首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Living mysticetes (baleen whales) and odontocetes (toothed whales) differ significantly in auditory function in that toothed whales are sensitive to high‐frequency and ultrasonic sound vibrations and mysticetes to low‐frequency and infrasonic noises. Our knowledge of the evolution and phylogeny of cetaceans, and mysticetes in particular, is at a point at which we can explore morphological and physiological changes within the baleen whale inner ear. Traditional comparative anatomy and landmark‐based 3D‐geometric morphometric analyses were performed to investigate the anatomical diversity of the inner ears of extinct and extant mysticetes in comparison with other cetaceans. Principal component analyses (PCAs) show that the cochlear morphospace of odontocetes is tangential to that of mysticetes, but odontocetes are completely separated from mysticetes when semicircular canal landmarks are combined with the cochlear data. The cochlea of the archaeocete Zygorhiza kochii and early diverging extinct mysticetes plot within the morphospace of crown mysticetes, suggesting that mysticetes possess ancestral cochlear morphology and physiology. The PCA results indicate variation among mysticete species, although no major patterns are recovered to suggest separate hearing or locomotor regimes. Phylogenetic signal was detected for several clades, including crown Cetacea and crown Mysticeti, with the most clades expressing phylogenetic signal in the semicircular canal dataset. Brownian motion could not be excluded as an explanation for the signal, except for analyses combining cochlea and semicircular canal datasets for Balaenopteridae. J. Morphol. 277:1599–1615, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
Conservation of highly repetitive DNA in cetaceans   总被引:4,自引:0,他引:4  
It is controversial whether odontocetes (toothed whales) and mysticetes (whalebone whales) have a common ancestry. Cetacean karyological uniformity, which is unique among mammalian orders, suggests a monophyletic origin; however, several anatomical authorities have maintained that odontocetes and mysticetes are diphyletic. We investigated the issue using Southern blot hybridization. Two labelled restriction fragment probes from the DNA of the sei whale (a mysticete) were hybridized to restricted DNA of cetacean species representing all extant families except the Eschrichtiidae, the gray whales. The probes hybridized to specific restriction fragments in all odontocete and mysticete materials. Hybridizations showed preservation of hybridization homologies and a striking conservation of the length of highly repeated DNA sequences. The results are compatible with a common ancestry of odontocetes and mysticetes.  相似文献   

3.
Unlike other mammals, odontocetes and mysticetes have highly derived craniofacial bones. A growth process referred to as “telescoping” is partly responsible for this morphology. Here, we explore how changes in facial morphology during fetal growth relate to differences in telescoping between the adult odontocete Stenella attenuata and the mysticete Balaena mysticetus. We conclude that in both Stenella and Balaena head size increases allometrically. Similarly, odontocete nasal length and mysticete mouth size have strong positive allometry compared to total body length. However, the differences between odontocetes and mysticetes in telescoping are not directly associated with their fetal growth patterns. Our results suggest that cranial changes related to echolocation and feeding between odontocetes and mysticetes, respectively, begin during ontogeny before telescoping is initiated.  相似文献   

4.
Abstract

A fragment of mandible of an indeterminate squalodontid dolphin (Upper Oligocene or lowermost Miocene, New Zealand) has 2 anomalous single-rooted teeth intercalated between typically squalodontid anterior cheek-teeth. The anomalous teeth are considered to be truly supernumerary, and not homologous with any erupted teeth in phylogenetically earlier Cetacea. This type of anomaly appears not to have been reported previously for any fossil cetacean. Polydonty, a characteristic of extant odontocetes, was probably attained initially in primitive odontocetes by intercalation of permanent and deciduous teeth, and later was elaborated by the addition of supernumerary teeth. The present specimen represents a morphological (but not phylogenetic) stage between odontocetes with limited and advanced polydonty. Some fossil mysticetes and embryonic extant mysticetes are also polydont, but mysticete polydonty and that of odontocetes have probably evolved convergently.  相似文献   

5.
The genomes of all extant cetaceans are characterized by the presence of the so-called common cetacean DNA satellite. In the mysticetes (whalebone whales) the repeat length of the satellite is 1,760 bp. In the odontocetes (toothed whales), other than the family Delphinidae, the repeat length is usually approximately 1,740 bp. The Delphinidae are characterized by a repeat length of approximately 1,580 bp. It has been shown in odontocetes that the satellite evolves in concert and that differences between species, with respect to the sequence of the satellite, correspond reasonably well to their evolutionary distances. In the present study the sequence of the satellite was determined in three repeats in each of seven mysticete species, and a consensus for each species established. Parsimony and neighbor-joining analyses based upon sequences of all repeats showed that the primary evolutionary distinction among the mysticetes is between the Balaenidae sensu stricto (i.e., the bowhead whale and the right whale) and all remaining species, including the pygmy right whale, a species that usually has been included in the Balaenidae. The comparisons also showed that the humpback whale and the gray whale were approximately equidistant from the blue whale and the fin whale (genus Balaenoptera). Concerted evolution of the satellite was also demonstrated among the mysticetes, but it appeared to evolve more slowly in the mysticetes than in the odontocetes.  相似文献   

