and mortality for cardiovascular diseases. Dopamine D2 receptors are expressed in cardiac tissues. However, the roles of dopamine D2 receptors in myocardial ischemia/reperfusion injury and cardiomyocyte apoptosis are unclear. Here we investigated the effects of both dopamine D2 receptors agonist (bromocriptine) and antagonist (haloperidol) on apoptosis of cultured neonatal rat ventricular myocytes induced by ischemia/reperfusion injury.

Methods

Myocardial ischemia/reperfusion injury was simulated by incubating primarily cultured neonatal rat cardiomyocytes in ischemic (hypoxic) buffer solution for 2 h. Thereafter, these cells were incubated for 24 h in normal culture medium.

Results

Treatment of the cardiomyocytes with 10 μM bromocriptine significantly decreased lactate dehydrogenase activity, increased superoxide dismutase activity, and decreased malondialdehyde content in the culture medium. Bromocriptine significantly inhibited the release of cytochrome c, accumulation of [Ca2+]i, and apoptosis induced by ischemia/reperfusion injury. Bromocriptine also down-regulated the expression of caspase-3 and -9, Fas and Fas ligand, and up-regulated Bcl-2 expression. In contrast, haloperidol (10 μM) had no significant effects on the apoptosis of cultured cardiomyocytes under the aforementioned conditions.

Conclusions

These data suggest that activation of dopamine D2 receptors can inhibit apoptosis of cardiomyocytes encountered during ischemia/reperfusion damage through various pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号