6.
We sequenced 540 nucleotides of the last exon in the ZFY/ZFX gene in two males and two females for eight cetacean species; four odontocetes (toothed whales) and four mysticetes (baleen whales). Based upon the obtained nucleotide sequences, we designed two sets of oligonucleotide primers for specific amplification of the ZFX and the ZFY sequence in odontocetes and mysticetes, respectively. Each primer set consisted of three oligonucleotides; one forward-orientated primer, which anneals to the ZFY as well as the ZFX sequence, and two reverse-orientated primers that anneal to either the ZFX or the ZFY sequence. The resulting two amplification products (specific for the ZFY and ZFX sequences) can be distinguished by gel-electrophoresis through 2% NuSieve™. The accuracy of the technique was tested by determination of gender in 214 individuals of known sex. Finally we applied the technique to determine the sex of 3570 cetacean specimens; 2284 humpback whales, 315 fin whales, 37 blue whales, 7 minke whales, as well as 592 belugas, 335 narwhals and 25 harbour porpoises.  相似文献   

7.
Abstract:  The extinct mysticete fauna of the North East Atlantic is primarily known from the abundant but fragmented Belgian specimens. Compared to the well-preserved contemporary mysticete fauna from deposits in North America, there are only few near complete European Miocene mysticete fossils. Presented here is a new, almost complete fossil baleen whale Uranocetus gramensis gen. et sp. nov. from the Upper Miocene Gram Formation in South West Denmark. It is the first stem-balaenopterid that has an initial stage of reduction in the mandibular cavity and a rostral configuration that is intermediate between that of other stem-balaenopterids and true balaenopterids. It is likely that Uranocetus used a gulp feeding technique that approaches that of balaenopterids. Details of the periotic and mandibular morphology place Uranocetus in the family Diorocetidae Steeman 2007. The large mandibular cavity in Uranocetus and most other extinct mysticetes, when compared to the reduced condition in recent mysticetes, is not an indication that early mysticetes used odontocete-like echolocation. In Uranocetus and a distantly related mysticete, high frequency sounds in the range odontocetes use for echolocation would suffer a significant volume loss across the lateral mandibular wall on the passage towards the inner ear. A reduction in the mandibular cavity in separate evolutionary lineages of mysticetes may be the result of a shift towards the use of low frequency sounds.  相似文献   

8.
Kishida T  Thewissen JG 《Gene》2012,492(2):349-353
Odontocetes and mysticetes are two extant suborders of cetaceans. It is reported that the former have no sense of olfaction, while the latter can smell in air. To explain the ecological reason why mysticetes still retain their sense of smell, two hypotheses have been proposed — the echolocation-priority hypothesis, which assumes that the acquisition of echolocation causes the reduction of the importance of olfaction, and the filter-feeder hypothesis, which assumes that olfactory ability is important for filter-feeders to locate their prey because clouds of plankton give off a peculiar odor. The olfactory marker protein (OMP) is almost exclusively expressed in vertebrate olfactory receptor neurons, and is considered to play important roles in olfactory systems. In this study, full-length open reading frames of OMP genes were identified in 6 cetacean species and we analyzed the nonsynonymous to synonymous substitution rate ratio based on the maximum likelihood method. The evolutionary changes of the selective pressures on OMP genes did fit better to the filter-feeder hypothesis than to the echolocation-priority hypothesis. In addition, no pseudogenization mutations are found in all five odontocetes OMP genes investigated in this study. It may suggest that OMP retains some function even in ‘anosmic’ odontocetes.  相似文献   

9.
A cladistic analysis of 54 extant and extinct cetacean taxa scored for 304 morphological characters supports a monophyletic Odontoceti, Mysticeti, Autoceta, and Cetacea. Forcing a sister-group relationship between Mysticeti and Physeteridae, as suggested by some, but not all, molecular studies, requires an additional 72 steps. In agreement with recent molecular studies, morphological data divide extant mysticetes into two clades: Balaenopteroidea (Eschrichtiidae + Balaenopteridae) and Balaenoidea (Balaenidae + Neobalaenidae). Cetotheriopsinae is removed from Cetotheriidae, elevated to Family Cetotheriopsidae, and placed within the Superfamily Eomysticetoidea. All extant mysticetes and all cetotheriids are placed in a new Parvorder Balaenomorpha, which is diagnosed by many morphological characters, including fusion of the anterior and posterior processes of petrosal to ectotympanic bulla, pronounced median keel on palate, and absence of ventral margin of sigmoid process of bulla. Many of the clades within Odontoceti in the most parsimonious trees of this study are at odds with recent phylogenetic analyses. For example, Platanistidae is not closely related to the extinct odontocete families Squalodontidae and Squalodelphinidae. Instead, it is more closely related to extant river-dwelling odontocetes (i.e., Lipotes, Inia), suggesting a single dispersal of odontocetes into freshwater habitats. We found several characters to support Physeteroidea (Physeteridae + Ziphiidae), a taxon considered paraphyletic by several molecular and some morphological analyses. Lack of agreement on the phylogeny within Odontoceti indicates that additional analyses, which include molecular and anatomical data as well as extant and extinct taxa, are needed.  相似文献   

10.
ABSTRACT

Ultrasonic echolocation abilities are well documented in several dolphin species, but hearing characteristics are unknown for most whales. Vocalization data suggest whale hearing spans infra- to ultrasonic ranges. This paper presents an overview of whale ear anatomy and analyzes 1) how whale ears are adapted for underwater hearing and 2) how inner ear differences relate to different hearing capacities among whales.

Whales have adaptations for rapid, deep diving and long submersion; e.g., broad- bore Eustachian tubes, no pinnae, and no air-filled external canals, that impact sound reception. In odontocetes, two soft tissue channels conduct sound to the ear. In mysticetes, bone and soft tissue conduction are likely. The middle ear is air-filled but has an extensible mucosa. Cochlear structures are hypertrophied and vestibular components are reduced. Auditory ganglion cell densities are double land mammal averages (2000–4000/mm). Basilar membrane lengths range 20–70 mm; gradients are larger than in terrestrial mammals. Odontocetes have 20–60% bony membrane support and basal ratios >0.6, consistent with hearing >150 kHz. Mysticetes have apical ratios <0.002 and no bony lateral support, implying acute infrasonic hearing. Cochlear hypertrophy may be adaptive for high background noise. Vestibular loss is consistent with cervical fusion. Exceptionally high auditory fiber counts suggest both mysticetes and odontocetes have ears “wired” for more complex signal processing mechanisms than most land mammals.  相似文献   

11.
Digeneans of the family Campulidae occur exclusively in marine mammals, particularly in cetaceans. Their taxonomy is confused, being based on adult morphology only. We used a multivariate discriminant analysis of morphometric data to provide new evidence on the taxonomy of the Campulidae. Measurements of 217 specimens from 21 species of all seven genera of the family were taken. The percentage of specimens correctly assigned into their own species was 96.3%. The first three discriminant functions accounted for most of the variation between the species, which were grouped together in suprageneric groups along the first and the second function. The ordination pattern observed conforms partly with the established taxonomy of the Campulidae. Variation along the first discriminant function can be interpreted as a gradient of the vitelline extension and the maximum width to length ratio. This function separates three groups of species, corresponding to the Hunterotrematinae, Orthosplanchninae and Campulinae-Lecithodesminae. The last two subfamilies are separated along the second axis, the Lecithodesminae having longer bodies and suckers than the Campulinae. This study also provides some evidence at the generic and specific level.  相似文献   

12.
Although there are several isolated references to the olfactory anatomy of mysticetes, it is usually thought that olfaction is rudimentary in this group. We investigated the olfactory anatomy of bowhead whales and found that these whales have a cribriform plate and small, but histologically complex olfactory bulb. The olfactory bulb makes up approximately 0.13% of brain weight, unlike odontocetes where this structure is absent. We also determined that 51% of olfactory receptor genes were intact, unlike odontocetes, where this number is less than 25%. This suggests that bowheads have a sense of smell, and we speculate that they may use this to find aggregations of krill on which they feed.  相似文献   

13.
14.
Cetaceans exhibit an exceptionally wide range of body mass that influence both the capacities for oxygen storage and utilization; the balance of these factors is important for defining dive limits. Furthermore, myoglobin content is a key oxygen store in the muscle as it is many times higher in marine mammals than terrestrial mammals. Yet little consideration has been given to the effects of myoglobin content or body mass on cetacean dive capacity. To determine the importance of myoglobin content and body mass on cetacean diving performance, we measured myoglobin content of the longissimus dorsi for ten odontocete (toothed whales) and one mysticete (baleen whales) species ranging in body mass from 70 to 80000 kg. The results showed that myoglobin content in cetaceans ranged from 1.81 to 5.78 g (100 g wet muscle)(-1). Myoglobin content and body mass were both positively and significantly correlated to maximum dive duration in odontocetes; this differed from the relationship for mysticetes. Overall, the combined effects of body mass and myoglobin content accounts for 50% of the variation in cetacean diving performance. While independent analysis of the odontocetes showed that body mass and myoglobin content accounts for 83% of the variation in odontocete dive capacity.  相似文献   

15.
Previous studies of the odontocete forelimb have not considered flipper anatomy in an evolutionary context. This study of 39 cetacean species (1 extinct archaeocete, 31 extant and 3 extinct odontocetes, and 4 mysticetes), provides a detailed comparative analysis of the major bones and muscles of the odontocete flipper. Differences across families in the anatomy of the deltoid, supraspinatus, coracobrachialis, and subscapularis muscles correspond directly to size and shape of forelimb elements. Specialization of the different shoulder girdle muscles allows for more maneuverability of the flipper by independent control of muscular columns. Maximum likelihood analyses helped determine the correlation of characters studied by ancestral state reconstruction, and revealed independent evolution of osteological and external characters among various lineages. Comparative Analyses by Independent Contrast (CAIC), found several contrasts between flipper area and body length for several extant odontocetes and a linear relationship was inferred. Degree of hyperphalangy and the soft tissue encasing the flipper helped determine three flipper morphologies based on aspect ratio (AR) and qualitative data. These results suggest that differences in flipper shape have an evolutionary component and are likely largely in response to ecological requirements.  相似文献   

16.
The origin of baleen in mysticete whales represents a major transition in the phylogenetic history of Cetacea. This key specialization, a keratinous sieve that enables filter-feeding, permitted exploitation of a new ecological niche and heralded the evolution of modern baleen-bearing whales, the largest animals on Earth. To date, all formally described mysticete fossils conform to two types: toothed species from Oligocene-age rocks ( approximately 24 to 34 million years old) and toothless species that presumably utilized baleen to feed (Recent to approximately 30 million years old). Here, we show that several Oligocene toothed mysticetes have nutrient foramina and associated sulci on the lateral portions of their palates, homologous structures in extant mysticetes house vessels that nourish baleen. The simultaneous occurrence of teeth and nutrient foramina implies that both teeth and baleen were present in these early mysticetes. Phylogenetic analyses of a supermatrix that includes extinct taxa and new data for 11 nuclear genes consistently resolve relationships at the base of Mysticeti. The combined data set of 27,340 characters supports a stepwise transition from a toothed ancestor, to a mosaic intermediate with both teeth and baleen, to modern baleen whales that lack an adult dentition but retain developmental and genetic evidence of their ancestral toothed heritage. Comparative sequence data for ENAM (enamelin) and AMBN (ameloblastin) indicate that enamel-specific loci are present in Mysticeti but have degraded to pseudogenes in this group. The dramatic transformation in mysticete feeding anatomy documents an apparently rare, stepwise mode of evolution in which a composite phenotype bridged the gap between primitive and derived morphologies; a combination of fossil and molecular evidence provides a multifaceted record of this macroevolutionary pattern.  相似文献   

17.
A cribriform plate, a perpendicular plate, and two lateral masses are major components of the ethmoid bone of mammals. Notwithstanding the noticeable bone, virtually sitting in the center of the skull, extensive modifications of the skull of modern cetaceans, especially odontocetes (toothed whales), and the lack of clarity as to what characteristics delimit each element of the ethmoid has made the problem of the nature of the cetacean ethmoid more complicated and elusive than in other, less modified mammals. Furthermore, contention as to whether a perpendicular plate of the ethmoid, or the mesethmoid, exists in all mammals including cetaceans has remained unsettled. In odontocetes, the mesethmoid has been variably identified not only as the osseous nasal septum but also as the mediodorsal region of the posterior wall of the nasal passage below the nasals, as a mass of bone encased by the vomer in front of the osseous nasal cavity at the base of the rostrum, and as a combination of some portions mentioned above. The presence or absence of the mesethmoid in various groups of mammals has attracted the attention of some biologists, and here, I demonstrate that cetaceans have no mesethmoid. The close inspection of the ontogenetic changes of the basicranial elements in cetaceans reveals that a mass of bone ensheathed by the vomer in front, or at the level of the osseous nasal cavity is actually the presphenoid. It is highly likely that in odontocetes the posterior wall of the nasal passages below the nasals consists of the combination of the frontal, the imperforated cribriform plate, the paired ectethmoids, and the vomer, the latter three of which partially concealing the presphenoid dorsally and laterally as the ontogeny proceeds. In contrast, mysticetes clearly display ethmoturbinates and a cribriform plate, which are morphologically similar to those in terrestrial mammals. J. Morphol. 277:1661–1674, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
The ancestor of cetaceans underwent a macroevolutionary transition from land to water early in the Eocene Period >50 million years ago. However, little is known about how diverse retroviruses evolved during this shift from terrestrial to aquatic environments. Did retroviruses transition into water accompanying their hosts? Did retroviruses infect cetaceans through cross-species transmission after cetaceans invaded the aquatic environments? Endogenous retroviruses (ERVs) provide important molecular fossils for tracing the evolution of retroviruses during this macroevolutionary transition. Here, we use a phylogenomic approach to study the origin and evolution of ERVs in cetaceans. We identify a total of 8,724 ERVs within the genomes of 25 cetaceans, and phylogenetic analyses suggest these ERVs cluster into 315 independent lineages, each of which represents one or more independent endogenization events. We find that cetacean ERVs originated through two possible routes. 298 ERV lineages may derive from retrovirus endogenization that occurred before or during the transition from land to water of cetaceans, and most of these cetacean ERVs were reaching evolutionary dead-ends. 17 ERV lineages are likely to arise from independent retrovirus endogenization events that occurred after the split of mysticetes and odontocetes, indicating that diverse retroviruses infected cetaceans through cross-species transmission from non-cetacean mammals after the transition to aquatic life of cetaceans. Both integration time and synteny analyses support the recent or ongoing activity of multiple retroviral lineages in cetaceans, some of which proliferated into hundreds of copies within the host genomes. Although ERVs only recorded a proportion of past retroviral infections, our findings illuminate the complex evolution of retroviruses during one of the most marked macroevolutionary transitions in vertebrate history.  相似文献   

19.
Biopsy techniques have been developed to collect skin and blubber samples through non‐lethal methods. One sample can provide data on genetics, prey preferences, foraging ecology, contaminant loads, and physiological processes. The limited data available suggest that biopsy wounds heal quickly and that there are usually no discernable adverse health effects. Published accounts on factors contributing to the success of collecting biopsy samples and the behavioral impacts to cetaceans following biopsy sampling were standardized to permit statistical analysis. Several factors contribute to the success of acquiring samples; however, sampling rates do not differ significantly between delivery devices. Behavioral responses to biopsy sampling vary by species and other factors. The most predominant response for odontocetes is low, while low and moderate responses are equally prevalent for mysticetes. The use of retrieval lines may increase the occurrence of moderate and strong responses by mysticetes. These findings suggest that biopsy sampling is relatively benign, causing only minor and short‐lived responses. However, most researchers do not report sufficient data to assess short‐ and long‐term physiological and behavioral impacts. Finally, limited data suggest that biopsy sampling does not impact cetacean habitat use or distribution patterns. Yet these impacts are rarely investigated, so additional data are needed.  相似文献   

20.
Whales in the suborder Mysticeti are filter feeders that use baleen to sift zooplankton and small fish from ocean waters. Adult mysticetes lack teeth, although tooth buds are present in foetal stages. Cladistic analyses suggest that functional teeth were lost in the common ancestor of crown-group Mysticeti. DNA sequences for the tooth-specific genes, ameloblastin (AMBN), enamelin (ENAM) and amelogenin (AMEL), have frameshift mutations and/or stop codons in this taxon, but none of these molecular cavities are shared by all extant mysticetes. Here, we provide the first evidence for pseudogenization of a tooth gene, enamelysin (MMP20), in the common ancestor of living baleen whales. Specifically, pseudogenization resulted from the insertion of a CHR-2 SINE retroposon in exon 2 of MMP20. Genomic and palaeontological data now provide congruent support for the loss of enamel-capped teeth on the common ancestral branch of crown-group mysticetes. The new data for MMP20 also document a polymorphic stop codon in exon 2 of the pygmy sperm whale (Kogia breviceps), which has enamel-less teeth. These results, in conjunction with the evidence for pseudogenization of MMP20 in Hoffmann''s two-toed sloth (Choloepus hoffmanni), another enamel-less species, support the hypothesis that the only unique, non-overlapping function of the MMP20 gene is in enamel formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号